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Abstract
Tropomyosins (Tms) are α-helical dimers that bind and stabilize actin microfilaments while
regulating their accessibility to other actin-associated proteins. Four genes encode expression of over
forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that
individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined
how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously
showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated
knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning
of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive
capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated
thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished
motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion
structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes
and the sealing zone.
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INTRODUCTION
Osteoclasts are giant multinucleated cells of the monocyte-macrophage lineage that play a
critical role in skeletal health by resorbing bone to be renewed in the remodeling process. This
is achieved by the cells passing through cycles of migration, polarization coupled to bone
resorption, depolarization and further migration. These highly motile cells express attachment
structures called podosomes that are characterized by a short, rapidly assembling and
disassembling F-actin core. This core contains actin regulatory proteins such as Arp2/3, Wasp,
and gelsolin that regulate its structure and stability [1,2]. Surrounding the core are integrins
and associated regulatory kinases, adaptors, small GTPases, and mediators of endocytosis
[3], as well as a “cloud” of additional monomeric and filamentous actin that polymerizes and
depolymerizes continuously [4]. Recently, this cloud has been shown to contain actin fibers
that radiate perpendicular to the F-actin core [5]. While osteoclasts cultured on glass possess
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abundant numbers of individual podosomes, they are less prevalent in cells on bone [6]. Instead,
podosomal proteins are configured into a dense adhesion structure termed the sealing zone, an
actin-rich ring that surrounds a specialized membrane domain, the ruffled border. Secretion of
degradative proteases (particularly cathepsin K) and protons (via proton-translocating
VATPases) from the ruffled border results in degradation of bone matrix and dissolution of
mineral. While the sealing zone contains the same regulatory proteins as podosomes, they are
configured into a different three-dimensional structure, with sealing zones being thicker and
denser than belts of podosomes [5,6].

Because the actin cytoskeleton of osteoclasts is highly dynamic, we examined these cells for
the expression and distribution of tropomyosins. Tropomyosins are coiled-coiled dimers that
bind along the length of actin filaments and stabilize their structures by regulating access of
the filament to other actin regulatory proteins such as gelsolin [7], Arp2/3 [8], and ADF/cofilin
[9,10]. Approximately forty isoforms of tropomyosins now have been identified in rodents,
and most of these are expressed in nonmuscle cells [11]. We showed recently that at least seven
isoforms are present in osteoclasts, and that one of these isoforms, tropomyosin 4 (Tm-4), was
distributed both in the core of podosomes, and on the inner face of sealing zones [12]. Thus,
Tm-4 appears to be a prime candidate for regulating osteoclast attachment and bone resorptive
capacity. In this study, to identify a role for Tm-4 in osteoclast activity, we both inhibit and
overexpress Tm-4 in murine osteoclasts, and assess resulting alterations in morphology,
motility, and resorptive activity.

MATERIALS AND METHODS
Osteoclast culture

Murine osteoclasts were generated either from the macrophage cell line RAW264.7 (American
Type Culture Collection, Manassas, VA) or from mouse bone marrow precursors. To generate
RAW264.7-derived osteoclasts, macrophage precursors were plated at 20,000 cells/cm² and
cultured for 5–8 days in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% heat
inactivated fetal bovine serum, penicillin/streptomycin and 50 ng/ml of a GST-RANKL fusion
protein that was previously described [13], replacing the medium every 2–3 days. For the
primary cell preparation, marrow cells from male Swiss-Webster mice (Harlan, Indianapolis,
IN), 4–8 weeks in age, were incubated overnight in αMEM containing 10% heat inactivated
fetal bovine serum and 20 ng/ml M-CSF (R & D Systems, Minneapolis, MN). The next day,
non-adherent cells were collected and incubated for an additional 5–8 days in αMEM
containing 10% heat inactivated fetal bovine serum, 20 ng/ml M-CSF, and 50 ng/ml GST-
RANKL. The culture medium was replaced every 2–3 days.

