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Abstract
Proteolytic remodeling of the extracellular matrix is an important component of disease progression
in many chronic disease states and is the initiating event in the formation of the tumor
microenvironment in cancer. It is the balance of extracellular matrix degrading enzymes, the matrix
metalloproteinases (MMPs) and their endogenous inhibitors that determine the extent of tissue
remodeling. Unchecked MMP activity can result in significant tissue damage, facilitate disease
progression and is associated with host responses to pathologic injury such as angiogenesis and
inflammation. The tissue inhibitors of metalloproteinases (TIMPs) have been shown to regulate MMP
activity. However, recent findings demonstrate that the tissue inhibitor of metalloproteinases-2
(TIMP-2) inhibits the mitogenic response of human microvascular endothelial cells to growth factors,
such as VEGF-A and FGF-2 in vitro and angiogenesis in vivo. The mechanism of this effect is
independent of metalloproteinase inhibition. Our lab is the first to demonstrate a cell-surface
signaling receptor for a member of the TIMP family and suggest that TIMP-2 functions to regulate
cellular responses to growth factors. These new findings are discussed in terms of a model of TIMP-2
regulation of cellular functions in the tumor microenvironment.
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1 Extracellular matrix remodeling and chronic disease
Many chronic disease states are characterized by an imbalance between tissue destruction and
endogenous mechanisms of tissue repair, potentially resulting in a vicious cycle of continued
and expanding cellular injury coupled with incomplete repair or resolution. These pathologic
conditions frequently disrupt the function and structural organization of both the parenchymal
(cellular elements) and connective tissue stroma, such that the injury cannot be repaired by
simple regeneration of the parenchymal elements alone. The resulting tissue damage is further
complicated by host responses elicited during the initial pathologic insult. In cancer
progression, the initial proteolytic remodeling of the extracellular matrix signals the
progression of tumor and host responses that results in the formation of a pathologic milieu
often referred to as the tumor microenvironment.

This tumor microenvironment is composed of a variety of cell types that includes not only
tumor cells and stromal fibroblasts but also cells derived from a variety of host responses. One
such host response is the proliferation of new blood vessels, termed angiogenesis, and is
frequently associated with chronic diseases such as psoriasis, rheumatoid arthritis and cancer.

e-mail: sstevenw@mail.nih.gov.

NIH Public Access
Author Manuscript
Cancer Metastasis Rev. Author manuscript; available in PMC 2009 March 1.

Published in final edited form as:
Cancer Metastasis Rev. 2008 March ; 27(1): 57–66.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The initiation of new blood vessel formation is itself due to a shift in the local balance of pro-
angiogenic factors and endogenous inhibitors of angiogenesis, i.e. the angiogenic switch [1,
2]. The angiogenic response and associated host responses that constitute the tumor
microenvironment may exacerbate the underlying local pathology, such as in medullary
(inflammatory) carcinoma of the breast or in disease progression, i.e. cancer metastasis.

Pro-angiogenic factors, such as angiogenic growth factors VEGF-A and FGF-2, induce the
expression of matrix-degrading proteinases whose activity results in remodeling of the
extracellular matrix to facilitate invasion of new blood vessels and formation of the tumor
microenvironment [1,3]. Inhibition of proteinase activity can result in diminution of the
angiogenic response, which in some disease states can result in resolution of the underlying
pathology and/or arrest disease progression. This finding suggests that protease inhibitors could
be a novel therapeutic approach in the treatment of chronic diseases such as cancer. However,
the translation of this strategy to the treatment of human cancer has been disappointing [4].
The reasons for this failure remain unclear, but suggest that our understanding of the molecular
and cellular events involved in tissue remodeling and host responses such as angiogenesis, are
at best incomplete. Further understanding of the mechanisms of tissue homeostasis and repair
should lead to novel therapeutic strategies for the treatment of both chronic inflammatory and
malignant diseases.

