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Abstract
We probe the stability and near-native energy landscape of protein fold space using powerful
conformational sampling methods together with simple reduced models and statistical potentials.
Fold space is represented by a set of 280 protein domains spanning all topological classes and having
a wide range of lengths (0-300 residues), amino acid composition, and number of secondary structural
elements. The degrees of freedom are taken as the loop torsion angles. This choice preserves the
native secondary structure but allows the tertiary structure to change. The proteins are represented
by three-point per residue, three-dimensional models with statistical potentials derived from a
knowledge-based study of known protein structures. When this space is sampled by a combination
of Parallel Tempering and Equi-Energy Monte Carlo, we find that the three-point model captures
the known stability of protein native structures with stable energy basins that are near-native (all-α:
4.77 Å, all-β: 2.93 Å, α/β: 3.09 Å, α+β: 4.89 Å on average and within 6 Å for 71.41 %, 92.85 %,
94.29 % and 64.28 % for all-α, all-β, α/β and α+β, classes respectively). Denatured structures also
occur and these have interesting structural properties that shed light on the different landscape
characteristics of α and β folds. We find that α/β proteins with alternating α and β segments (such as
the beta-barrel) are more stable than proteins in other fold classes.
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Introduction
It has been long recognized that proteins are assembled from globular compact substructures,
called domains, which are the basic units of folding, function and evolution.1 During the last
decade there were several initiatives towards the comprehensive organization of structural
domain information into databases, which are accessible to the scientific community. The first
effort of this kind was SCOP,2 which was later followed by CATH3 and DALI4, each scheme
having a unique way of partitioning proteins into domains and classifying the domains into a
tree-like hierarchy. At the top level of SCOP, domains are clustered into folds on the basis of
topological similarity in the arrangement of their secondary structure elements. Based on
common function, sequences in a particular fold are further grouped into superfamilies. Finally,
at the fundamental level there are families, where each contains protein pairs with sequence
similarity above a threshold value (>30%). This picture clearly indicates that many proteins
with low sequence similarity still share a similar three dimensional structure or possess a
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common fold. Accordingly, the PDB contains a much smaller number of folds than sequences
and the former can be further classified into topological classes.5 Recent studies on protein
fold space were mainly focus on either the structural completeness6-9 or similarity network of
fold space.10 In addition, lattice simulation studies were conducted to understand how protein
folds evolved.11,12 Most of these recent works have implications only on the function and
evolution of single domain protein structures, but they do not address the energy landscape
properties of individual folds in a comparative manner. Such studies would require simplified
protein models, so that a comprehensive study of the space of all protein folds may be
computationally tractable.

Finding reliable simplified computational models that provide realistic energy landscapes for
individual folds is one of the grand challenge problems in computational molecular biophysics.
If achieved, a wide array of problems would be impacted. An obvious application would be
the prediction of native structure from sequence using either an ab-initio approach,13-20 or
homology-based prediction using threading and fold recognition.21-23 With such a model, the
conformational rearrangement and flexibility of native folds could be studied efficiently; these
latter properties are clearly related to protein function.

The derivation of any simplified or reduced protein model24,25 rests on two foundations: the
representation of the structure and the choice of the energy function. The former determines
the attainable resolution for each residue, whereas the latter determines the type of interactions
between these residues. Although independently chosen, the protein topology and
corresponding energy functions are interrelated and successful simplified models must take
advantage of the synergy between them. One of the greatest advantages of statistical energy
functions based on knowledge from native structures,26-28 is that they can be easily combined
with any type of representation. In addition, unlike physics-based force fields,29,30
knowledge-based potentials implicitly incorporate environmental effects such as solvation.

Simplified models greatly reduce the dimensionality compared to all-atom representations.
Further reduction in the number of degrees of freedom can be achieved by only considering
torsion angle deformations of the protein chain. Use of torsion angle coordinates allows
conformational exploration that keeps secondary structural elements (α-helix, β-sheet) intact.
By combining simplified models, torsion angle degrees of freedom and rigid secondary
structures, three levels of dimensionality reduction is attained. The validity of the diffusion-
collision model31 in protein-folding and the current accuracy32 of secondary structure
prediction from sequence both suggest that there may be a set of essential coordinates that are
responsible for tertiary assembly of secondary structural elements. Consequently, a successful
protein model and its associated energy function should adequately be able to describe tertiary
assembly based on the conformational stability and re-arrangement of the native fold. In spite
of the three levels of dimensionality reduction, the number of degrees of freedom for a typical
SCOP domain is still vast: effective sampling is an essential requirement.