Antibodies and Western analysis
For detection of Tm-4, a rabbit polyclonal was purchased from Chemicon International
(Temecula, CA). Loading control antibodies to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and beta actin, both mouse monoclonal antibodies, were purchased from Abcam
(Cambridge, MA). An antibody against V-ATPase subunit a3 was generated in this laboratory
and was described previously [14]. Antibodies to paxillin and α-actinin were obtained from
BD Transduction Laboratories and Sigma, respectively. For Western analysis, osteoclast
lysates were run in pre-cast PAGE gels (Bio-Rad Laboratories, Hercules, CA) and transferred
to Hybond membrane (GE Healthcare Bio-Sciences, Piscataway, NJ). Primary antibodies were
allowed to bind to the membranes using standard methodology, and were detected using
horseradish peroxidase-labeled secondary antibodies coupled with SuperSignal West Pico
Chemiluminescent reagents (Pierce Biotechnology, Rockford, IL).
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Competitive RT-PCR of Tm-4 mRNA
To determine Tm-4 mRNA expression levels by RT-PCR, primers were created that
corresponded to sequences within the murine cDNA. The sense primer was of the sequence
5’-AGCCCCACACTTTGAAGCAC-3’, while the antisense primer was of the sequence 5’-
CCTGGAATAAGACGCTTGCTCC-3’. For an internal standard, a cDNA was created that
corresponded to the expected PCR product using the primers above, but contained an internal
deletion of 17%, a T7 promoter element, and a tail of 15 adenosines, as previously described
[15,16]. This product was transcribed in vitro using the MAXIscript system (Ambion, Austin,
TX), and 10 pg of the resulting RNA (the internal standard) was added to 1 µg of osteoclast
total cellular RNA prior to reverse transcription and PCR. These reactions were performed
using the Superscript First-strand Synthesis System and TaqDNA Polymerase, both from
Invitrogen (Carlsbad, CA). The resulting RT-PCR products were run in a 2% agarose gel and
stained with ethidium bromide to visualize the relative intensities of the bands. Quantification
of bands was performed with a Chemi-doc supplied with Quantity One software (Bio-Rad
Laboratories, Hercules, CA).

Immunocytochemistry and Microscopy
Osteoclasts were cultured either on glass coverslips or thinly-cut ivory slices. Cells briefly
were fixed in a solution of 1% formaldehyde in pH 6.5 stabilization buffer (127 mM NaCl, 5
mM KCl, 1.1 mM NaH2PO4, 0.4 mM KH2PO4, 2 mM MgCl2, 5.5 mM glucose, 1 mM EGTA,
20 mM Pipes), and subsequently were more extensively fixed and permeabilized in a solution
of 2% formaldehyde, 0.2% Triton X-100, and 0.5% deoxycholate in the same stabilization
buffer [12,17]. Primary antibodies were added in a standard blocking buffer, and were detected
using Alexa-labeled secondary antibodies (Invitrogen Corp., Carlsbad, CA). F-actin was
identified using Alexa-labeled phalloidin, also from Invitrogen. Cells were visualized using a
Zeiss 510 META laser scanning confocal microscope (Campus Microscopy and Imaging
Facility, The Ohio State University). Actin ring and podosome thicknesses were determined
by generating Z-stack images of randomly selected cells and measuring these structures at their
thickest points.

Knockdown and overexpression of Tm-4
To knock down murine Tm-4 expression, siRNAs were designed and synthesized by Ambion
(Austin, TX). Most experiments were performed with siRNA1, which was of the sequence 5’-
CCCAGAGCAAAAAUUAACAtt-3’ (sense) and 5’-
UGUUAAUUUUUGCUCUGGGtg-3’ (antisense). Optimization experiments were performed
and showed this siRNA to work efficiently at 75 nM. Confirmatory experiments were
performed with siRNA2 (at 100 nM), which was of the sequence 5’-
CCUACUCUGUUCUUUACGUtt-3’ (sense) and 5’-
ACGUAAAGAACAGAGUAGGtt-3’ (antisense). These oligonucleotides target sequences
within the 3’ UTR of the Tm-4 mRNA. Because Tm-4 is the sole product of the Tmδ gene, the
siRNA sequences bears no homology to other known Tm isoforms. Assay of the isoforms
Tm-2/3, Tm-5a/5b, and 5NM-1, which also are abundant in osteoclasts, showed no diminution
when cells were treated with the Tm-4 siRNA (data not shown). RAW264.7 cells were
transfected by first stimulating with GST-RANKL to form osteoclasts. On day 5 of GST-
RANKL treatment, a solution of siRNA or a non-targeting control dsRNA at the same
concentration (Ambion) was added to Lipofectamine 2000 (Invitrogen Corp., Carlsbad, CA)
in plain DMEM without serum or antibiotics and added to the cells. The medium was replaced
with DMEM with fetal bovine serum and RANKL but no antibiotics after five hours [18]. At
1–3 days post-transfection, cells were harvested as required. Transfection efficiency, as
measured by introduction of a commercial fluorescent dsRNA (Sequitur/Invitrogen Corp.) was
>95% in multinucleated cells. For immunocytochemical analysis, the cells were scraped and
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replated on ivory slices or glass coverslips immediately following the transfection. For RNA
and protein analysis, total cellular RNA was harvested with RNA-Bee (Tel-test, Inc.,
Friendswood, TX), and whole cell lysates for protein assays were harvested using M-PER
(Pierce Biotechnology, Rockford, IL).

