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Objective. To test the validity of three published algorithms designed to identify
incident breast cancer cases using recent inpatient, outpatient, and physician insurance
claims data.
Data. The Surveillance, Epidemiology, and End Results (SEER) registry data linked
with Medicare physician, hospital, and outpatient claims data for breast cancer cases
diagnosed from 1995 to 1998 and a 5 percent control sample of Medicare beneficiaries
in SEER areas.
Study Design. We evaluate the sensitivity and specificity of three algorithms applied
to new data compared with original reported results. Algorithms use health insurance
diagnosis and procedure claims codes to classify breast cancer cases, with SEER as the
reference standard. We compare algorithms by age, stage, race, and SEER region, and
explore via logistic regression whether adding demographic variables improves algo-
rithm performance.
Principal Findings. The sensitivity of two of three algorithms is significantly lower
when applied to newer data, compared with sensitivity calculated during algorithm de-
velopment (59 and 77.4 percent versus 90 and 80.2 percent, po.00001). Sensitivity
decreases as age increases, and false negative rates are higher for cases with in situ,
metastatic, and unknown stage disease compared with localized or regional breast cancer.
Substantial variation also exists by SEER registry. There was potential for improvement
in algorithm performance when adding age, region, and race to an indicator variable for
whether the algorithm determined a subject to be a breast cancer case (po.00001).
Conclusions. Differential sensitivity of the algorithms by SEER region and age likely
reflects variation in practice patterns, because the algorithms rely on administrative
procedure codes. Depending on the algorithm, 3–5 percent of subjects overall are
misclassified in 1998. Misclassification disproportionately affects older women and
those diagnosed with in situ, metastatic, or unknown-stage disease. Algorithms should
be applied cautiously to insurance claims databases to assess health care utilization
outside SEER-Medicare populations because of uneven misclassification of subgroups
that may be understudied already.
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Researchers studying the quality of cancer care in the United States have
noted disparities by geography, race/ethnicity, and socioeconomic status.
Prior studies to examine these differences have relied on large secondary
databases and chart abstraction (Wennberg et al. 1987; Nattinger and Good-
win 1994; Harlan et al. 1995; Ayanian and Guadagnoli 1996; Michalski and
Nattinger 1997; Earle et al. 2002; Smedley, Stith, and Nelson 2003; Gilligan
2005; Neuss et al. 2005). The disadvantages of these data sources are that chart
abstraction is costly and time-consuming, and large administrative databases
often have limited generalizability, making it expensive or difficult to analyze
national patterns of care. The National Cancer Institute’s Surveillance, Ep-
idemiology, and End Results (SEER) population-based cancer registry is con-
sidered the reference standard for cancer case ascertainment in the United
States, and collects limited treatment information. Linking these data with
Medicare claims data further restricts the available study subjects to those ages
65 and older (Potosky et al. 1993). Researchers attempting to obtain data on a
broader age and geographic range of subjects are often limited to data sets
covering a single state (Ayanian et al. 1993; McClish et al. 1997; Hodgson et al.
2003; McClish, Penberthy, and Pugh 2003; McClish and Penberthy 2004;
Penberthy et al. 2005), smaller, localized populations (Elston et al. 2005), or
areas covered by passive surveillance systems, which may have lower rates of
case ascertainment or incomplete data (Brewster et al. 1997; Yoo et al. 2002;
Greenberg et al. 2003; Wang et al. 2005). Owing to these limitations, several
researchers (Warren et al. 1999; Freeman et al. 2000; Nattinger et al. 2004;
Ramsey et al. 2004) have developed algorithms to identify cancer cases using
Medicare claims data to determine if broad cancer incidence and patterns-of-
care studies can be performed solely with administrative claims data sources.
Reliable methods to identify incident breast cancer using administrative data
would permit the study of patterns and quality of care without the time and
cost requirements of chart abstraction or linkage of claims and cancer registry
data sources, and allow researchers to study populations not covered by ex-
isting surveillance systems. Health insurance claims data are available across
the United States wherever health insurance is used. Thus, an effective algo-
rithm would allow study of patterns and costs of care in larger and more
diverse insured populations, including subjects under age 65, members of
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health maintenance organizations (HMOs), and those in previously under-
studied racial/ethnic populations or regions.

For this study, we use the linked SEER-Medicare data to evaluate three
published algorithms designed to identify incident breast cancer cases using
inpatient, outpatient, and physician insurance claims data. We assess algo-
rithm validity based on more recent claims data by population subgroup (i.e.,
by age, race, stage, and region). We implement these algorithms and compare
them based on standard diagnostic characteristics, including Receiver-Oper-
ating Characteristic (ROC) curve analysis, sensitivity, and specificity.