Commonly used methods for the exploration of conformational space are molecular dynamics
(MD) and Monte Carlo (MC).33 The performance of these methods is severely limited on
rough energy landscapes due to the presence of large energy barriers separating local energy
basins. In order to overcome this limitation, many alternative solutions have been proposed
including multiple time step integrators to extend the timescale of molecular dynamics
simulations,34,35 transformation of the potential energy surface to cut across high energy
barriers,36-41 or the addition of auxiliary variables to overcome barriers along extra
dimensions.42-44 While the above methods are mainly used for equilibrium sampling at a give
temperature, some of them36-44 can be included in optimization protocols, that aim to find
the global minimum conformation. In spite of lacking general solutions to the global minimum
problem in high dimensions, stochastic optimization can still be used to identify possible
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optimal solutions, although without guarantee to find the global optimum of the underlying
energy function. Among the many popular stochastic optimization algorithms, the most
commonly used ones for conformational optimization are simulated annealing,45 basinhoping
or Monte-Carlo minimization,46-48 parallel tempering (PT),49 stochastic tunneling,50 and
more recently equi-energy Monte Carlo (EEMC).51,52 When using any of these methods in
conformational exploration, the stochastic optimization process effectively becomes a
fictitious dynamical process (with successively visited conformations), which continues until
either a given computational resource has been spent (parallel tempering, Monte-Carlo
minimization, equi-energy Monte Carlo) or a terminating stable conformation has been found
(simulated annealing, stochastic tunneling). In addition, among all the above methods only
parallel tempering and equi-energy Monte Carlo generate the Boltzmann distribution in
computationally feasible cases: thus they can be termed sampling based or “canonical”
stochastic optimization methods. In both parallel tempering and equi-energy Monte Carlo
enhanced sampling is achieved by employing an independent set of different temperature
replicas, thus they are also referred to as multi-canonical sampling methods. Although parallel
tempering is generally regarded as one of the most advanced and widely used conformational
sampling methods, recent studies demonstrated the superior performance of equi-energy Monte
Carlo over parallel tempering in effectively reproducing the canonical distribution of low-
dimensional, rough, analytical energy surfaces and also in locating native like structures of a
3D off lattice β-barrel model protein.52

In this work, the three point-per-residue simplified protein model is used with a knowledge-
based potential to explore the nature of the near-native energy landscape and probe the
conformational stability of a representative set of native SCOP folds.53 Such exploration is
performed using canonical stochastic optimization in order to identify the most dominant
energy basins accessible from the native state. In particular, we use a combination of parallel
tempering49 and equi-energy Monte-Carlo51 to sample those torsion angle degrees of freedom
that are responsible for the tertiary conformational change. High temperature unfolding
simulations introduced by Daggett and Levitt54 are commonly used to explore near-native
energy landscapes. While high temperature unfolding does not sample conformations from the
Boltzmann distribution at room temperature, it provides a high temperature but physically
relevant unfolding pathway. By contrast, parallel tempering and equi-energy Monte-Carlo
sample from the correct Boltzmann distribution at the temperature of interest, e.g. 300K. With
their much more efficient exploration they also provide a more global view of the landscape
but getting across energy barriers could happen at high temperatures, so that most of the kinetic
information is lost.

Careful interpretation of sampled near-native conformational basins should not include any
assumption of any reaction coordinate, but take all aspects of structural information in the
visited conformations into account. In order to interpret the sampled conformational space,
multidimensional scaling is used.55,56

In this study, the combination of dimensionality reduction (torsion angle loops), a three-point
per residue (3pt) coarse-grained knowledge-based model, and advanced multi-canonical
sampling protocols provide robust exploration of the near-native conformational space of
SCOP domains, locating the most important energy basins. We find that 3pt protein models
represent native structures with a RMSD whose average value is 3.92 Å, although there are
characteristic trends present among the different topological classes. In particular, β and α/β
folds are found to be more stable, whereas α and α+β folds have many low energy denatured
states. This analysis implies that the main differences are due to fold topology as well as the
weak and non-specific nature of α-helix-helix interactions.
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Results
In order to characterize the accuracy of the knowledge-based potentials in describing the
representative set of 280 protein folds, the energy landscape around the native structures has
been explored by performing extensive loop torsion angle conformational sampling initiated
from the crystal structures of protein domains using the 3-point coarse grained knowledge-
based model. Detailed information on the representative set, models, corresponding loop
torsion angle space and sampling protocols can be found in the Methods section.