Bone marrow-derived osteoclasts were transfected via electroporation. On day five of GST-
RANKL treatment, after osteoclasts had formed, cells were scraped, pelleted, and resuspended
in siPORT buffer (Ambion, Austin, TX). The cells were electroporated at 250V/ 50µF with
siRNA or non-targeting control dsRNA, then plated in standard differentiation medium on
glass or ivory for immunocytochemistry, or plastic for RNA and protein analysis. As for
RAW264.7 osteoclasts, transfection efficiency was assayed with a fluorescent dsRNA and
found to be >95%.

For generation of a Tm-4 expression plasmid, an I.M.A.G.E. clone corresponding to the murine
form (accession number BC023701) was purchased from the American Type Culture
Collection (Manassas, VA). A fragment containing 19 bp of 5’ UTR, the entire coding region,
and 32 bp of the 3’ UTR was subcloned into the eukaryotic expression vector pEF6/V5-His
(Invitrogen Corp., Carlsbad, CA). This construct was stably transfected into RAW264.7
macrophages; the empty pEF6/V5-His vector was stably transfected into cells as a control via
Lipofectamine and Plus reagent transfections (Invitrogen Corp., Carlsbad, CA). Cells were
maintained in 3 µg/ml blasticidin for selection.

Osteoclast resorption and motility assays
Five days after initial RANKL stimulation, osteoclasts were transfected and immediately plated
on BD BioCoat Osteologic Discs (BD Biosciences, San Jose, CA). Control and siRNA treated
cells were kept on the discs for 3 days. Alternately, Tm-4 overexpressing cells were cultured
on the discs for up to 8 days. The cells were removed by the addition of bleach for 5 minutes
and several washes with water. Resorbed areas (clearings) were assayed by photographing the
resulting discs under low magnification, and quantifying these areas with SigmaScan Pro 5.0
software (SPSS Science, Chicago, IL) as previously described [19]. Equal numbers of images
were compared among test groups. Groups were assayed for number of clearings, area per
clearing, and total resorption.

Motility was measured by the use of 8.0 µm pore Transwell migration chambers (Corning Life
Sciences, Acton, MA). The bottom side of the membrane was coated with collagen (3 mg/ml
diluted 1:2 with 100% ethanol) and dried overnight. Five days after RANKL stimulation or
immediately following transfection of RAW or marrow cells, cells were scraped and replated
on the upper side of the membrane. After 48 hours, the cells were stimulated overnight to
migrate by the addition of 40 µg/ml osteopontin peptide to the bottom of the well. Cells on the
upper side of the membrane were removed with a cotton swab, and the remaining cells were
fixed and stained for tartrate resistant acid phosphatase using a Leukocyte Acid Phosphatase
kit (Sigma, St. Louis, MO).