METHODS

Data

We obtained hospital inpatient, outpatient, and physician claims for all breast
cancer cases identified in nine SEER registry regions and a 5 percent ‘‘control’’
sample of Medicare beneficiaries in the same SEER areas without breast can-
cer (but who may have other cancer types) from the linked SEER-Medicare
database. The data also include demographic and Medicare entitlement in-
formation on all subjects and diagnosis and treatment information for all
breast cancer cases. The reference standard for case identification is the SEER
registry, which ascertains a very high rate of cases via hospital, physician, and
laboratory reporting and death certificates. The current 17 SEER registries
capture 98 percent of cases within the registry areas and maintain a 95 percent
followup rate on reported cases (Surveillance Implementation Group 1999).
These registries currently represent 26 percent of the U.S. population and tend
to be more urban and higher socioeconomic areas (Nattinger, McAuliffe, and
Schapira 1997).

Subjects included in this study are women residing in the first nine
registry areas of the SEER program during any year from 1995 to 1998 who
are 65 years or older as of January of the index year and alive for the entire
index year. Depending on the algorithm, patients who were ever members of
an HMO or were not continuously enrolled in Medicare Parts A and B for
either (1) the entire calendar year (criterion A) or (2) the calendar year plus the
first 3 months of the following year (criterion B) were excluded because their
Medicare claims records likely would not capture all of their health care
utilization. (The number of cases excluded ranged from 44 to 68 depending on
the year.) Each year of data is analyzed independently, resulting in sample
sizes of 66,183–73,995, depending on the year and the algorithm inclusion
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criteria. Incident breast cancer cases account for approximately 12 percent of
the sample subjects in each year.

Algorithms

Each of the three algorithms (Warren et al. 1999; Freeman et al. 2000; Nat-
tinger et al. 2004) uses a different combination of diagnosis and procedure
codes to identify incident cases and exclude prevalent cases. Freeman et al.
(2000) used 1990–1992 data from the linked SEER-Medicare database to
determine which breast cancer diagnosis and procedure codes are predictors
of incident breast cancer in 1992. Their sample included inpatient, outpatient,
and physician claims for breast cancer patients and a 5 percent sample of
noncancer controls in the nine SEER registry areas who were ages 65–74 in
1992 and not excluded using criterion A. They used a logistic regression
model with an outcome variable set to 1 if the subject was a SEER-identified
incident case and 0 if the subject was a control, and independent indicator
variables for the presence of 36 breast cancer diagnosis and procedure codes.
They then used these predictor variables in four different combinations, and
used the coefficients from the models to calculate the probability that a subject
was a breast cancer case. They evaluated the sensitivity and specificity of their
models at different probability cutpoints and estimated an ROC curve and the
area under the ROC curve (AUC). We only evaluate their best model, Model
4, which includes the 19 significant predictor variables.

The second algorithm, developed by Nattinger et al. (2004), also used
the linked SEER-Medicare data, although they used 1995–1996 data to iden-
tify 1995 incident breast cancer cases. The subjects in their study were women
ages 65 or older who were not excluded under criterion B. Nattinger et al.
applied a combination of clinical insight and statistical analysis to create a four-
part algorithm. The first step requires a potential case to have a breast cancer
diagnosis and procedure code (which do not have to be on the same claim) in
the inpatient, outpatient, or physician claims. If this was met, the second step
requires that the potential case have both (1) a mastectomy claim or a lump-
ectomy/partial mastectomy claim with a claim for radiotherapy with a breast
cancer diagnosis, and (2) at least two outpatient or physician claims on dif-
ferent dates with a primary diagnosis of breast cancer. If step 2 is not passed,
subjects are entered into a logistic regression derived criterion (step 3), which
requires the patient to meet one of four combinations of breast cancer-related
billing codes to be classified as a case. If the subject passes step 2 or 3, she goes
to step 4 to rule out prevalent cancer cases using the 3 prior years of claims
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data. Nattinger’s algorithm separately applies two reference standards: SEER
and SEER plus those cases passing step 2. In our analysis, we apply only the
model that uses SEER alone as the reference standard.