2 TIMPs: MMP inhibitors and activators
Members of the matrix metalloproteinase (MMP) family have been shown to mediate both
tissue development (organogenesis) and remodeling. Collectively, the 24 members of the
mammalian MMP family can degrade all components of the extracellular matrix, and many of
these protease activities have been specifically associated with pathologic tissue destruction
in chronic diseases such as cancer and arthritis. The role of metalloproteinases in cancer,
inflammation and other diseases have been reviewed elsewhere [3–7].

The Tissue Inhibitors of MetalloProteinases, or TIMPs, have been identified in species ranging
from drosophila, zebra fish and C. elegans to humans, suggesting that these proteins are ancient
eukaryotic proteins [8–10]. Furthermore, recent studies have shown developmental defects in
TIMP-deficient organisms, in both non-mammalian and mammalian systems, suggesting the
importance of these proteins during embryonic development, as well as possible functional
redundancy of some TIMPs in mammalian development [11–14].

The mammalian TIMP family has four members, which share significant homology and
structural identity at the protein level. The features of the TIMP family members are described
in Table 1 and have been reviewed in detail elsewhere. [8–10]. TIMP-2 is unique as a member
of the TIMP family in that in addition to inhibiting MMPs TIMP-2 selectively interacts with
MT1-MMP to facilitate the cell-surface activation of pro-MMP-2 [15]. Thus, TIMP-2 functions
both as an inhibitor of MMPs, and is required for the cellular mechanism of pro-MMP-2
activation.

TIMP-2 also has a distinct gene structure compared with the other three members of the TIMP
family. An interesting relationship exists between the TIMPs and the synapsin gene family in
that three members of the TIMP family are nested within the synapsin genes [16–18]. The
synapsin 1 gene nests TIMP-1, synapsin 2 nests TIMP-4 and synapsin 3 nests TIMP-3. TIMP-2
is the only member of the TIMP family that is not nested within a gene of the synapsin family.
The synapsin-TIMP gene nesting relationship began phylogenetically as far back as
Drosophila [18]. A recent report describes a nested gene within the very large (~60 kb) first
intron of the TIMP-2 gene [19], known as DDC8 [20]. Furthermore, these authors demonstrate
that the brain of the TIMP-2 knock out mouse described by Wang et al. contains TIMP-2 mRNA
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encoding exons 2–5 downstream of DDC8, suggesting alternative splicing between these two
genes [20,21].

3 Identification of non-MMP-dependent TIMP functions
Sequencing of the cDNA clone for TIMP-1 revealed identity of this metalloproteinase inhibitor
with erythroid-potentiating activity (EPA) [22]. EPA was identified as a T lymphoblastic factor
present in serum that supports the growth of erythroid precursors in vitro by a mechanism
involving direct cell surface binding [23]. EPA potentiates erythropoietin (EPO)-stimulated
colony formation by early or late erythroid stem cells (BFU-E or CFU-E). Subsequently,
TIMP-2 was also shown to have EPA, suggesting that this biological activity may be attributed
to a common structural element, which remains to be identified [24]. However, some
investigators felt that the dual EPA and MMP inhibitor functions for these proteins were
“incongruous” [25]. The argument for this conclusion was principally based on the observation
that TIMPs are ubiquitously expressed and that the in vivo plasma concentration of TIMP-1 at
approximately 17 nM was well above the concentration of 80 pM required for the maximal
physiologic effect of EPA. The physiologic significance of EPA and its relationship to other
TIMP functions remain unresolved. Although TIMPs have been principally viewed as
functioning exclusively as MMP inhibitors, there remains a significant body of data, starting
with the original cloning of TIMP-1, which suggests TIMPs may have other biological
functions.

Hayakawa and colleagues were the first to report that TIMP-1 present in serum acted as a
growth factor to support proliferation in vitro of a variety of cell types that included both normal
mesenchymal and epithelial cells, as well as several tumor cell lines [26]. In these experiments
depletion of TIMP-1 from the bovine serum used in cell culture was necessary to observe the
growth effects of TIMP-1. Interestingly, TIMP-2 did not stimulate cell growth in these
experiments, suggesting that these effects are TIMP-1 specific, although the requirement for
MMP inhibitory activity was not examined. We and others have clearly demonstrated that
TIMP-1 can inhibit apoptosis in a variety of cell types from Burkitt lymphoma cells [27–30]
to breast cancer cells[31–34]. However, the mechanism of this effect seems to be cell type
specific.