RESULTS
Suppression of tropomyosin 4 levels results in thinning of the osteoclast F-actin ring

We previously showed that tropomyosin 4 is abundant in osteoclast adhesion structures,
namely on the inner face of both the podosomal F-actin core and the F-actin ring of polarized
osteoclasts [12]. Based on these data, we hypothesized a role for Tm-4 in stabilizing both
podosomal and sealing zone microfilaments. To further explore a role for Tm-4 in regulating
the actin cytoskeleton of osteoclasts, we used RNA interference to suppress its expression
levels, and examined the cells for changes in actin architecture and bone resorptive capacity.
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Tm-4 is the only product of the Tmδ gene, and therefore is readily amenable to genetic
manipulation by RNA interference. Two siRNAs tested demonstrated significant knockdown
of Tm-4; siRNA1 was used for most experiments while siRNA2 was used to confirm specificity
of these results as described below. Figure 1 shows that Tm-4 mRNA and protein levels
successfully were suppressed in both RAW264.7- and marrow-derived osteoclasts with
siRNA1. In panel 1A, siRNA- or control-transfected RAW264.7 osteoclasts were analyzed by
competitive RT-PCR for Tm-4 mRNA levels. We saw significant mRNA knockdown by one
day post-transfection, and these low levels remained until at least three days post-transfection
(compare the intensities of the upper Tm-4 bands to the lower internal standards). Tm-4 protein
levels also diminished by one day post-transfection, and remained low through the same time
period (Figure 1B). In contrast, expression of housekeeping genes such as GAPDH did not
change, nor did the expression of β-actin. Figure 1C shows quantification of siRNA effects on
Tm-4 expression and demonstrates ~50% loss of both mRNA and protein over the three day
assay period. Comparable results were obtained in murine marrow-derived osteoclasts, as
shown in panels 1D–1F, demonstrating the similarity of these culture models. The effects of
siRNA2 on Tm-4 also were assessed; at 100 nM, this oligonucleotide also generated a ~50%
decrease in Tm-4 mRNA levels and a ~45% decrease in protein levels (data not shown).
Although only ~50% knockdown was achieved in either cell type and with either siRNA,
control experiments demonstrated >95% transfection efficiency in osteoclasts (see Materials
and Methods). Immunocytochemical staining revealed uniform suppression of Tm-4 among
osteoclasts in the siRNA-treated culture, rather than, for example, 100% suppression in one-
half the cells. Figure 1G illustrates that control-transfected osteoclasts produced intense Tm-4
labeling at the peripheral podosome belt (left panels); in contrast, while some siRNA-treated
mononuclear cells still showed intense Tm-4 labeling, siRNA-treated osteoclasts uniformly
were diminished in intensity when photographed under the same conditions as controls (right
panels).

To determine how suppression of Tm-4 might affect F-actin structures in osteoclasts, we
performed confocal imaging of RAW264.7- or marrow-derived cells cultured on ivory and
labeled with fluorescent phalloidin. Although osteoclasts were able to generate sealing zones
in the siRNA-treated cells, Z-stack imaging revealed that the height of F-actin rings in these
cells was significantly less than in control-treated or wild-type cells. Figure 2A shows
representative photomicrographs of control-transfected and siRNA1-transfected osteoclasts.
As indicated by the arrowheads, siRNA1-treated cells contained much thinner actin rings than
their control-transfected counterparts. To quantify these results, actin rings from untransfected,
controltransfected, and siRNA1-transfected osteoclasts were measured at their thickest points,
and these data were expressed graphically in Figure 2B. These results were obtained from a
single experimental batch of cells; however, nearly identical results were obtained from three
other trials. As is apparent from this graph, siRNA1 treatment of both RAW264.7- and marrow-
derived cells resulted in diminution of actin ring thickness by 40–50%. Similarly, treatment
with siRNA2 generated actin rings that were diminished in thickness by ~45% (data not
shown). These results are consistent with a role for Tm-4 in stabilizing actin filaments within
the osteoclast sealing zone.