The third and final algorithm tested here was developed by Warren et al.
(1999) using 1992 hospital and physician claims data for all Medicare eligible
women residing in one of five SEER state registries (Connecticut, Hawaii,
Iowa, New Mexico, and Utah) who were age 65 or older as of January 1, 1992
and were not excluded under criterion A. The authors identified the women
from this sample who were linked to the SEER registry with incident breast
cancer in 1992, excluding as prevalent cases women who had a breast cancer
diagnosis code or history of breast cancer in any claim from previous years.
Two models were developed, the first using only breast cancer diagnosis codes
to classify cases and the second using diagnosis and procedure codes. Although
the authors show that procedure codes used in the second model are significant
predictors of incident breast cancer, values for model sensitivity and specificity
are only provided for Model 1, which is what we use for comparison.

Analytic Methods

Applying each of these three algorithms to the linked SEER-Medicare data for
each year from 1995 to 1998, we calculate the sensitivity, specificity, and
misclassification rates. We assess how well the algorithms predict breast can-
cer incidence in our data based on age, stage, race, and geography (i.e., SEER
region) using a one-sample test of proportions. Misclassification rates are cal-
culated for cases by adding false negatives and false positives and dividing the
sum by the sample size. In addition, we evaluate the AUC for the Freeman
model to identify if the model achieves >90 percent sensitivity and specificity
at any probability cutpoint as stated in the original article (Freeman et al.
2000). Finally, we explore via logistic regression and using the likelihood ratio
test whether adding demographic variables to each algorithm improves al-
gorithm predictive value, because demographic variables may add to the
ability of procedure and diagnosis codes to identify new cancer cases. All
analyses are conducted using Stata (versions 8.2 and 9.1, College Station, TX)
and algorithms are implemented in SAS (version 9.1, Cary, NC).

RESULTS

The data we use are for more recent years, 1995–1998, compared with the data
used in the published algorithms (Table 1). Our total sample is smaller
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compared with two of the algorithms’ reported sample sizes, although our
number and percentage of cases is substantially higher than all three algo-
rithms’ data sets.

Sensitivity of two of three algorithms applied to our data is significantly
lower at 59 and 77.4 percent, compared with the sensitivity obtained by the
algorithm developers, 90 and 80.2 percent, respectively (Table 2). Substantial
variation exists in sensitivity and specificity by age and SEER region. Sen-
sitivity decreases as age increases (Table 2). False negative rates are higher for
cases with in situ, metastatic, and unknown stage disease compared with lo-
calized or regional breast cancer (Table 3). Overall misclassification ranges
from 2.5 to 5.2 percent. (Data not shown.) There also is substantial variation by
SEER registry. For example, Warren’s algorithm applied to 1998 data yields a
sensitivity of 70.4 percent (confidence interval [CI]: 68.0–72.7 percent) in the
Detroit registry, 74.1 percent (CI: 71.6–76.5 percent) in the Connecticut
registry, and 77.5 percent (CI: 75.1–79.7 percent) in the Iowa registry. The
number of false positives is very small by year in smaller registries, making any
inference difficult. Differences by race are insignificant, also possibly due to
small sample size. The overall variation in specificity is statistically significant,
but the impact is minimal in terms of misclassification bias.

Positive predictive value (PPV), the probability a subject is a true case
given the algorithm is positive, was 82.6 percent (CI: 78.3–86.3 percent) for
Nattinger’s algorithm, 47.2 percent (CI: 44.2–50.3 percent) for Warren’s, and
93.2 percent (CI: 88.8–95.9 percent) for Freeman’s when applied to 1995 data.
Only the Warren’s algorithm had a significant change in PPV by 1998, when
the algorithm improved to 56.5 percent (CI: 52.7–60.1 percent). PPV also
varied by race, age, and region.

Table 1: Sample Size by Algorithm

Data Year

Total Sample Size Number of Cases

Nattinger Warren Freeman Nattinger Warren Freeman

1995 71,839 73,995 73,995 8,391 8,746 8,746
1996 70,202 72,422 72,422 8,197 8,561 8,561
1997 67,854 70,346 70,346 8,397 8,785 8,785
1998 66,183 68,220 68,220 8,335 8,699 8,699
Reported sample size 132,584 659,260 47,560 7,700 3,230 3,339

Note: Sampling criteria are the same for the Warren and Freeman algorithms, thereby yielding the
same sample size for analyses of both.
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There was a significant improvement in identifying cases using a mul-
tivariate model with an indicator variable for whether the algorithm deter-
mined a subject to be a breast cancer case and variables for age, region, and
race ( po.00001), and AUC improved, as well (Table 4). However, the in-
dicator variable of whether a subject is a breast cancer case according to the