TIMP-3 has been shown to promote apoptosis in several in vitro systems [8,9]. It remains
unclear if this effect is mediated independent of MMP inhibition by TIMP-3. Recent findings
in TIMP-3-null mice suggest that TIMP-3 can either promote or inhibit apoptosis depending
on the model system examined [12,13]. In vivo data now show that TIMP-3 deficient mice
have an increase in TNF-α converting enzyme (TACE) activity that in a liver regeneration
model results in chronic hepatic inflammation and failure of the liver to regenerate [35]. These
results suggest that the effects of TIMP-3 on cell fate are mediated by inhibition of
metalloproteinase activity, in this case TACE, also known as ADAM17, and not a member of
the MMP family. Interestingly, TIMP-3 also functions as a direct antagonist of the VEGFR2,
resulting in inhibition of angiogenesis, a function that is clearly independent of MMP inhibition
[36]. TIMP-4 reportedly enhances or inhibits the in vivo growth of tumor xenografts, however,
the mechanism of these effects has not been described [37,38]. It has recently been
demonstrated that although TIMP-4 does inhibit endothelial cell migration in vitro it does not
inhibit FGF-2-induced angiogenesis in the chick chorioallantoic assay [39].

TIMP-3 is unique amongst the TIMP family in that it has been shown to specifically interact
with sulfated glycosaminoglycans and as a result is sequestered in the extracellular matrix
[40], the other TIMP family members remain soluble and diffusible. Although the biological
significance of the matrix association of TIMP-3 has not been determined, it does suggest that
its pericellular distribution and availability to interact with cell surface proteins may be more
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restricted than other members of the TIMP family. Furthermore, many in vitro studies of
TIMP-3 cellular functions have been conducted by addition of soluble, exogenous recombinant
TIMP-3 and have not addressed the role of matrix binding which is a unique feature of this
inhibitor.

The central issue regarding all of these potential biological activities of the TIMPs is: “Are
they unique biological activities of these proteins or are they dependent on inhibition of
metalloproteinase activity?”

4 TIMP-2: separation of MMP-inhibitory activity from growth regulatory
activity

By virtue of their ability to inhibit metalloproteinase activity members of the TIMP family
should function as inhibitors of angiogenesis. This general principal is supported by the
demonstration that TIMP-1, TIMP-2 and TIMP-3 all demonstrate anti-angiogenic activity in
vitro and in vivo [41,42]. However, this concept is confounded by the recent demonstration
that TIMP-4 did not inhibit FGF-2 induced angiogenesis in vivo [39]. Some evidence suggests
that the anti-angiogenic effects of TIMPs may be functionally distinct [43]. The synthetic MMP
inhibitor (BB94) effectively blocked angiogenesis in a murine hemangioma model in vivo
[44], suggesting that inhibition of MMP activity, either by TIMPs or synthetic MMP inhibitors,
was sufficient to block angiogenesis in vivo. Combined with additional evidence that synthetic
MMP inhibitors could block tumor cell invasion, tumor growth and reduce metastasis
formation, these data provided strong support for the development of synthetic MMP inhibitors
for the treatment of human cancer [44]. Unfortunately, the enormous industrial effort involved
in the development and preclinical testing of synthetic MMP inhibitors has not produced
significant results in clinical trials with cancer patients [4], although the reasons for this failure
are not completely understood.

In 1990, Moses and colleagues isolated and characterized a novel anti-angiogenic agent from
bovine cartilage, the cartilage-derived inhibitor (CDI) of angiogenesis [45]. CDI co-purified
with MMP inhibitor activity, and was shown to inhibit angiogenesis in vivo. In addition CDI
inhibited endothelial cell proliferation in response to FGF-2 stimulation in vitro and blocked
endothelial cell migration. The N-terminal amino acid sequence of CDI suggested that it was
TIMP-related, showing close identity with TIMP-2 [45].

