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Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used
by pathogens to infect host cells. Severe acute respiratory syndrome (SARS) is a new human respiratory infectious disease caused
by SARS coronavirus (SARS-CoV). The spike (S) protein of SARS-CoV plays an important role in the virus entry into a cell.
In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins.
Two of the peptides D07 (residues 927-937) and D08 (residues 942-951) were recognized by the sera of SARS patients. Murine
hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues
490-502) stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which
share sequence homology with human proteins, may play important roles in SARS-CoV infection.

Copyright © 2008 K.-Y. Hwa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Severe acute respiratory syndrome (SARS) is a new emerging
infectious disease, which was first reported in China in 2002
and was rapidly spreading all over the world in 2003 [1, 2].
The disease was transmitted by droplets and close contact.
Patients develop persistent fever, dry cough, progressive ra-
diographic changes of chest, and lymphopenia once infected.
Despite treatment, about 10-15% of the patients would die
due to the acute respiratory distress [3—6]. A novel coron-
avirus (SARS-CoV) was isolated from SARS patients [7-9].
SARS-CoV is a positive-stranded RNA virus with an envelop.
The genome of SARS-CoV is around 29,727 nucleotides in
length. The sequence was annotatedin silico [10]. Compar-
ative genomic studies using the in silico annotated proteins
have suggested that SARS virus belongs to a new group of
coronavirus.

According to the genomic sequence of SARS-CoV, it is
predicted that there are several structural proteins can be

produced by SARS-CoV including spike (S), envelop (E),
membrane (M), and nucleocapsid. Spike protein is very im-
portant in the binding and fusion of coronavirus to the host
cells [11, 12]. The S protein of SARS-CoV has 1255 amino
acids in length and 23 potential N-linked glycosylation sites.
The amino terminus of the SARS-CoV S protein contains
a short type 1 signal sequence composed of hydrophobic
amino acids that are presumably removed during cotrans-
lational transport through the endoplasmic reticulum. The
carboxyl terminus consists of a transmembrane domain and
a cytoplasmic tail rich in cysteine residues. The majority
of protein (residues 12-1195) is outside the virus particle,
which can be divided into amino-terminal S1 and carboxyl-
terminal S2 domain. The S1 domain (residues 12—-672) binds
to the host cell receptor, angiotensin-converting enzyme 2
(ACE2), while the S2 domain is responsible for membrane
fusion [13-15]. Monoclonal antibodies against SI domain
can block the receptor binding and contain potent neutral-
ization activity against SARS-CoV [16]. However, peptides
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derived from S2 domain can also inhibit SARS-CoV infec-
tion [12].

Molecular mimicry, which is defined as similar structures
shared by molecules from dissimilar genes or by their pro-
tein products, is a general strategy for pathogens to infect
host cells and has been proposed as a pathogenic mechanism
for autoimmune disease [17]. Therefore, identification of the
molecular mimic regions of pathogen may be helpful to un-
derstand the disease induced by that pathogen. At present, it
is unclear whether molecular mimicry occurs between SARS-
CoV S proteins and human peptides. We have approached
this question using computer to analyze the sequence of spike
protein of SARS-CoV and select regions that share the se-
quence homology with human proteins. The criteria for the
selection of potential regions include antigenic analysis and
surface accessibility. In this study, we find that several regions
of the S protein share sequence homology with human pro-
teins. Synthetic peptides, which represent some of these re-
gions, were synthesized to understand their roles in SARS-
CoV infection.