Table 2: Sensitivity and Specificity of Algorithms

Algorithm Source

Sensitivity (%) Specificity (%)

Reported 1995 1998 Reported 1995 1998

Nattinger 80.11–80.26 79.6n 77.4n 99.95 99.9n 99.9n

Warren 62.0 76n 73.7n 99.9 99.6n 99.7n

Freeman 90.0 58.7n 59.0n 99.86 100n 100n

Ages
65–69

Ages
70–74

Ages
75–79

Ages
801

Ages
65–69

Ages
70–74

Ages
75–79

Ages
801

By age group, using 1998 data
Nattinger 81.6n 77.7n 76.6n 74.4n 99.9w 99.9w 99.9w 99.9w

Warren 78.6n 74.5n 71.7n 70.8n 99.7n 99.6n 99.7n 99.8n

Freeman 63.2n 62.6n 59.6n 51.4n 100z 100z 100z 100z

White Black Asian White Black Asian

By race, using 1998 data
Nattinger 77n 80.5 85.7n 99.9n 100z 100z

Warren 73.7n 72.2n 79n 99.7n 99.7n 99.7w

Freeman 58.7n 62.2n 64.4n 100z 100z 100z

npo.00001 for equality of proportions compared with originally published value (for all subjects).
wpo.007 for equality of proportions compared with originally published value (for all subjects).
zUnable to test for equality of proportions due to estimated specificity of 100%.

Note: Readers may want to divide the p-values by the number of comparisons to address the
multiplicity of outcomes in this study.

Table 3: Number and Percentage of Cases Incorrectly Classified by Algo-
rithm as Not Being a Case, by Algorithm and Stage, 1998 Data

In Situ Localized Regional Metastatic Unknown

Nattinger 300 (23.6%) 935 (19.0%) 297 (18.4%) 204 (59.6%) 144 (74.6%)
Warren 349 (27.1%) 1,228 (24.4%) 384 (22.7%) 185 (43.0%) 139 (57.0%)
Freeman 528 (40.9%) 1,903 (37.8%) 665 (39.3%) 274 (63.7%) 200 (82.0%)

nNote: It is impossible to calculate the percentage of noncases that were false negatives by stage,
because there is no stage information for the true negatives.
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Table 4: Area under the ROC Curve and Model Fit Using Logistic Regres-
sion, 1998 Data

Variable Odds Ratio 95% Confidence Interval p-Value

Nattinger model
Simple model

Indicator from algorithm 4,222.56 3,157.84 5,646.27 po.0001
AUC 0.89

Multivariate modeln

Indicator from algorithm 4,487.05 3,348.85 6,012.10 po.0001
Age 70–74 1.32 1.15 1.52 po.0001
Age 75–79 1.36 1.18 1.57 po.0001
Age 801 1.22 1.06 1.40 po.0001
Black 0.71 0.58 0.88 po.0001
Asian 0.33 0.23 0.48 po.0001
Other race 0.54 0.41 0.73 po.0001
AUC 0.92
LR test 1,277.71 po.00001

Warren model
Simple model

Indicator from algorithm 979.99 836.82 1,147.7 po.0001
AUC 0.87

Multivariate modelw

Indicator from algorithm 1,038.36 884.15 1,219.5 po.0001
Age 70–74 1.30 1.15 1.47 po.0001
Age 75–79 1.41 1.24 1.59 po.0001
Age 801 1.21 1.07 1.36 po.0001
Black 0.87 0.73 1.04 p 5 .12
Asian 0.39 0.29 0.54 po.0001
Other race 0.59 0.46 0.77 po.0001
AUC 0.91
LR test 1,533.9 po.00001

Freeman model
Simple model

Indicator from algorithm 6,576.53 3,812.08 11,345.69 po.0001
AUC 0.79

Multivariate modelz

Indicator from algorithm 7,524.63 4,358.27 12,991.41 po.0001
Age 70–74 1.14 1.03 1.27 p 5 .012
Age 75–79 1.19 1.07 1.33 po.0001
Age 801 1.18 1.07 1.30 po.0001
Black 0.79 0.67 0.92 po.0001
Asian 0.41 0.32 0.54 po.0001
Other race 0.56 0.45 0.70 po.0001
AUC 0.86
LR test 2,632.29 po.00001

Notes: LR test refers to the likelihood ratio test, which uses a w2 test to identify if the Simple Model is
statistically significantly different from the Multivariate Model in which it is nested. AUC is the
area under the receiver operating characteristic (ROC) curve, as calculated from the logistic
model.
nIndicator variables for 6/10 registries are significant at po.04.
wIndicator variables for 7/10 registries are significant at po.05.
zIndicator variables for 7/10 registries are significant at po.001.
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algorithm has the most quantitative impact, as the odds ratio of 4,487.05 with
the Nattinger’s algorithm, for example, is three orders of magnitude larger
than the odds ratios for any of the demographic variables. All covariates were
significant in the model except some region effects and black race in the
Warren-algorithm model.