Subsequently, both TIMP-1 and TIMP-2 were shown to inhibit polyamine-stimulated
angiogenesis in the chick chorioallantoic membrane assay, but the effects on endothelial cell
proliferation and/or migration were not examined [46]. It is interesting to note that in these
experiments, both TIMP-1 and TIMP-2 inhibited stimulated angiogenesis (polyamine-
dependent) but did not alter vascular development in non-stimulated 3 day-old chick
chorioallantoic membrane assays. This suggests that the process defined as vasculogenesis
(de novo development of an organized vascular system) is functionally distinct from
angiogenesis (development of new vessels form existing vasculature), with respect to both
requirements for MMP activity and sensitivity to TIMP inhibition. Together, the experiments
of Moses and Hayakawa suggested that although both TIMP-1 and TIMP-2 inhibit
angiogenesis, the mechanism of these effects might be different.

To address this issue Murphy et al. examined the ability of both TIMP-1 and TIMP-2 to inhibit
endothelial cell proliferation and migration [47]. These experiments demonstrated that
TIMP-2, but not TIMP-1 or the synthetic MMP inhibitor, BB-94, inhibited the FGF-2-
stimulated proliferation of human endothelial cells. This inhibitory effect was not observed
using a pro-MMP-2/TIMP-2 complex suggesting that only free TIMP-2 was capable of
inhibiting endothelial cell growth in response to FGF-2 stimulation. Furthermore, TIMP-2
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slightly inhibited endothelial cell migration in response to FGF-2 stimulation and appeared to
promote endothelial cell adhesion. Comparison of these effects of TIMP-2 with the lack of
effect of either TIMP-1 or BB-94 led us to conclude that the effects of TIMP-2 on endothelial
cell proliferation were unique biological activities of this member of the TIMP family,
independent of MMP inhibitory activity and possibly mediated by cell surface receptor
mechanism.

Following these observations, investigations began to focus on interaction of TIMP-2 with the
cell surface. However, with the demonstration of a cell surface mechanism for activation of
pro-MMP-2 by MT1-MMP that is mediated by interaction of TIMP-2 with MT1-MMP [8–
10], it became evident that MT-MMPs represent a cell surface-binding site for TIMP-2. This
finding suggests that one possible mechanism through which TIMP-2 could influence cell
growth was by binding to MT1-MMP that would act as a signaling receptor. However, no
evidence has been forthcoming to demonstrate that MT1-MMP can act as a signaling receptor
to suppress endothelial cell proliferation.

In 1999, Wingfield et al reported a novel TIMP-2 mutant devoid of MMP inhibitory activity
[48]. For the first time this mutant allowed investigators to assess the requirement for MMP
inhibitory activity in TIMP-2-mediated suppression of cell growth. This mutant also allowed
us to ultimately identify potential TIMP-2 binding sites on the cell surface that did not contain
an MMP active site, vide infra. Preparation of this mutant was accomplished through appending
a single amino acid, alanine, to the amino-terminus of TIMP-2 to produce Ala+TIMP-2 [48].
Ala+TIMP-2 does not inhibit MMP-2 or MT1-MMP activity or mediate MT1-MMP activation
of pro-MMP-2 [48,49]. Furthermore, the inability of Ala+TIMP-2 to inhibit MMP activity was
reversible by treatment with aminopeptidase activity that removes the amino-terminal Ala
residue [48]. This suggests that other than the single Ala residue at the amino-terminus, the
remainder of the TIMP-2 is correctly folded and capable of inhibiting MMP activity once the
Ala residue blocking the amino terminus is enzymatically removed.

Subsequently, this Ala+TIMP-2 mutant was used to explore the interaction of TIMP-2 with
the cell surface. Both TIMP-2 and Ala+TIMP-2 bound to the surface of human A549 lung
cancer cells with very high affinity (Kd=147 pM) and this binding was not competed by the
synthetic MMP inhibitor BB94 or TIMP-1 [49]. Furthermore, the binding of Ala+TIMP-2
showed only partial competition by MT1-MMP blocking antibodies, and immunofluorescence
co-localization studies demonstrated that TIMP-2 and Ala+TIMP-2 binding was, at least in
part, independent of MT1-MMP. These findings have been confirmed by investigators who
have shown two distinct cell surface binding sites for TIMP-2 [50], cell-surface binding of
TIMP-2 is independent of the level of MT1-MMP expression [51], and not all cell surface-
bound TIMP-2 can be competed by synthetic MMP inhibitors [50].