Sampling Trajectories
Figure 1a illustrates the nature of the sampling trajectories by plotting the RMSD variations
from the crystal structure in the lowest temperature (T=300K) Markov Chain as a function of
the Monte Carlo iteration steps for one representative fold from each of the four main
topological classes.

The 3pt per residue potential not only stabilized ∼80 % of all the studied folds, but introduced
a rich diversity of native-like and partially denatured energy basins. As a consequence, folds
represented by the 3pt model are metastable, and the sampled conformations are distributed
among the dominant energy basin attractors around the native state. Note, that the above
characteristics are not present in many commonly used simplified representations of protein
structures (Supplementary Data, Figure 1). Specifically, for the all-α protein d1ny9a_,
conformational regions up to ∼15 Å RMSD from crystal structure are explored first, then a
rich diversity of conformational clusters are found in later stages of the sampling trajectory.
Although the sampling path for a typical all-β protein, d1r75a_ starts with an initial ∼10 Å
unfolding event, it is followed by a less eventful continuous deformation towards more native-
like states. In this work, α/β proteins are found to be more stable, as typified by the progression
of sampling events of d1rvva_ in Figure 1a. Finally, the figure shows the sampling events of
an α+β protein d1c4ka3, which is very rich in diverse conformations involving structures 3 to
15 Å RMSD from native state.

Near-Native Energy Landscape
In general we find that domains of the same topological type possess a characteristic energy
landscape fingerprint that depends on the given architectural fold class. Figure 1b illustrates
these landscapes in the form of energy vs. RMSD plots generated from the near-native sampling
trajectories of Figure 1a. It is clear from the figure that the dominant peaks in the RMSD
distribution well describe the notable energy basins. In addition, the layout of native-like (0-5
Å) and far native (5-15 Å) favorable energy basins may carry information on conformational
plasticity and the location of folding intermediates. For the all-α d1ny9a_, the most dominant
energy basin was found to be at ∼5 Å, which is followed by two slightly less populated basins
at ∼7.5 and ∼8.5 Å and a far-native but still significant basin at ∼12 Å. Contrary to the ordered
layout of the all-α type energy landscape, the typical all-β domain d1r75a_, is more diffuse but
there are still two well-populated energy basins. The stability of α/β domains is illustrated by
d1rvva_, which has a dominant conformational cluster close to the crystal structure at 2 Å, and
a less marked peak in the RMSD distribution at ∼4 Å. The RMSD distribution for the α+β
domain d1c4ka3 is more like that of the all-α domains with two well-separated and comparably
populated peaks.

Representative set of domains
In order to quantitatively compare and describe the plasticity and stability of each of the 280
representative folds, the three dominant energy basins accessible to the search protocols are
located based on the RMSD distributions. The procedures for locating the RMS maxima are
described in the Methods section. Figure 1b shows the peak RMS values obtained from the
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RMSD distribution; it is clear from the figure that at most three dominant peaks capture many
characteristics of the underlying distributions. We characterize each domain by the RMS values
of dominant peaks, which correspond to the most populated conformational clusters.

In Figure 2a the RMSD of the most denatured but stable conformational energy basin
(RMSmax = max(RMSA,RMSB,RMSC)) is plotted as a function of the domain size showing
that there is no correlation between the two quantities. For most of the cases (192 out of 280
or 68.57 %), RMSmax is below 6 Å and the average expectation value <RMSmax>, and standard
deviation σ(RMSmax), are found to be 5.43 Å and 3.31 Å. In addition, there are significant
variations among the fold classes, with <RMSmax>±σ(RMSmax) = 6.37±3.95 Å, 4.67±3.22 Å,
4.41±2.18 Å, 6.26±3.64 Å for all-α, all-β, α /β and α +β, respectively . These numbers clearly
indicate, that all-α and the α+β domains have more low energy denatured states, whereas in
all-β and especially α/β domains all the stable states are more native-like. In spite of their low
mean value, the standard deviation for all-β proteins is close average. This is due to the fact to
that all-β proteins tend to have either very low or very large RMSmax values (see Figure 2a).
By contrast, the α/β proteins have a low mean RMSmax and standard deviation.