Finally, in our assessment of the algorithm by Freeman et al., we iden-
tified whether there existed a probability cutpoint that would yield a sensitivity
and specificity of > 90 percent simultaneously, the criterion the authors used
to determine their cutpoint, and we did not find such a probability. The point
on the ROC curve that yields the highest simultaneous sensitivity and spec-
ificity is when the probability cutpoint is .00588, yielding a sensitivity of 87.71
percent and a specificity of 87.74 percent.

DISCUSSION

The purpose of this project was to see how well published algorithms identify
breast cancer cases in more recent claims data overall and by population
subgroup (i.e., by age, race, stage, and region). Algorithm sensitivity is lower
for the 1998 data compared with the 1995 data, indicating that published
algorithms may need to be updated due to changing patient characteristics or
patterns of care. Differential sensitivity of the algorithms by SEER region
likely reflects geographic variation in practice patterns, because two of the
algorithms rely on administrative procedure codes. Rates of misclassification
range from nearly 3 percent to just over 5 percent in 1998, with false negatives
highest in Freeman’s algorithm and lowest using Nattinger’s method. Mis-
classification disproportionately affects older women and those diagnosed
with in situ, metastatic, or unknown-stage disease. Subjects of older age are
more likely to have comorbid conditions, and subjects with metastatic disease
are more likely to be facing imminent death. These two categories and those
with in situ (the least severe) breast cancer therefore do not receive as aggres-
sive treatment (Ballard-Barbash et al. 1996; Yancik et al. 2001; Bouchardy
et al. 2003; Gold and Dick 2004), leading to a smaller pool of breast cancer-
related claims that the algorithms can use to identify cases.

Because the addition of age, race, and region variables to the algorithms’
case indicator variable improves the probability of correctly identifying in-
cident breast cancer cases, using demographic information may enhance case
identification. As an example, when applying Nattinger’s algorithm, age cat-
egories could be incorporated into step 3, with older women requiring fewer
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procedure codes to pass this step, as they may be less likely to receive ag-
gressive treatment. Thus including these variables in the models may account
for differences in treatment patterns due to age, region, and race, even though
the demographic variables themselves are not indicators of cancer. Region
variables may only be meaningful for the SEER areas and not for other studies
where distinct regions are not well defined, however. It is also possible that the
improved results are due to overfitting the model. We do not have an
additional validation data set to test our findings.

PPV varies widely across the algorithms but improves over time with
Warren’s algorithm, although PPV is still lowest for this algorithm. PPV fig-
ures must be considered cautiously because our sample includes all breast
cancer cases but only a 5 percent random sample of Medicare beneficiaries
without breast cancer, yet we know PPV depends on disease prevalence. We
present PPV to identify trends over time, but the absolute values may not be as
meaningful.

The strength of this work is that our analyses include later years of data to
represent more recent patterns of care (i.e., a shift to outpatient care), and we
provide a head-to-head comparison of three algorithms using the newer data.
We use a 5 percent random sample of nonbreast-cancer controls provided to
us and assume that this is representative of the population without breast
cancer. Otherwise, our results may be misleading.