More recently, Moses and colleagues definitively demonstrated uncoupling of the MMP-
inhibitory activity and anti-angiogenic activity of TIMP-2 [52]. This was accomplished using
Pichia pastoris expression system to engineer and produce both the N-terminal and C-terminal
domains of TIMP-2. These authors found that although both domains of TIMP-2 inhibited
angiogenesis in the embryonic CAM assay, the c-terminal domain and wild type TIMP-2 were
more effective inhibitors of angiogenesis in the mouse corneal pocket assay (in which
angiogenesis is driven by addition of exogenous pro-angiogenic mitogens) than the N-terminal
TIMP-2 domain. Furthermore, the ability of the N-terminal domain was dependent on MMP-
inhibitory activity, as blocking the amino-terminus of the TIMP-2 amino-terminal fragment
by appending glutamic acid (E) and alanine residues (A) reversed the MMP-inhibitory activity
and in vivo anti-angiogenic activity of this TIMP-2 domain [52]. The activity of TIMP-2 that
inhibits endothelial cell proliferation was localized to the carboxy-terminal domain of TIMP-2,
specifically to the carboxy-terminal disulfide loop, referred to as loop 6 [52]. It is interesting
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to note that this region is encoded by exon 5 of the TIMP-2 gene, and as noted above the TIMP-2
deficient mice may produce alternative splice variants of the DDC8 gene that could express
proteins containing a TIMP-2 loop 6 structure [20]. This may in part explain the benign
phenotype of this knock out mouse strain.

The binding of TIMP-2 to the endothelial cell surface and the ability to inhibit endothelial cell
proliferation were shown to be independent of MMP inhibition as demonstrated by Ala
+TIMP-2 [53]. The binding of TIMP-2 to the human microvascular endothelial cell surface
was saturable and reversible with a dissociation constant on the order of 900 pM. The binding
of TIMP-2 to the endothelial cell surface did not antagonize growth factor (FGF-2 or VEGF-
A) binding, was not competed by growth factor receptor blocking antibodies (anti-VEGFR-2
or anti-FGFR-1) or MT1-MMP blocking antibodies. Competition binding studies
demonstrated that TIMP-2 binding to the surface of human microvascular endothelial cells
could be competed by anti-β1 and anti-α3 integrin blocking antibodies. The interaction of
TIMP-2 with α3β1 cell surface integrin was confirmed by immunoprecipitation experiments
in which anti-TIMP-2 antibodies resulted in selective co-immunoprecipitation of α3β1
integrin. The ability of TIMP-2 to inhibit growth in response to tyrosine kinase growth factor
stimulation was dependent on cell surface expression of β1 integrin subunits, as demonstrated
using β1-null fibroblasts.

Subsequent studies have demonstrated that TIMP-2 or Ala+TIMP-2 binding via α3β1 results
in G1 growth arrest and enhanced de novo expression of the cyclin-dependent kinase inhibitor
p27Kip1 [54]. Further studies revealed that TIMP-2 and Ala+TIMP-2 enhanced the expression
of the reversion-enhancing-cysteine-rich protein with Kazal motifs, also known as RECK
[55]. TIMP-2 induction of RECK expression was shown to be mediated by inhibition of Src
kinase activity resulting in an altered pattern of paxillin phosphorylation at residues 31 and
118 [56]. This altered phosphorylation results in inactivation of the small G protein Rac1 and
a reciprocal activation of the small G-protein Rap1, resulting in loss of a migratory phenotype.
Collectively, these findings suggest that TIMP-2 inhibits angiogenesis by inducing endothelial
cell differentiation to a quiescent state. These findings are summarized in Fig. 1.

5 TIMP tissue distribution: clues to new functions?
Few studies have examined the expression and localization of TIMPs in adult tissues. However,
we do know from many in vitro studies that in many cells the transcriptional activation of TIMP
expression is differentially regulated. In most cell types expression of TIMP-2 is constitutive,
whereas TIMP-1 and TIMP-3 expression can be induced by a variety of growth factors and
cytokines.