Although native tissue like ivory is the most physiologically authentic substrate on which to
grow bone cells, the rather irregular surface and opacity of ivory may cause artifacts in
fluorescent imaging, which could skew our measurements of sealing zone height. To control
for this possibility, we performed similar experiments with osteoclasts plated on thinly coated
synthetic bone surface (BD BioCoat Osteologic coverslips). As shown in Figure 2C and 2D,
nearly identical results were obtained with this substrate, furthering confirming our findings
that suppressed Tm-4 levels affect sealing zone formation.
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Suppression of Tm-4 levels results in impaired bone resorption and motility
The altered formation of osteoclast sealing zones in cells with suppressed Tm-4 levels
suggested that these osteoclasts may not be able to resorb bone in a normal manner. To
determine the resorptive capacity of these cells, control- and siRNA-transfected RAW264.7
osteoclasts were plated on synthetic bone substrate and the number and area of resulting
clearings were quantified. As shown in Figure 3A (top), both the number and size of individual
clearings were diminished in siRNA-transfected cells relative to control-transfected controls,
for a loss in total resorption of about 80%. This was not due to differences in cell number
between the control- and siRNA-treated cells, since equivalent numbers of differentiated
osteoclasts were transfected in each sample. Resorption assays from marrow-derived cells
similarly demonstrated a roughly 60% decrease in total resorption (not shown). Further, the
shapes of resorbed areas generated by the knockdown cells were altered; they were irregular
in shape, and often showed patches of incomplete resorption within the clearings themselves
(Figure 3A, bottom, arrowheads). In contrast, clearings generated by the control-transfected
cells generally were complete and rounded in outline, resembling the resorption areas generated
by wild-type cells on Osteologic discs [20]. Because irregular resorption areas might be
indicative of aberrant motility in the knockdown cells, Transwell migration assays were
performed. As shown in Figure 3B, addition of siRNA to cells resulted in a 50% loss in motility.
These results suggest a potential alteration in cytoskeletal organization. Although we did not
discern obvious morphological differences in podosome structure, we found that siRNA-
treated cells that were plated on glass showed regions of long actin filaments resembling stress
fibers in regions where Tm-4 was relatively absent (Figure 3C, arrowheads). This is in contrast
to wild-type or control-transfected osteoclasts, which do not contain stress fibers [21]. Thus,
loss of F-actin from normal osteoclast adhesion structures resulted in formation of aberrant
microfilament organization.

Overexpression of tropomyosin 4 results in altered F-actin structures in osteoclasts
Because suppression of Tm-4 alters the ability of osteoclasts to generate actin rings and resorb
bone, we explored whether overexpression of this isoform could similarly disrupt osteoclast
activity. Stably transfected RAW264.7 cell macrophage lines were generated containing either
Tm-4 cDNA in vector pEF6/V5-His or empty vector as a control, and these lines subsequently
were differentiated into osteoclasts. (Expression of Tm-4 in this vector is driven by the
promoter for human elongation factor 1α) Figure 4A shows Western analysis of several of
these clones, which expressed up to 2-fold more Tm-4 than untreated or control-transfected
cells. Clones 1.1, 1.2, and 2.2 were chosen for detailed analyses. Other experiments (not shown)
using the stronger CMV promoter to express Tm-4 resulted in complete cell death, indicating
that macrophages and osteoclasts may not be able to tolerate large deviations in levels of this
tropomyosin. Figure 4B demonstrates that even the highest expressing of our stable clones
(Tm- 4 1.1) was able to generate osteoclasts, and did so at a frequency approximately 91% of
that of the control line (not shown). However, even a small increase in Tm-4 expression resulted
in aberrant actin structures. F-actin labeling of podosomes appeared more intense in Tm-4-
transfected osteoclasts than in control cells. Further, many of the Tm-4 overexpressing cells
demonstrated intense phalloidin labeling of podosomes scattered across the cell base, rather
than being arranged in a peripheral belt (Figure 4B). Although clone 1.1 is shown,
overexpressing clones 1.2 and 2.2 demonstrated a similar phenotype (not shown).

The F-actin structures in Tm-4 overexpressing cells gave the appearance of podosomes from
phalloidin labeling; however, we performed additional immunocytochemistry to determine
whether podosome-associated proteins were present in these structures. The left panels of
Figure 4C show that α-actinin, which associates with the actin core of podosomes under normal
conditions [22], also intensely labels the F-actin structures in Tm-4-overexpressing cells.
Another podosome-associated protein, paxillin, is present in the cloud which surrounds the
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actin core in wild-type cells, and in mature podosome belts, can elicit a railroad track
appearance due to its distribution at the periphery of densely packed cores [23]. A similar
distribution is apparent in our control transfectants (Figure 4C, right panels). However, in
Tm-4- overexpressing cells with scattered individual podosome-like structures, paxillin is
distributed throughout the cell and can be seen surrounding the thickest actin cores (Figure 4C,
arrows). Thus, in cells overexpressing Tm-4, α-actinin colocalizes with the cores of the
thickened F-actin structures while paxillin surrounds them; these patterns are consistent with
the identity of the structures as podosomes.