Accurate identification of breast cancer cases has many implications
for studying quality and costs of care. For true positive cases, we have all
the information on subjects and would be able to study their treatment/sur-
veillance patterns and costs of care. For false positive subjects, we would be
evaluating care patterns of noncases to estimate health care utilization for
breast cancer patients, thereby yielding underestimates of cancer costs and/or
low compliance rates. For example, subjects without breast cancer should not
be compliant with posttreatment mammography guidelines. We would there-
fore undercount the utilization of followup mammography in breast cancer
patients. For true negative subjects, we would not anticipate any added error in
our estimates. False negatives, however, would lead to a host of lost informa-
tion, especially if they are differentially misclassified. We expect that the cases
the algorithms miss would have fewer breast cancer-related claims due to less
extensive or aggressive treatment, so they may more likely be early stage,
older, facing imminent death, or with comorbid illness, and possibly of mi-
nority race. If one used the algorithms to identify cases for quality of care
assessment, it could appear that there is less variation in care than actually
exists, particularly for the vulnerable populations one might aim to study.
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In assessing costs (i.e., reimbursed charges) of care using these algorithms, one
would in effect overestimate average costs because the lower costs associated
with less aggressive treatment would not balance out the high costs of ad-
vanced disease with its more involved treatment. Also, cancer-staging infor-
mation is not available in claims data, so studies that are stage-treatment
specific would be hard to conduct without linkage to tumor registry data.
Previous research has shown cancer-stage identification to be difficult with
claims data (Cooper et al. 1999). Important algorithm limitations to note are
that Freeman’s algorithm was developed for 65–74-year olds, Warren’s was
applied only to registries of entire states (not metropolitan areas), and none of
the algorithms were designed to detect cases of in situ disease.

Because our study did not account for Medicaid claims data, there was
concern that Medicare claims data for beneficiaries with state buy-in (SBI)
coverage may be incomplete. Our findings did not bear this out, however
(data not shown). A higher proportion of the older old in our sample does have
SBI coverage (e.g., for 1998 data, almost 24 percent of those aged 80 and older
have a full year of SBI coverage compared with 9.6 percent of those ages
65–69), but we could find no significant differences in rates of false negatives
by SBI status within age groups for any of the algorithms for 1998
( p 4.12 for all comparisons). We do note that 7 percent of white compared
with 33 percent of black subjects had a full year of SBI coverage, but sample
sizes are too small to draw meaningful conclusions about possible effects on
algorithm performance. State buy-in coverage may act as a proxy of low-
income status in our study sample, but likely does not directly affect the
completeness of the utilization data, which challenges the notion that data for
dual eligibles may be incomplete by using Medicare claims alone. In this
study, the use of Medicare claims data appeared to be adequate to identify
incident cases of breast cancer in SBI beneficiaries.

Some authors of the published algorithms recommended caution in
using their algorithm to identify incident breast cancer cases, while others are
more enthusiastic. We are not yet aware of any studies in which a researcher
has used an algorithm alone to identify breast cancer cases. An important
advancement in this field would be to refine an algorithm, which could be used
to identify cases of recurrent cancer, information which most registries do not
collect. Until the algorithms are refined, researchers probably should use the
algorithms in isolation of cancer registry information only if they highlight the
limitations of the method and there is no alternative. For other diseases, di-
agnosis and procedure codes may be more relevant to identify patient cohorts.
In breast cancer, such codes often are used for patients undergoing diagnostic
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testing to rule out disease or before a definitive cancer diagnosis (e.g., breast
abnormality of some sort, rather than breast cancer). In addition, cancer stage,
which can greatly affect treatment received, cannot be determined from di-
agnosis and procedure codes. The next question is: how good does an algo-
rithm need to be in order to be confident in its application to new data? As with
any diagnostic test, the algorithms yield trade-offs between sensitivity and
specificity. Future work should explore the biases of algorithm misclassifica-
tion in assessing use and costs of health care services. In the meantime,
algorithms should be applied very cautiously to insurance claims databases to
assess health care utilization and costs of breast cancer care outside SEER-
Medicare populations.

ACKNOWLEDGMENTS

This work was funded by the American Cancer Society (Grant Number
MRSGT-4-002-01-CPHPS) and was presented at the 27th Annual Meeting of
the Society for Medical Decision Making in October 2005. The interpretation
and reporting of the Linked SEER-Medicare Database are the sole respon-
sibility of the authors. The authors acknowledge the efforts of the Applied
Research Program, NCI; the Office of Information Services, and the Office of
Strategic Planning, CMS; Information Management Services (IMS) Inc.; and
the SEER Program tumor registries in the creation of the SEER-Medicare
database. We appreciate the comments of two anonymous reviewers.

REFERENCES

Ayanian, J. Z., and E. Guadagnoli. 1996. ‘‘Variations in Breast Cancer Treatment by
Patient and Provider Characteristics.’’ Breast Cancer Research and Treatment 40 (1):
65–74.

Ayanian, J. Z., B. A. Kohler, T. Abe, and A. M. Epstein. 1993. ‘‘The Relation between
Health Insurance Coverage and Clinical Outcomes among Women with Beast
Cancer.’’ New England Journal of Medicine 329 (5): 326–31.