2. MATERIALS AND METHODS
2.1. Peptide prediction and synthesis

Publically available human and coronavirus genome se-
quences at the National Center for Biotechnology Infor-
mation (Md, USA) were used for in silicoprediction. Al-
gorithms predicting immunogenicity, second structure pre-
diction, protein topology analysis, and hydrophobicity were
conducted to design the tested peptides. Immunogenic vi-
ral peptides were calculated based on the algorithm devel-
oped by Kolaskar and Tongaonkar [18]. The algorithm is
based on a table constructed from the occurrence of amino
acid residues in experimentally known antigenic epitopes.
The reported accuracy of the method is about 75% [18].
In silico secondary structural analyses of spike protein were
performed based on PHD [19] and PREDATOR [20] algo-
rithms. Protein topology prediction was based on the al-
gorithm developed by TMHMM [21]. Hydrophobicity of
the peptides was calculated based on the algorithm HMO-
MENT [22]. Similarity searches between S protein and hu-
man genome database were performed by using BLASTP
[23] with BLOSUM 62. Extra amino acid residues were
added at either N- or C-terminus to keep the hydropho-
bic amino acid content below 50%. Peptides with high hy-
drophobicity are difficult to be tested in biochemical experi-
ments since most of in vitro assays are conducted in aqueous
buffers. Also, on average, one charged residue is added for ev-
ery five amino acids. Multiple antigen peptides were synthe-
sized by CytoMol Corp (Mountain View, Calif, USA). In ad-
dition, bradykinin and angiotensin I (Ang I) were purchased
from Sigma (St. Louis, Mo, USA).

2.2. SARS patient sera

SARS patient sera were collected by the Center for Disease
Control, Department of Health (Taipie, Taiwan) from March
to June, 2003. Diagnosis of SARS was based on the clin-

icalcriteria established by the World Health Organization
(WHO). Patients with SARS-CoV were confirmed by labo-
ratory methods, including viral antigen detection, RT-PCR,
and serologic methods. Ten SARS patient sera collected at
the convalescent stage (=20 days after disease onset) were in-
cluded in this study. Ten normal sera from healthy individu-
als were used as controls.

2.3. Enzyme-linked immunosorbent assay (ELISA)

Antibodies against peptides in human sera were detected
by solid-phase capture technique using individual peptide-
coated plates. ELISA plate was coated with or without 50 yL
peptides (100 ug/mL) per well and blocked by 1% bovine
serum albumin (BSA) in 0.05% Tween-20 in phosphate-
buffered saline (PBS) for 1 hour at room temperature. Test
serum samples were 1 : 100 diluted and added to the plate for
2 hours at room temperature. After incubation, the ELISA
plate was washed with 0.05% Tween-20 in PBS for three
times. The bound antibodies were detected by horseradish
peroxidase- (HRP-) conjugated antihuman immunoglobulin
antibodies (Sigma Aldrich, St. Louis, Mo, USA) and peroxi-
dase substrate, TMB (Promega, Madison, Wiss, USA). The
absorbance was measured using the Vmax microplate reader
(Molecular Devices Corporation, Sunnyvale, Calif, USA) at
450 nm. Antibodies against peptides in mouse sera were as-
sayed by ELISA as in human sera except HRP-conjugated
antimouse immunoglobulin antibodies (Sigma Aldrich) was
used to detect bound antibodies.

2.4. Cell culture

Human lung adenocarcinoma cell line A549 and Vero
cells were grown in DMEM supplemented with 10% heat-
inactivated FCS, 2mM L-glutamate, and 50 ng/mL gen-
tamycin. Cells were incubated in CO, incubator at 37°C with
5% CO; in a humidified atmosphere. For immunofluores-
cent microscopy observation, monolayers of A549 cells were
cultured on sterile glass slides before the experiment.