To determine whether the intense phalloidin labeling of podosomes in the overexpressing lines
was due to increased F-actin in the podosomal cores, Z-stack images of control and
overexpressing cells (clone 1.1) were generated and core actin height was measured (Figure
4D).Because the height of podosomes (~1µm) is near the optical resolution of confocal
microscopes, the values generated are not extremely precise; nonetheless, it was clear that the
height of podosomes of Tm-4 overexpressing cells (range, 3.0 – 4.0 microns) was greater than
those of control-treated cells (range, 1.0 – 2.5 microns). Transwell migration assays were then
performed on osteoclasts of clone 1.1 to determine whether Tm-4 overexpressers were altered
in their motility. As demonstrated in Figure 4E, overexpression of Tm-4 resulted in a 65% loss
of cell motility under our assay conditions.

When plated on an ivory substrate, the Tm-4 overexpressing cells (both clone 1.1 and clone
2.2) produced even more aberrant attachment structures. While cells expressing the control
vector were able to polarize properly on ivory, we found that Tm-4 overexpressing cells were
unable to form sealing zones, and many of these cells produced globular patches of F-actin
that surrounded the periphery of the cells, and were particularly apparent at the cell base where
the sealing zone is formed under normal conditions (Figure 5A). In some of the Tm-4
overexpressing cells, structures with the appearance of very small actin rings were generated,
as indicated by the arrow in Figure 5A.

The sealing zone of normal osteoclasts surrounds the ruffled border, which contains an
abundance of V-ATPase complexes. V-ATPases are proton-translocating transporters that
become enriched in ruffled borders of polarized osteoclasts and mediate acidification of the
resorptive space [24,25]. A lack of V-ATPases in the ruffled border results in impaired bone
resorption, and in humans and mouse models, a malignant form of osteopetrosis [26–29].
Figure 5B shows confocal sections at the base of either a control-transfected (top panels) or
Tm-4 overexpressing (bottom panels) cell. Both cells are labeled for F-actin and the a3 subunit
of the V-ATPase, a subunit isoform that is highly enriched in the ruffled border [30]. As
demonstrated, the lack of actin rings in the overexpressing cells corresponds with a lack of
ruffled border V-ATPases. This was not due to a defect in V-ATPase expression, since a3
levels in the Tm-4 overexpressing cells was not altered (data not shown). Not unexpectedly,
bone resorption by the Tm-4 overexpressing cells was severely impaired. Under our normal
assay conditions, osteoclasts of clone 1.1 exhibited no resorption when on either Osteologic
discs or ivory slices for a standard assay period of three days (not shown). However, when
cells were plated and differentiated on Osteologic discs for an unusually long period of eight
days, a small amount of resorption was noted (Figure 5C). These results together suggest that
minimal overexpression of Tm-4 causes abnormal stabilization and thickening of osteoclast
microfilaments, particularly in cell attachment structures where Tm-4 is normally abundant.

DISCUSSION
These studies demonstrate that tropomyosin 4 plays a critical role in regulation of osteoclast
attachment structures, and consequently, osteoclast function. This work represents the first
report of tropomyosin function in podosomal-based adhesion complexes, and one of the first

McMichael and Lee Page 7

Exp Cell Res. Author manuscript; available in PMC 2009 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reports in which a specific tropomyosin isoform is assigned a distinct function within a cell.
Our previous studies characterized the distribution of multiple tropomyosin isoforms within
osteoclasts, and only Tm-4 was shown to associate with the F-actin core of podosomes and to
form a cap over the inner face of the sealing zone. In addition, Tm-5a and/or -5b also were
shown to be associated with podosomes, but these isoform(s) were found to surround the core
and be more heavily associated with the outer edges of the sealing zone than to cap the entire
inner face. Thus, it seems likely that these isoforms, in addition to Tm-4, will play distinct roles
in regulating F-actin structures involved in osteoclast attachment and motility. Experiments to
identify a role for Tm-5a and Tm-5b are underway.