Ballard-Barbash, R., A. L. Potosky, L. C. Harlan, S. G. Nayfield, and L. G. Kessler.
1996. ‘‘Factors Associated with Surgical and Radiation Therapy for Early Stage
Breast Cancer in Older Women.’’ Journal of the National Cancer Institute 88 (11):
716–26.

Bouchardy, C., E. Rapiti, G. Fioretta, P. Laissue, I. Neyroud-Casper, P. Schafer, J.
Kurtz, A. Pascal Sappino, and G. Vlasos. 2003. ‘‘Undertreatment Strongly

Identifying Breast Cancer in Medicare Claims Data 2067



Decreases Prognosis of Breast Cancer in Elderly Women.’’ Journal of Clinical
Oncology 21 (19): 3580–7.

Brewster, D. H., J. Crichton, J. C. Harvey, and G. Dawson. 1997. ‘‘Completeness of
Case Ascertainment in a Scottish Regional Cancer Registry for the Year 1992.’’
Public Health 111 (5): 339–43.

Cooper, G. S., Z. Yuan, K. C. Stange, S. B. Amini, L. K. Dennis, and A. A. Rimm. 1999.
‘‘The Utility of Medicare Claims Data for Measuring Cancer Stage.’’ Medical Care
37 (7): 706–11.

Earle, C. C., P. J. Neumann, R. D. Gelber, M. C. Weinstein, and J. C. Weeks. 2002.
‘‘Impact of Referral Patterns on the Use of Chemotherapy for Lung Cancer.’’
Journal of Clinical Oncology 20 (7): 1786–92.

Elston, L. J., J. Simpkins, L. Schultz, G. A. Chase, C. C. Johnson, M. U. Yood, L.
Lamerato, D. Nathanson, and G. Cooper. 2005. ‘‘Routine Surveillance Care
after Cancer Treatment with Curative Intent.’’ Medical Care 43 (6): 592–9.

Freeman, J. L., D. Zhang, D. H. Freeman, and J. S. Goodwin. 2000. ‘‘An Approach to
Identifying Incident Breast Cancer Cases Using Medicare Claims Data.’’ Journal
of Clinical Epidemiology 53 (6): 605–14.

Gilligan, T. 2005. ‘‘Social Disparities and Prostate Cancer: Mapping the Gaps in Our
Knowledge.’’ Cancer Causes and Control 16 (1): 45–53.

Gold, H. T., and A. W. Dick. 2004. ‘‘Variations in Treatment for Ductal Carcinoma In
Situ in Elderly Women.’’ Medical Care 42 (3): 267–75.

Greenberg, M. L., R. D. Barr, B. DiMonte, E. McLaughlin, and C. Greenberg. 2003.
‘‘Childhood Cancer Registries in Ontario, Canada: Lessons Learned from a
Comparison of Two Registries.’’ International Journal of Cancer 105 (1): 88–91.

Harlan, L., O. Brawley, F. Pommerenke, P. Wali, and B. Kramer. 1995. ‘‘Geographic,
Age, and Racial Variation in the Treatment of Local/Regional Carcinoma of the
Prostate.’’ Journal of Clinical Oncology 13 (1): 93–100.

Hodgson, D. C., W. Zhang, A. M. Zaslavsky, C. S. Fuchs, W. E. Wright, and J. Z.
Ayanian. 2003. ‘‘Relation of Hospital Volume to Colostomy Rates and Survival
for Patients with Rectal Cancer.’’ Journal of the National Cancer Institute
95 (10): 708–16.

McClish, D., and L. Penberthy. 2004. ‘‘Using Medicare Data to Estimate the Number
of Cases Missed by a Cancer Registry: A 3-Source Capture–Recapture Model.’’
Medical Care 42 (11): 1111–6.

McClish, D., L. Penberthy, and A. Pugh. 2003. ‘‘Using Medicare Claims to Identify
Second Primary Cancers and Recurrences in Order to Supplement a Cancer
Registry.’’ Journal of Clinical Epidemiology 56 (8): 760–7.

McClish, D. K., L. Penberthy, M. Whittemore, C. Newschaffer, D. Woolard, C. E.
Desch, and S. Retchin. 1997. ‘‘Ability of Medicare Claims Data and Cancer
Registries to Identify Cancer Cases and Treatment.’’ American Journal of Epide-
miology 145 (3): 227–33.

Michalski, T. A., and A. B. Nattinger. 1997. ‘‘The Influence of Black Race and So-
cioeconomic Status on the Use of Breast-Conserving Surgery for Medicare
Beneficiaries.’’ Cancer 79 (2): 314–9.