Figure 2b shows the location of the most dominant energy basin, RMSA, as a function of the
chain length. Most of the domains (226 out of 280 or 80.71 %) have RMSA less than 6 Å. The
average expectation value <RMSA> and standard deviation σ(RMSmax) are found to be 3.92
Å and 2.39 Å. Again, there are significant variations among the fold classes, with <RMSA>±σ
(RMSA) = 4.77±2.87 Å, 2.93±1.88 Å, 3.09±1.31 Å, & 4.89±3.08 Å for all-α, all-β, α /β and α
+β, respectively. While the mean RMSA value is smallest for the all-β class, the α/β class still
has the smallest standard deviation. The RMSA values of 90 % of all-α, all-β, α/β and α+β
domains was found to be below 9.1 Å, 4.8 Å, 5.0 Å and 9.2 Å, respectively.

For 199 out of all 280 domains (71.1 %), RMSA is less than RMSmax meaning that the more
denatured conformations are less populated. In 27 cases (9.64 %) RMSA is less but RMSmax
is more than 6 Å, in addition (RMSmax- RMSA) is at least 3 Å, indicating that these domains
are featured with both stable highly denatured conformations and dominantly populated native-
like states.

Figure 3a shows RMSmax as a function of fractional α-helix content, pα. It is clear that domains
with pα content between 0.4 and 0.6 possess extra stability, with most RMSmax values below
6.0 Å. This finding does not depend on the fold class type. Figure 3b shows the variation of
RMSmax with the relative terminal coil content. We find that domains with high secondary
structure content do not occur below the dashed line RMSmax = 37.5*pTC Å, where pTC is the
fraction of residues in the terminal loop regions (there are 8 exceptions out of 280 or 2.86 %).
Thus, stable non-native orientations of the floppy terminal loops set a lower bound to the most
denatured RMSD value.

Individual trajectories
In this section we carry out a detailed investigation of individual trajectories for domains with
α (all-α), β (all-β), and mixed α+β content (α+β).

All-αclass—The representative sequence considered here is a 94 residue protein domain
(d1ny9a_) with five helical segments joined together by loop regions. Figure 4 shows several
aspects of the near native sampling, where Panels I-III contain the 2D projection of every
10000th visited conformations generated by GRAPHVIZ.69 In these panels, conformations
are colored according to their relative energy values, RMSD from native state and history along
the sampling trajectory, respectively. We note that the history of the sampling trajectory does
not relate to any physical folding or unfolding event, neither does it carry any kinetic
information at room temperature: it only orders the conformations based on their history of
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exploration. Right around the crystal structure, conformations have relatively high energy
(Panel I), they are clustered in the 1 to 3 Å neighborhood of the native state and are visited
only in the initial stage of the trajectory (Panel III). This set of conformations mostly belongs
to cluster A, which is featured by representative conformation (A) depicted in Figure 4.
According to Panel III, the later progress of the sampling path funnels into a set of scattered
conformations with 13 to 15 Å RMSD from the native state (Panel II) and with still relatively
high energy (Panel I). The snapshot of structure (B) from this region of the conformational
space, shows that one helix is isolated and the rest of the helices form a highly compact globular
state. In the next stages of sampling, cluster-like states of the conformational space, D and E
are reached. These states are associated with a lower energy value. Further sampling explores
conformational clusters, E, D and F, at ∼12.5, ∼8.6 and ∼5.0 Å away from the native state.
Finally cluster G is located. It is very clear from the figure, that among these main
conformational clusters, cluster F has the most native-like characteristics, the lowest energy
and is the most populated cluster. The conformational characteristics of the alternative clusters
D, E and G are well illustrated by the snapshots (Figure 4). The common pattern in each of
these representative conformations is the presence of parallel/anti-parallel helix-helix
interaction. In addition, structure D also contains stacking interaction between helices with
perpendicular orientation and has a more compact character than structures E and G. As a
result, D is the second most energetically favorable cluster (after cluster F). Interestingly,
parallel and perpendicular helix-helix interactions are also present in the native state (N).
Clearly structures with lower, more favorable energies are more native-like, validating the
three-point energy function we use.