A recent study utilizing quantitative PCR demonstrated essentially ubiquitous and abundant
expression of all four mammalian TIMPs in most mouse tissues [57]. TIMP-2 was
constitutively expressed at high levels in all tissues of the adult mouse, with the expression of
the other three TIMPs demonstrating more selective patterns of tissue distribution. These
patterns for tissue expression of TIMPs are identical to previous studies and the constitutive
high-level expression of at least one TIMP family member in each organ of the adult mouse
suggests that TIMPs “provide a crucial checkpoint for tissue degradation” [57]. Although this
study did not localize cellular expression of the TIMPs, previous studies of TIMP-2 expression
by in situ hybridization suggest selective expression in the stromal compartment, with complete
absence of TIMP-2 transcripts in epithelial cells [58]. It should be pointed out that although
TIMP concentrations may be significant in some “normal” tissues, the expression of active
MMP species in “normal tissues” is usually very low or nonexistent [57]. This raises the
question: “What is the functional role of TIMPs in normal tissues lacking MMP activity or
evidence of active extracellular matrix remodeling?” We propose that these observations are
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consistent with TIMP-2 functioning in the absence of MMPs to maintain cellular differentiation
and tissue homeostasis.

Consistent with this hypothesis is the recent work of Jaworski and colleagues who have
demonstrated that TIMP-2 inhibits growth and promotes neurite differentiation in vitro via an
α3β1 integrin dependent mechanism [59]. Interestingly, in this system cell cycle arrest also
occurs in G1 but appears to be mediated by enhanced expression of the cyclin-dependent kinase
inhibitor p21Cip, not p27Kip1 as we observed in the endothelial cell system. These authors
extended this work to demonstrate that TIMP-2 expression correlates with the appearance of
microfilament positive neurons and that live cell labeling experiments show TIMP-2
association only with α3 integrin positive cells [60]. These observations led the authors to
suggest that up-regulation of TIMP-2 expression by proliferative stimuli implicates TIMP-2
expression in the transition from neuronal proliferation to promotion of terminal neuronal
differentiation. This concept is further supported by their subsequent demonstration that
TIMP-2 KO mice have abnormal motor deficits, and shows for the first time a significant
phenotype for these TIMP-2 deficient mice [61].

6 Model for TIMP-2 in modulating the tumor microenvironment
It is now evident that the matrix metalloproteinase inhibitor TIMP-2 has multiple functions
that include inhibition of MMP activity, mediating the cell surface activation of pro-MMP-2
by MT-1-MMP, as well as the metalloproteinase inhibitory independent function of promoting
cellular differentiation that is mediated by binding to its cell surface receptor α3β1. The finding
that TIMP-2 promotes cellular differentiation in vivo via a mechanism that is independent of
MMPs implies a new function for this member of the TIMP family.

These observations suggest the following model for the bifunctional role of TIMP-2 in the
tumor microenvironment presented in the context of the angiogenic response (Fig. 2). In
quiescent normal tissues the levels of TIMP-2 are sufficient to allow free, uncomplexed
TIMP-2 to accumulate in the pericellular milieu. The source of this TIMP-2 may be stromal
fibroblasts, perivascular smooth muscle or endothelial cells, all of which have been shown to
synthesize and secrete TIMP-2 in vitro. In these quiescent adult tissues the growth suppressing
activity of TIMP-2 is functional through binding to available α3β1 integrin receptors on
fibroblasts and endothelial cells. In this scenario TIMP-2 functions to suppress fibroblast and
endothelial cell responses to transient or minor fluctuations in angiogenic growth factors, i.e.
VEGF-A and/or FGF-2.