Nattinger, A. B., and J. S. Goodwin. 1994. ‘‘Geographic and Hospital Variation in the
Management of Older Women with Breast Cancer.’’ Cancer Control 1 (4): 334–8.

2068 HSR: Health Services Research 42:5 (October 2007)



Nattinger, A. B., P. W. Laud, R. Bajorunaite, R. A. Sparapani, and J. L. Freeman. 2004.
‘‘An Algorithm for the Use of Medicare Claims Data to Identify Women with
Incident Breast Cancer.’’ Health Services Research 39 (6, part 1): 1733–49.

Nattinger, A. B., T. L. McAuliffe, and M. M. Schapira. 1997. ‘‘Generalizability of the
Surveillance, Epidemiology, and End Results Registry Population: Factors
Relevant to Epidemiologic and Health Care Research.’’ Journal of Clinical
Epidemiology 50 (8): 939–45.

Neuss, M. N., C. E. Desch, K. K. McNiff, P. D. Eisenberg, D. H. Gesme, J. O. Jacobson,
M. Jahanzeb, J. J. Padberg, J. M. Rainey, J. J. Guo, and J. V. Simone. 2005. ‘‘A
Process for Measuring the Quality of Cancer Care: The Quality Oncology
Practice Initiative.’’ Journal of Clinical Oncology 23 (25): 6233–9.

Penberthy, L., D. McClish, C. Manning, S. Retchin, and T. Smith. 2005. ‘‘The Added
Value of Claims for Cancer Surveillance: Results of Varying Case Definitions.’’
Medical Care 43 (7): 705–12.

Potosky, A. L., G. F. Riley, J. D. Lubitz, R. M. Mentnech, and L. G. Kessler. 1993.
‘‘Potential for Cancer Related Health Services Research Using a Linked Medi-
care——Tumor Registry Database.’’ Medical Care 31 (8): 732–48.

Ramsey, S. D., M. T. Mandelson, R. Etzioni, R. Harrison, R. Smith, and S. Taplin.
2004. ‘‘Can Administrative Data Identify Incident Cases of Colorectal Cancer?
A Comparison of Two Health Plans.’’ Health Services and Outcomes Research Meth-
odology 5 (1): 27–37.

Smedley, B. D., A. Y. Stith, and A. R. Nelson. 2003. ‘‘Introduction and Literature
Review.’’ In Unequal Treatment: Confronting Racial and Ethnic Disparities in Health
Care, edited by B. D. Smedley, A. Y. Stith, A. R. Nelson, and the Committee on
Understanding and Eliminating Racial and Ethnic Disparities in Health Care,
pp. 29–79. Washington, DC: National Academies Press.

Surveillance Implementation Group. Cancer Surveillance Research Implementation Plan.
1999. Bethesda, MD: National Cancer Institute, National Institutes of Health.

Wang, Y., M. Sharpe-Stimac, P. K. Cross, C. M. Druschel, and S. A. Hwang. 2005.
‘‘Improving Case Ascertainment of a Population-Based Birth Defects Registry in
New York State Using Hospital Discharge Data.’’ Birth Defects Research Part A:
Clinical and Molecular Teratology 73 (10): 663–8.

Warren, J. L., E. Feuer, A. L. Potosky, G. F. Riley, and C. F. Lynch. 1999. ‘‘Use of
Medicare Hospital and Physician Data to Assess Breast Cancer Incidence.’’
Medical Care 37 (5): 445–56.

Wennberg, J. E., N. Roos, L. Sola, A. Schori, and R. Jaffe. 1987. ‘‘Use of Claims Data
Systems to Evaluate Health Care Outcomes. Mortality and Reoperation fol-
lowing Prostatectomy.’’ Journal of American Medical Association 57 (7): 933–6.

Yancik, R., M. N. Wesley, L. A. Ries, R. J. Havlik, B. K. Edwards, and J. W. Yates.
2001. ‘‘Effect of Age and Comorbidity in Postmenopausal Breast Cancer Patients
Aged 55 Years and Older.’’ Journal of American Medical Association 285 (7): 885–92.

Yoo, K. Y., H. R. Shin, S. H. Chang, K. S. Lee, S. K. Park, D. Kang, and D. H. Lee.
2002. ‘‘Korean Multi-center Cancer Cohort Study including a
Biological Materials Bank (KMCC-I).’’ Asian Pacific Journal of Cancer Prevention
3 (1): 385–92.

Identifying Breast Cancer in Medicare Claims Data 2069