Since conformational clusters N and F are relatively close to each other, it is natural to ask if
a simple conformational rearrangement can bring structure N to F (or vice versa). From the
snapshots, such a rearrangement involves a relative rotation of two parallel surfaces, each
defined by a pair of parallel helices. Such a conformational rearrangement is energetically
unfavorable when the distance between the surfaces is fixed. This is in agreement with the
near-native sampling, as there were no low energy conformations found close to the
multidimensional “line” between clusters N and F.

All-β class—Contrary to highly structured energy landscapes that occur in the all-α class,
typical β proteins show more diffuse energy landscapes. Figure 5 presents the example of a
108 residue protein domain, d1r75a_, showing the 2D mapping of the sampling trajectory
initiated from the crystal structure. Panels I-III are created by the same sampling/analysis
protocols used in Figure 4. Sampling of the conformational space starts with high energy states
within 0 to 8 Å RMSD of the crystal structure (Panels I-III). The snapshot of one of the initial
conformation is shown on the figure (A). Towards the middle of the path, conformations
occupy a diffuse region between 3.8 and 6.0 Å RMSD from the native structure. The later
region has lower energy than the rest of the conformational space (Panel I). The lowest energy
conformation visited in the trajectory is shown in figure (B) and compared to the near-native
state (N) in three different orientations. The comparison of energies and conformations for B,
A and N again shows that low energy conformations tend to be native-like.

α+β class—Figure 6 presents the sampling trajectory of two α+β folds, represented by a large
domain d1c4ka3 with 161 residues and a smaller 55 residue domain (d1div_2), respectively.
Panels I-III are constructed with the same methods used for Figures 4 and 5. Based on the
occurrence of smeared, diffusive patterns in the 2D projected conformational distribution, α
+β domains can be classified as being between all-α and all-β domains. The individual sampling
trajectory of d1c4ka3 walks through high energy states 0 to 3 Å RMSD from the crystal
structure, before settling down to three conformational clusters. The most denatured of these
clusters (A) is about 15 Å from the native state and characterized with conformations having
a compact “α+β” core region with the rest of the sequence partially unfolded. These types of
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denatured states could correspond to folding intermediates with “α+β” type nucleation sites.
The two most energetically favorable clusters are A and B; B is the free energy minimum, with
an average RMSD of 4.9 Å from native state.

Figure 6 also depicts the sampling trajectory for a significantly smaller, 55 residue domain,
d1div_2. Panel I shows that there are initial high energy conformations near the crystal
structure. The sampling path then explores three conformational clusters with high energy; one
of the most denatured clusters, A, contains conformations with a compact β-core. Finally, the
three major conformational clusters, B, C and D are located. Here D is the most energetically
favorable and most native-like cluster, with a conformation close to the native state. Again,
many conformational clusters are located and the most native-like was found to have the lowest
free energy.

Discussion
The use of multi-canonical sampling methods in the exploration of near-native energy
landscape of proteins provides advantages to alternative approaches like high temperature
unfolding.54 In unfolding simulations, the temperature cannot be chosen arbitrarily high since
the main objective is to infer folding paths at physiological temperatures. On the other hand,
if the native state is kinetically trapped, very high temperature simulations are needed to
produce unfolding events on a sufficiently rapid timescale. In multi-canonical methods,49,
51 there is no obvious restriction on the temperature of the most thermally activated system
allowing the investigation of very stable native states. Another advantage of multi-canonical
methods is that the replica of interest (300K) samples conformations according to the
Boltzmann distribution at 300 K, whereas in unfolding simulations the visited conformations
are sampled at a higher temperature. In spite of all the advantages one clear limitation of multi-
canonical methods is their limited ability to provide direct kinetic information (knowledge of
the free energy landscape does allow all kinetic pathways to be inferred). Multi-canonical
methods are not only viable alternatives to explore the near-native energy landscape of proteins,
but could be combined with unfolding simulations in a synergic way. For example, if a multi-
canonical method locates conformational clusters A, B and C, unfolding simulations at
different temperatures could be used to probe the energy landscape around each cluster and
along a path between them.