However, during tumor progression there is an increase in secretion and activation of MMPs
produced by either the tumor cells themselves or tumor-associated fibroblasts. The secretion
of these proteases initiates the formation of the tumor microenvironment. The local increase
in MMP activity is initially counteracted by the MMP inhibitory activity of endogenous
TIMP-2, at the expense of TIMP-2 cell differentiating activity. We speculate that this may
facilitate activation of the tumor associated fibroblasts, which may also contribute to the
evolving tumor microenvironment. As the tumor progresses, more MMPs are produced
overwhelming the local TIMP-2 concentration and contributing to extensive remodeling of the
ECM. Furthermore, continued tumor growth leads to tissue hypoxia and MMP-mediated
release of matrix sequestered angiogenic factors. These events promote the tumor angiogenic
response, which also requires MMP activity. As recently demonstrated, endothelial cells
responding to angiogenic factors, such as VEGF-A, decrease the synthesis and secretion of
TIMP-2 [62]. This further promotes the local decline in TIMP-2 concentrations and potentiates
the proteolytic remodeling of the extracellular matrix. Thus, in this model TIMP-2 initially
functions as a rheostat by limiting cellular responsiveness to stimuli leading to cellular
proliferation, cellular activation and extracellular matrix remodeling. However, as the tumor
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microenvironment evolves TIMP-2 function shifts to inhibition of MMP activity, and further
depletion of TIMP-2 levels may even facilitate TIMP-2 function in the MT-1-MMP activation
of pro-MMP-2.

The primary question that arises is if TIMP-2 functions to maintain tissue homeostasis, why
do TIMP-2 deficient mice reproduce normally and show no overt vascular defects, only a motor
deficit phenotype?[61] With respect to vascular development in mammals we do know that
this process is regulated in a fashion distinct from angiogenesis in the adult. Vascular
development occurs through the process of vasculogenesis, which is functionally distinct from
angiogenesis [63]. We propose that either: (1) TIMP-2 plays no direct role in vasculogenesis;
or (2) that other members of the TIMP family compensate for the loss of TIMP-2 MMP
inhibitory activity during embryonic vascular development. Although no developmental
defects are observed in TIMP-2 deficient mice [21,64], a recent report demonstrates that in
zebra fish the single TIMP expressed during development is most homologous to TIMP-2 and
that ablation of TIMP-2 expression results in abnormal zebra fish development [11]. This
finding suggests that in mammalian systems other TIMPs may compensate for the loss of
TIMP-2 function. Angiogenesis on the other hand is a process limited to adult tissues
responding to a pathologic stimulus. Therefore, the question should be: “Do TIMP-2 deficient
animals have a normal or abnormal angiogenic responses to tissue injury?” To our knowledge
such experiments have not yet been reported.

The next question that arises is can TIMP-2 be used as a therapeutic in the treatment of cancer?
If the concentration of TIMP-2 or even better Ala+TIMP-2, which would not be sequestered
by MMP active sites, could the cellular activation of host responses contributing to the tumor
microenvironment, such as fibroblast activation and tumor angiogenesis be suppressed by
promoting cellular differentiation. That such a therapeutic approach is possible is supported
by the recent report of a TIMP-2 transgenic murine model using the MMTV-Wnt-1 mammary
carcinogenesis model [65]. Although exact tissue concentrations of TIMP-2 were not
determined, the authors demonstrated that enhanced TIMP-2 expression in the mammary
glands of the MMTV-Wnt-1 double transgenic mice resulted in increased tumor latency, ~26%
reduction of tumor formation, 18% decrease in tumor cell proliferation and a 12% increase in
tumor cell apoptotic rate. Although tumor-associated angiogenesis was reduced in the double
transgenics, the authors’ primary focus was demonstrating a role for MMPs in the MMTV-
Wnt-1 tumor model. Therefore, possible direct effects of TIMP-2 on cellular elements of the
tumor microenvironment were not examined.

7 Summary
Although the concept of MMP-independent functions for TIMPs is not new, the demonstration
that TIMP-2 promotes cellular differentiation of endothelial cells and neurons is mediated by
cell surface receptors definitively demonstrates that TIMPs have functions other than inhibition
of MMPs. Additionally, it has recently been reported that CD63 may function as a cell surface
receptor for TIMP-1 and mediate the anti-apoptotic activity in breast cancer [31]. This finding
has enormous implications for the role of TIMP-1 in modulating the cellular responses that are
involved in formation and maintenance of the tumor microenvironment. Not only can TIMP-1
promote carcinogenesis by directly promoting tumor cell growth and tumorigenicity [31–33,
66], TIMP-1 has also been shown to modulate the immune function [28,30] as well as
angiogenesis [67–71].