2.5. Miceimmunization

Six- to eight-week-old female BALB/c mice were used in
this study. These mice were originally purchased from Jack-
son Laboratory (Bar Harbor, Me, USA) and bred in the
Laboratory Animal Center, National Cheng Kung Univer-
sity (Tainan, Taiwan). Synthetic peptides (1 mg/mL) were
emulsified with complete Freund’s adjuvant and injected in-
traperitoneally into BALB/c mice. Mice were boosted with
the same peptide in PBS (50 ug/mouse) intraperitoneally
two weeks after priming. Sera were collected from the axi-
ally plexus of the mice at different time intervals and tested
for the presence of antibody against peptides by ELISA
as mentioned above. Significant increase of antibody titer
(greater than 4 folds) against immunized-peptide was found
in mouse hyperimmune sera as compared to normal sera af-
ter boosting.
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FIGURE 1: Sequence analysis of S protein. Putative S protein amino acid sequence was analyzed to find immunogenic regions (yellow regions)
and pathogenic regions (regions shared sequence homology with human proteins, blue regions). Purple regions are both immunogenic and
pathogenic regions. The grey region is the leader sequence and the brown region is the transmembrane region.
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FIGURE 2: Sequence homology between S protein, (a) human
Angrgm-52, and (b) bradykinin. Spike protein sequence (pro-
tein databank NP_828851) was compared with sequences from all
nonredundant GenBank CDS translations, PDB, SwissProt, PIR,
and PRF of human, by using blastp (NCBI, NIH, USA). For Panel
(a), BLASTP was used to calculate the similarity between S protein
and human Angrgm-52, with matrix set at default. For an identical
residue, one letter symbol of amino is shown between the two se-
quences, and for a conservative substation, “+” is shown. For Panel
(b), pairwise alignment was calculated based on Smith-Water lo-
cal alignment with matrix set at BLOSUM 45. “|” is annotated for
identical residues; <

«,»

and “ are for similar residues.

2.6. Immunofluorescent stain

Mouse hyperimmune sera against peptide D08 were incu-
bated with A549 cells at 4°C for 1 hour. After washing three
times with PBS, cells were incubated with 1 mL of 1 ug/mL
FITC-conjugated antimouse IgG (Jackson ImmunoResearch
Laboratories Inc., West Grove, Pa, USA) at 4°C for 1 hour
and washed again with PBS. The immunofluorescent stain of
cells was observed by fluorescent microscopy.

2.7. SDS-PAGE and western blot analysis

Proteins in the cell lysate of A549 were separated by 12%
SDS-PAGE and transferred to nitrocellulose sheets as de-
scribed previously [24]. Proteins recognized by normal or
peptide D08 hyperimmune mice sera were detected us-
ing HRP-conjugated antimouse immunoglobulin antibodies
(Sigma Aldrich) and substrate.

2.8. Cell proliferation

Vero E6 (4 x 10%) and A549 cells (5 x 10°) were incubated
with different doses of synthetic peptides as indicated for 72
hours. Cell proliferation was detected using commercial XTT
assay (Roche Diagnostics, Indianapolis, Ind, USA).

2.9. IL-8assay

The IL-8 production was assessed by commercial ELISA kits
(R&D systems, Minneapolis, Minn, USA) according to the
manufacturer’s instructions. Briefly, A549 cells (1x10°) were
cultured alone or with different doses of peptides for 48
hours. Culture supernatants were collected after incubation,
added to precoated ELISA plates, and incubated for 2 hours
at 37°C. Plates were washed four times with the washing
buffer. The bound IL-8 was detected by HRP-conjugated an-
tibodies and substrate. The developed color was read by the
Vmax microplate reader (Molecular Devices, Calif, USA).
The concentration of IL-8 was calculated according to the
standard curve.

2.10. Statistical analyses

Data are expressed as mean =+ standard deviation (SD). The
levels of significance for the differences between groups were
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TABLE 1: Amino acid sequence of the eleven synthetic peptides *Extra amino acid residues which were indicated by italic letters were added

at either N- or C-terminus to decrease the hydrophobicity.

Peptide Amino acid positions Amino acid sequence No. of amino acids
Do1 199-210 GYQPIDVVRDLG 12
D02 658-669 ASYHTVSLLRSTSQK 15
D03 733-744 EEGNLLLQYGSFCTQ 15
D04 745-753 EELNRALSGIAAGQ 13
D05 763-770 VFAQVKQM 8
D06 911-919 KAISQIQESLTTE 13
D07 927-937 GLGKLQDVVNQNGE 14
D08 942-951 ALNTLVKQLSSN 12
D09 1154-1162 INASVVNIQK 10
D10 490-502 GYQPYRVVVLSFEE 14
D11 306-317 GFRVVPSGDVVRF 13
1.2 *
1 *
~ 087
3 06
0.4
0.2
0

Do1 D02 D03 D04 D05 D06 D07 D08 D09 D10 DIl BK Angl
Peptide

= SARS patient
== Normal

F1GUrE 3: Antibody binding activity of SARS patients’ sera to differ-
ent peptides. Sera of SARS patients at convalescent stage as well as
normal controls were collected as described in Section 2. Antibodies
binding to different peptides were detected by ELISA as described in
Section 2. BK represents bradykinin. “x” indicates P < .05.

analyzed using Student’s t-test. A value of P < .05 was con-
sidered to be significant.