The use of simplified protein models together with loop torsion angle flexibility is essential
for efficient exploration of conformational space that is necessary if a large number of energy
landscapes are to be investigated. In native proteins most of the conformational flexibility
comes from loop segments, justifying our approximation of secondary structure elements as
rigid bodies. This combination of rigid secondary structure with multi-canonical sampling has
enabled our exploration of the near-native energy landscape for all the 280 representative fold
domains with the 3 point per residue simplified representation.

The fictitious pathway generated by the current sampling protocols does not carry kinetic
information, however as the conformational transitions sampled must occur in at least one of
the different temperatures replicas, any two visited conformations must be connected
kinetically at the highest temperature. This improved sampling comes at a price: the higher the
temperature of the most thermally activated replica, the less the information that is preserved
about kinetics at the temperature of interest. Nevertheless, for each representative domain the
goals of the sampling protocol include (a) canonical exploration initiated from the native
structure and (b) stochastic optimization to locate the most energetically favorable clusters of
structures encircling the native state. We prefer canonical rather than the alternative stochastic
optimization algorithms of simulated annealing, which only locates one conformation, and
basin-hopping, which samples a transformed energy surface. Interestingly, when applied
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together with knowledge-based potentials, the present stochastic optimization approach is even
further justified, since the underlying energy function has the character of a free-energy. In
addition, tests on highly structured small proteins (<70 residues and <60 flexible loop torsion
angles) (in preparation) show that a simulation starting from a completely unfolded state finds
the same dominant energy basins. Investigation at this level is computationally prohibitive for
our 280 domains, which were primarily chosen to represent protein fold space. Due to the
limited kinetic information provided by our multi-canonical Monte-Carlo sampling, the order
with which conformational clusters (low energy basins) are visited along the sampling path is
not significant and could be different for different choices of random numbers.

The 3pt models used here is characterized with a rich variety of stable native-like or partially
denatured energy basins. The basins could be biologically important in that (1) proteins need
conformational flexibility for function; (2) stable partially denatured states could serve as
intermediates between the native state and the unfolded ensemble.

Further analysis of the 3pt results was based on the location of the three most dominant energy
basins. For those domains, where the RMSD of the most populated cluster (RMSA) was more
that 6 Å from the native state, we visually examined sampled conformations. We find six main
causes, that include: (a) long terminal loop regions in the native structure; (b) long intermediate
loop segments; (c) presence of non-native compact regions in the favored conformations, which
often correlates with the formation of isolated substructures; (d) presence of relatively isolated
compact super-secondary structures in the native structure; (e) biased relative orientation of
small helices close to large, flat β sheets; (f) isolated secondary structure elements favored in
native loop regions. It is important to note that while there was no correlation between the
number of non-structured residues (not in α-helix or β-strand) and the RMSA value, the
distribution of non-structured residues along the sequence had more pronounced effect on
stability (see Reason (2) above).

Another outstanding question is whether there are any plausible explanations for the different
stability properties of different fold classes. We find that contacts in all-α domains are weaker
and less specific than contacts in all-β domains (see Supplementary Figure 2). Thus, contrary
to all-β domains, all-α domains can easily reorganize into partially denatured, stable and
compact tertiary arrangements. In addition, the RMSA for 90 % of all-α and all-β domains is
below 9.1 Å and 4.8 Å, respectively. The detailed all-atom description of polypeptides also
supports our observations in that since contacts between rigid β-strands have great strength
and sharp orientation dependence due to hydrogen bond formation; in all-α proteins the H-
bonds occur within the helix and weaker van der Waals interactions govern the inter-helix
packing.

Unlike the α+β domains, α/β domains rarely contain contiguous α-helical secondary segments
due to the alternation of α and β segments along the chain. Furthermore, large scale motion of
α-helical segments in α/β domains is restricted by the strong interactions between consecutive
β-strands that lock in the α-helix they surround. This is in agreement with our findings that α
+β domains denature to a larger extent than α/β domains (<RMSA>α+β = 4.89 Å,
<RMSA>α/β = 3.09 Å) and the RMSA for 90% of α+β and α/β domains was found below 9.2
Å and 5.0 Å, respectively.