Our findings in this and the previous study are consistent with Tm-4 playing a role in stabilizing
both podosomal and sealing zone actin filaments. In both cases, this tropomyosin was found
in the inner faces of these structures [12], and we propose that Tm-4 is likely to stabilize these
actin filaments by regulating access of other proteins that may play roles in actin turnover. Our
knockdown and overexpression studies are consistent with this hypothesis; lower Tm-4 levels
result in thinning of sealing zones while overexpression resulted in thickened podosome
filaments and thickened but disrupted actin structures in osteoclasts on bone. Indeed, it appears
that Tm-4 levels may be limiting for assembly of these adhesion structures. While inhibition
of Tm-4 also may cause thinning of podosomes, we were unable to generate measurements of
these structures due to the optical resolution of confocal microscopes. Nonetheless, our results
suggest that disruption of the attachment structures by either under- or over-expression resulted
in aberrant bone resorption and motility. It appears that osteoclasts were able to tolerate little
alteration in Tm-4 levels in either direction; we were able to knock down expression by only
about 50% or increase expression by about 2-fold. Attempts to increase overexpression levels
further with the use of viral promoters resulted in complete cell death. These results are perhaps
not surprising, given the fundamental role of the actin cytoskeleton in cell adhesion, motility,
and cell division. Our inability to completely abolish Tm-4 may reflect the fact that at least
some amount of this protein is required for podosome/sealing zone formation, and thus, cell
attachment.

Tropomyosin 4 is expressed at equal levels in osteoclasts and macrophages, which also form
podosomes but do not generate sealing zones. We found previously that Tm-4 was expressed
at similar levels in fibroblasts, which generate focal adhesions and stress fibers, but not
podosomes or sealing zones [12]. Other studies of Tm-4 levels in whole tissues showed that
this isoform was expressed at relatively high levels in kidney, liver, lung, spleen, and stomach
in addition to embryonic fibroblasts. Expression was lower in brain and heart, and undetectable
in muscle [31], although other studies have shown this isoform to be present in both skeletal
and cardiac muscle [32]. Therefore, Tm-4 can be utilized for the stabilization of microfilament
structures other than podosomes and sealing zones, depending on the cell type. However, this
isoform may play a general role in motile events. Tm-4 is found primarily in growth cones of
developing neurons [33,34], and is upregulated as contractile smooth muscle cells
dedifferentiate into noncontractile, migrating cell types [32]. Unfortunately, potential studies
of Tm-4 in many other tissues are hindered by the fact that available antibodies can cross-react
with higher molecular weight isoforms that are not expressed by macrophages and osteoclasts,
but are present in numerous other cell types [31,34].