3. RESULTS
3.1. Search for molecular mimic regions in S protein

The whole amino acid sequence of spike protein was an-
alyzed to find out the potential immunogenic regions and
the regions shared sequence homology with human proteins,
which is defined as the pathogenic regions. As shown in
Figure 1, there are 4 pathogenic regions. Region 1 (residues
199-254), region 2 (residues 658-715), region 3 (residues
893-951), and region 4 (residues 1127-1184) have shared
sequence homology with hydroxyacid oxidase, human golgi
autoantigen, Angrgm-52, and pallidin, respectively. Among
these regions, region 3 with homology to human Angrgm-52
has the highest score (with 34% identities and 48% similar-
ity of conservative substitutions). Its sequence comparison
with angrgm-52 is shown in Figure 2(a). In addition, because
des-Arg bradykinin and Ang I are the substrates for ACE2
[25], we also compared the sequence of S protein against
bradykinin (RPPGFSPFR) and Ang I (DRVYIHPFHL) and
found that residues 490-502 (GYQPYRVVVLSFEE) of S pro-

(a) (b)

Figure 4: Immunofluorescent staining of mouse hyperimmune
sera against A549 cells. A549 cells were grown on the slides and
stained with secondary antibody alone (a) or mouse hyperimmune
sera against D08 peptide (b) as described in Section 2.

tein showed sequence homology with bradykinin as indi-
cated by bold letters here and in Figure 2(b). The identity
score is 27%; and the similarity score from conservative sub-
stitutions is 36%.

3.2. Screen for peptides recognized by
SARS patients’ sera

Eleven peptides (D01-D11, see Table 1), which repre-
sent those pathogenic regions were synthesized as well as
bradykinin and Ang I were tested to see whether those pep-
tides can be recognized by SARS patients’ sera. The peptides
were designed based on the algorithms predicting immuno-
genicity, second structure, protein topology, and hydropho-
bicity. Our goal is to select for peptides with high immuno-
genicity, with location on the protein surface, and with low
hydrophobicity. The designed peptide sequences were syn-
thesized and tested with clinical samples of SARS patient
sera. A significant increase of SARS patients’ sera binding to
peptide D01, D07, and D08 was found as compared to the
binding of normal sera (see Figure 3).
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Normal

(a)

FIGURE 5: Mouse hyperimmune sera against D08 peptide recognize
proteins in the A549 cell lysate. Proteins in the cell lysate of A549
cells were separated by SDS-PAGE and transferred to membrane as
described in Section 2. Western blots against this membrane using
normal mouse sera (a) or hyperimmune sera against D08 (b) are
shown.

3.3. Hyperimmune sera against D08 crossreacted
with A549 cells

To test whether synthetic peptides D01, D07, and D08 can
induce antibodies crossreacted with human proteins, we im-
munized mice with these peptides to generate hyperimmune
sera against these peptides. We found hyperimmune sera
against D08 can bind to the cytoplasmic region of human
A549 cells as demonstrated by immunofluorescent stain (see
Figure 4). Using Western blot analysis, hyperimmune sera
against D08 could recognize more bands in A549 cell lysate
as compared to normal mice sera (see Figure 5). In addition,
hyperimmune sera against D07, but not D01, showed simi-
lar crossreactivity to A549 cells as hyperimmune sera against
D08 did (data not shown).