From their initial identification, TIMPs have been associated with regulation of cell growth
and differentiation (i.e. erythroid-potentiating activity, EPA). However, we are now beginning
to develop the experimental evidence to define the mechanisms of such activities. The question
remains: Do all TIMPs also have cell surface receptors that may mediate regulation of cell
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growth or differentiation? TIMP-3 has been shown to bind to VEGFR-2 and function as an
antagonist of VEGF-A stimulation [36]. However, the significance of this mechanism in
preventing cancer progression is unclear. Cell surface binding for TIMP-4 has been suggested,
but identification of specific cell surface receptors has not been forthcoming. Characterization
of these receptors and understanding the signaling mechanisms involved will identify new
therapeutic targets not just for cancer but also for a variety of other chronic disease states.

8 Conclusions
Recent evidence suggests that TIMPs, particularly TIMP-1 and TIMP-2, may have unique
biological properties, independent of their ability to inhibit MMPs. This is supported by the
identification of cell surface receptors for these two members of the TIMP family. TIMP-2
impacts the tumor microenvironment by initially promoting cellular differentiation of
endothelial cells and fibroblasts, and possibly cells in the epithelial compartment. However,
subsequent progression and massive production and activation of MMPs by a variety of cell
types that comprise the tumor microenvironment, including tumor cells, endothelial cells,
immune cells and tumor-associated fibroblasts, shifts the function of TIMP-2 to
metalloproteinase inhibitor. Finally, continued progression and further depletion of TIMP-2
levels could again change TIMP-2 function from MMP inhibitor to activator by facilitating
MT-1-MMP activation of pro-MMP-2.

9 Key unanswered questions
Do all four members of the TIMP family have cell surface receptors and if so what unique
biological activities do they support?

Can over expression of TIMP-2 within the tumor microenvironment overcome the MMP-
mediated activation of the tumor microenvironment and promote cellular differentiation of
host cells?

Can over expression of TIMP-2 promote differentiation of the malignant carcinoma cells
leading to reversal of the epithelial to mesenchymal transition?

Can addition of TIMP-2 over expression enhance the tumoricidal activity of conventional
cytotoxic agents?
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Fig. 1.
Multiple pathways of TIMP-2/α3β1 signaling. TIMP-2 binding to α3β1 initiates receptor
tyrosine kinase inactivation via the action of the protein tyrosine phosphatase activity. Cell
cycle arrest is mediated by de novo synthesis of p27Kip1, that down-regulate the cyclin-
dependent kinases 4 and 2, resulting in hypophosphorylation of pRb and cell cycle arrest in
G1. TIMP-2 also mediates activation of the small G protein Rap1 via a mechanism involving
altered association of paxillin scaffolding proteins, guanidine exchange factors and ultimately
results in enhanced expression of RECK. This suggests that in addition to arresting cellular
proliferation, TIMP-2 also seems to promote expression of cellular differentiation markers
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Fig. 2.
TIMP-2 controls cell behavior directly through α3β1 integrin receptors and indirectly by
modulating the activity of MMPs. In physiological quiescent states high levels of free TIMP-2
promotes cellular quiescence and maintenance of the differentiated state. This occurs
independently of MMP inhibitory action. As local concentrations of angiogenic factors
increase, endothelial cells respond by increasing MMP production and limiting TIMP-2
expression. Increasing concentrations of activated MMPs acts as a sink to reduce free TIMP-2
concentrations, limiting interaction of TIMP-2 with α3β1, thus reducing the growth inhibitory
effects. As active MMP concentrations continue to increase, TIMP-2 concentrations may be
insufficient to completely inhibit MMP activity. At low concentrations TIMP-2 is insufficient
to inhibit MMP activity, and actually enhances MMP-2 activation (via MT1-MMP-dependent
mechanism) resulting in remodeling of extracellular matrix, facilitating angio-invasion
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