In summary, Tm-4 appears to regulate osteoclast motility and bone resorption by stabilizing
actin filaments within podosomes and the sealing zone. Minimal changes in Tm-4 expression,
either to lowered or heightened levels, cause significant alterations in the structure and
functionality of these attachment structures. By virtue of tropomyosins’ abilities to regulate
access to actin modifying proteins such as gelsolin and ADF/cofilin, they play an important
role in maintenance of microfilament dynamics. Although the mechanisms regulating
interactions between actin filaments and nonmuscle tropomyosins are not well understood,
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these results confirm that Tm isoforms can segregate to specific subcellular domains and
mediate local microfilament structure and function.
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Figure 1. Suppression of tropomyosin 4 levels in osteoclasts
A, Competitive RT-PCR was performed on mRNA from control- or siRNA1-transfected
RAW264.7 osteoclasts at 1, 2, or 3 days post-transfection. The upper band represents Tm-4
mRNA, while the lower band is an internal standard as described in Materials and Methods.
B, Western analysis was performed on control-or siRNA1-treated RAW264.7 osteoclasts at 1,
2, or 3 days post-transfection. C, Data from experiments as shown in panels A and B were
compiled, and the relative expression levels of Tm-4 mRNA and protein were compared in
control and siRNA1-treated cells. At least three separate experiments were performed for each
data set. Data points represent mean ± s.d. D, Competitive RT-PCR was performed as in panel
A, but on control- or siRNA1-transfected mouse marrow-derived osteoclasts. E, Western
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analysis was performed as in panel B, but on control- or siRNA1-transfected marrow derived
osteoclasts. F, Data from marrow-derived osteoclasts were compiled and are presented
similarly to the data shown in panel C. G, Cells from control- or siRNA-transfected cultures
were double-labeled with phalloidin and an antibody against Tm-4. SiRNA-transfected
osteoclasts show a uniform diminution in Tm-4 labeling. Scale bar = 100 µm.
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Figure 2. Loss of tropomyosin 4 results in thinning of the osteoclast sealing zone
Z-sections showing phalloidin labeling in control-or siRNA1-transfected cells were obtained
from both osteoclasts plated on ivory (panel A) or a synthetic bone substrate (panel C). Arrows
indicate the thickest regions of actin rings. The maximum heights of the sealing zones of
transfected and untransfected cells, as plated on ivory (panel B) or synthetic substrate (panel
D) were quantified and averaged. At least ten data points were taken for each group. Bars
indicate mean ± s.d. In comparison of siRNA treatment versus untransfected or control-
transfected cells by Student’s t-test, P < 0.0001 for both RAW264.7 and marrow cells. Similar
results were generated with siRNA2 (data not shown).
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Figure 3. Loss of tropomyosin 4 diminishes bone resorption and motility by osteoclasts
A(top) Control- or siRNA-transfected RAW264.7 osteoclasts were plated on synthetic bone
substrates, and the number of clearings, area of the clearings, and total resorption were
quantified. At least 150 clearings were counted for each sample in each experiment. Graph
indicates the mean ± s.d. from three independent experiments. For each comparison of control
versus siRNA-treated cells, P < 0.05 by Student’s t-test. (Bottom) Photomicrographs of
resorption areas are shown, demonstrating the ragged shape of clearings from siRNA-
transfected cells. Arrowheads indicate regions of incomplete resorption within these regions.
The siRNA sample was photographed in a region of higher than average resorption in order to
demonstrate multiple examples of irregularly shaped clearings. B, The motility of control- and
siRNA-transfected osteoclasts was determined using Transwell migration assays. In three
separate experiments, at least 950 migrated cells were counted for both control- and siRNA-
transfected cells. The means from three experiments ± s.d. are shown; P < 0.001 by Student’s
t-test. C, An siRNA-transfected osteoclast pl regions of low Tm-4, is shown (arrowheads).
Scale bar = 10 µm.
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Figure 4. Overexpression of tropomyosin 4 results in thickened podosomes and loss of motility
A Western analysis of four Tm-4 overexpressing cell lines with an empty vector control line
is shown. Blots of GAPDH and β-actin are included as loading controls. B Confocal
micrographs of the stably transfected control cell line and Tm-4 overexpressing line 1.1 are
stained for F-actin. While the control line is capable of forming podosome belts, the
overexpressers often show clusters of thickened podosomes across the base of the cell. C(left),
Control and Tm-4 overexpressing cells were doubly labeled for F-actin and α-actinin. (Right),
Control and overexpressing cells were doubly labeled for F-actin and paxillin. Arrows indicate
paxillin distribution around F-actin cores. Scale bars = 10 µm. D, Podosome height was
measured by Z-stack confocal analysis. Mean podosome height ± s.d. is shown (n = 10); P <
0.001 by Student’s t-test. E, Transwell migration assays were performed on the control cell
line and Tm-4 overexpressers. The relative motilities are expressed as the mean of four
experiments ± s.d.; P < 0.001 by Student’s t-test.
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Figure 5. Overexpression of Tm-4 results in loss of the sealing zone and diminished resorptive
capacity
A, Z-stack confocal analysis was performed on a control cell line (left panel) and a Tm-4
overexpresser stained for F-actin (right panel). Overexpressing cells were unable to form
distinct sealing zones, although some cells demonstrated small actin ring structures (arrow).
B, V-ATPase subunit a3 staining was performed on control-transfected and Tm-4
overexpressing cells. Unlike control cells, overexpressers did not demonstrate V-ATPase
staining typical of ruffled borders. C, Control-transfected and Tm-4 overexpressing cells were
cultured on Osteologic discs for eight days and total resorption was quantified. Shown are mean
resorption ± s.d; n = 4; P < 0.001 by Student’s t-test.
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