3.4. Hyperimmune sera against D10 crossreacted
with bradykinin

To test whether synthetic peptides D10, indeed, can induce
antibodies crossreactive with bradykinin and Ang I, we im-
munized mice with D10 peptides to generate hyperimmune
sera against this peptide. Significant increase of antibodies
against D10 was found in D10 hyperimmune sera, which
could crossreact with bradykinin, but not with Ang I-coated
plates (see Figure 6).
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FiGURE 6: The crossreactivity of D10 antibody with bradykinin and
Ang I. Hyperimmune sera from D10 immunized mice () or nor-
mal mice sera (A) were diluted as indicated and reacted with D10-,
bradykinin-, or Ang I-coated ELISA plates as indicated. Bound an-
tibodies were detected as described in Section 2. Data represents the
mean + SD of triplicates.
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(a) FIGURE 8: IL-8 production of A549 cells induced by D10 peptide and
Ang 1. A549 cells (1 x 10°) were incubated with or without peptides
Vero E6 for 48 hours. The levels of IL-8 in the culture supernatants were
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FiGure 7: Cell proliferation induced by D10 peptide and AngI. Vero
and A549 cells were incubated with different doses of peptides as in-
dicated. Cell proliferation was detected after 72 hours of incubation
by XTT assay as described in Section 2. Data represents the mean +
SD of triplicates.

3.5. Peptide D10 induced IL-8 secretion and
cell proliferation of A549 cells

To understand whether D10 has similar biological activity
as Ang I, we incubated Vero cells and lung epithelial A549
cells with D10, Ang 1, or control peptide D11. Both Vero and
A549 cells were induced to proliferate in the presence of D10
and Ang I but not the control peptide (see Figure 7). In addi-
tion, D10 and Ang I could also induce chemokine IL-8 pro-
duction of A549 cells (see Figure 8).

assayed as described in Section 2. Data represents the mean = SD of
triplicates.

4. DISCUSSION

In this study, we have identified four pathogenic regions
of SARS-CoV S protein which share sequence homology
with different human proteins. Among them, pathogenic re-
gion 3 (residues 893-941), which shares sequence homol-
ogy with Angrgm-52 (GenBank accession no. AAL62340), a
novel gene upregulated in human mesangial cells stimulated
by angiotensin II, may deserve further investigation. Peptides
D07 and D08 of this region were recognized by the sera of
SARS patient indicating that this region is immunogenic and
can be recognized by the immune system during SARS-CoV
infection. Murine hyperimmune sera against peptides D07
or D08 were able to bind to recombinant S2 but not S1 do-
main of S protein (data not shown). In addition, hyperim-
mune sera against D07 or D08 also bounded to the cytoplas-
mic region of A549 cells and recognized several proteins in
the A549 cell lysate. These results indicate that regions rep-
resented by D07 and D08 are immunogenic and may induce
autoantibodies. However, further study is required to under-
stand the biological function of these regions and the role of
their antibodies in the pathogenesis of SARS-CoV infection.
In addition to D07 and D08 peptides, we also noticed
that D10 peptide which represents residues 490-502 of S1
domain contained some interesting activities. The D10 pep-
tide, which shared sequence homology with bradykinin, was
able to generate antibodies crossreactive with bradykinin. In
addition, D10 peptide could stimulate A549 to produce 1L-8
and proliferation as Ang I did. These results suggest that the
region of D10 in S protein may bind to Ang I receptor, ACE2,
and may be involved in the binding of SARS-CoV to ACE2.
This is consistent with the previous report, which indicates
that residues 318-510 of S1 domain can bind to ACE2 [25]
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and is similar to the receptor binding domain of the HCoV-
229E, which is within a fragment containing residues 407 to
547 [26]. Therefore, region 490-502 of S1 domain may be
involved in the receptor binding domain of SARS-CoV.

In summary, our results suggest that molecular mimicry
occurs between SARS-CoV and host proteins. Motifs shared
sequence homology with host proteins of SARS-COV may be
involved in the binding and fusion of SARS-CoV to host cells.
Antibody against these motifs may contain neutralization ac-
tivity against SARS-CoV infection or participate in the im-
munopathogenesis induced by SARS-CoV. As reported pre-
viously, SARS-CoV, like influenza, can inhibit the host’s cor-
ticosteroid stress response via a molecular mimicry strategy
[27]. Our studies on the mimicry motifs of S protein, which
is involved in the virus, entry may provide alternative ap-
proaches to disrupt the infection of SARS-CoV, similar to the
previous studies on the virus entry [28, 29].
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