While all-β domains are found to denature to a slightly lesser extent than α/β domains
(<RMSA>α/β = 3.09 Å, <RMSA>all-β = 2.93 Å), all-β domains have more variations in their
stability (σ(RMSA)α/β = 1.31 Å, σ(RMSA)all-β = 1.88 Å). Consequently, all-β folds have
slightly stronger stabilizing native contacts than α/β but a denaturing all-β fold is less likely to
find a near native stable tertiary arrangement due to the strict orientation requirement of
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contacts between rigid β-strands. On the other hand, the broken β-strand-strand contacts in α/
β domains can be locally stabilized by orientational independent helix-helix interactions.

Another interesting correlation was discovered between the RMSD of the most denatured
energy basin and the α-helical content (pα): for domains with pα values between 0.4 and 0.6,
most of the denatured clusters were not further than 6.0 Å away from native. This was generally
true and did not depend on the fold class.

Conformational plasticity of the chains studied here was also revealed by focusing on the
distribution of energy basins around the crystal structure. For some domains, the distributions
were found to be diffuse, while others were surrounded by well isolated energy basins. The
presence of diffuse landscapes correlated with the following three factors: (1) continuous
deformation of loop elements, while preserving the relative arrangement of helices and sheets;
(2) realignment of β-strands in a β-sheet; (3) rearrangement of compact and distantly isolated
super-secondary structural elements. Domains contributing to factor (1) could belong to any
topological class, but usually possess long loops (d1ig3a2, d1o50a1). Domains with factor (2)
are mostly in the all-β (d1r75a_) or α+β (d1hdma2) classes; a good example for factor (3) is
provided by d1el6a_, where continuous deformation of two compact super-secondary
substructures occurs. In addition, factor (3) may occur due to the lack of long range interaction
effects, which is the case for most of knowledge-based potentials.

The general layout of near-native conformations is clearly captured by the 2D scaling applied
to representative conformations. Combining 2D maps with color representations of
conformational properties like energy, RMSD and history of exploration provided a
particularly good way to visualize near-native energy landscapes. Such conformational “maps”
not only characterize how proteins approach the native state in a folding process, but also
determine the properties of the native state and as such strongly relates to protein function. For
example, proteins, which undergo large, function related conformational changes must possess
more plasticity (even in loop torsion angle space, as the secondary structure of functioning
proteins remains intact) at physiological conditions, and this property must be imprinted on
the corresponding near-native energy landscape. While we characterize proteins with the 3pt
representation, our analysis and visualization tools can be directly used for any conformational
space in any representation.

Conclusions
In spite of the recent advances made in the development of novel sampling and optimization
algorithms, the huge dimensionality of all-atom descriptions still limit the in silico
investigations of large bio-molecular systems. There is clearly an increasing interest in
approaches that foster the synergetic combination of new concepts and methods to overcome
severe computational obstacles as the field rapidly progresses towards proteomics and system
biology.

Our findings suggest there are realistic yet computationally tractable protein representations
that when combined with state-of-the-art sampling protocols, enable studies to be conducted
on families of proteins. Here the term ‘realistic’ embodies several properties, such as
transferability across a large number of structures without knowing the native contacts,
differences in the near-native properties of distinct folds, and sufficient conformational
flexibility (a necessary requirement for protein function). In spite of the unique near-native
energy landscape associated with each fold, several common patterns were discovered. Close
similarity between the number residues being in α or β secondary structures (pα ∼ 0.5),
generally correlated with extra stability. Thus, the three point knowledge-based potential
favored all proteins that were equally rich in both α and β secondary structural elements. In
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addition, a large number of unstructured terminal residues were generally found to be the main
cause of large deviations from the native state.

The strength and specificity of native contacts among rigid secondary structure segments
determines the stability and near-native energy landscape associated with the tertiary structure
of each fold. Our findings imply that distinct stability properties of the different fold classes
are due to from the strength and orientational specificity of interactions between β-strands as
opposed to weak, non-specific interactions between α-helices.

Thorough investigation of some representative near-native energy landscapes from α-, β- and
α+β-fold classes were performed by mapping a fraction of visited conformations onto a 2D
space. Here, the simultaneous monitoring of various properties of conformational nodes, lead
to a novel analysis towards the detailed visualization of conformational energy landscapes.
The conformational distribution revealed that helically rich α-proteins have energy landscapes
with many isolated energy basins, some of them belongs to globally rearranged alpha helical
segments. On the contrary, highly structured β-proteins were found to have diffuse energy
landscapes that only allowed for the local rearrangement of underlying β-strands.

Altogether, our findings imply, that the current knowledge based 3 point per residue
representation captures some of the most important features of all-atom force fields (including
specific hydrogen bonds). Thus, it provides a realistic picture of the forces shaping tertiary
structure assembly in protein fold space. Consequently, the introduction of the present
simplified energy/scoring function could potentially impact many diverse fields such as ab-
initio structure prediction, threading, fold-recognition, study of large protein motion, protein-
protein interactions among many others. In addition, the low energy and compact non-native
conformations we found from fold space domains could open up new avenues in the large scale
design of new folds or entire fold spaces. Finally, our tertiary sampling protocols combined
with the current knowledge based potential are clearly powerful enough to become an integral
element of a hierarchical structure prediction protocol.

Methods
Protein Structures

We randomly selected domains from 795 protein folds in SCOP-1.71 database,2,57,58
covering the four major topological classes, all-α, all-β, α/β and α+β folds. The 70 single chain
domains selected from each class have a range of lengths between 0 and 300 residues and an
irregular secondary structure loop content of maximum 60 %. Altogether we studied 280 folds,
more than one third of all known folds (∼35%). In addition, our 280 folds cover ∼45% of all
folds and ∼75% of all α/β folds in our feature subset (up to 300 residues with maximum 60%
coil residue content). The domain structures were obtained from the ASTRAL database,53,
59,60 http://astral.berkeley.edu/.

Models
The three-point knowledge-based model (3pt) follows on previous work (the list of 4500 known
protein structures used is available as supplementary information).61 The three atoms used for
each residue are the Cα carbon atom, the O carbonyl oxygen atom and a single side chain atom
chosen to represent the center of mass of the side chain. The particular side chain atom used
for a particular type of residue is taken as the atom that is most commonly closest to the actual
center of mass of the side chain in known proteins. In this way we can use the knowledge-
based energy functions derived for all-atom potentials and easily change the number of atoms
used in the representation. The all-atom version of our force field has been extensively tested
against commonly used physics based all-atom potentials.6 These three atoms have distinct
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types in different amino acids, so that the total number of atom types is 59, since Gly does not
have a side-chain.

Since only torsion angle degrees of freedom are considered for the 3-point knowledge-based
potential, intramolecular bonding or bending terms were not needed. To introduce additional
flexibility into the model, no torsion angle potentials were used. We use two torsion angles per
residue defined as Cα - O - Cα - O and O - Cα - O - Cα.

Selecting Conformations and Clustering
In order to obtain the structures presented on Figures 4-6, we used a very simple clustering
approach.62,63 Based on the representative conformations (400) from sampling trajectories,
we evaluated the all-to-all RMSD distance matrix. Then, using an initial RMSD cutoff Δ, the
structure with the largest number of neighbors marked the top cluster. In the next step the top
cluster (structure and its neighbors) are eliminated and the procedure is continued until all
structures are distributed among clusters. Here, Δ is chosen based on the RMSD distribution
(e.g. for d1ny9a_, Δ = 1.5 Å is used). The conformations plotted on the Figures are the lowest
energy conformations of individual clusters. In case of the diffuse conformational distribution
of all-β domain d1r75a_, slight changes of Δ resulted on different top clusters. Therefore, on
Figure 5 we only indicate the final lowest energy conformation and the lowest energy
conformation found among the top 2.5 % most denatured structures.

Conformational Sampling
Multiple Temperature Markov Chains—The robust sampling methods employed here
include parallel tempering49 (PT) and the equi-energy sampler (EEMC).51 Both methods
employ a sequence of Markov-Chains, X(0), X(1),..., X(K), ordered with increasing
temperatures, T0<T1<...<TK. As a result conformational exchanges between adjacent
temperature Markov-Chains, conformations that are isolated by high energy barriers
(permeable at TK, but not at T0) are visited at T0. In parallel tempering, such exchanges take
place between the instantly visited conformations of adjacent temperature chains. In equi-
energy Monte Carlo, such exchanges take place between an instantly visited conformation and
an ‘equal energy’ conformation obtained from the sampling history of the neighboring higher
temperature chain. Here, two conformations R1 and R2 have ‘equal energy’, if Ei < E(R1), E
(R2) < Ei+1, where an energy ladder {Ei, i=0,1,...,K} is chosen a priory51 and an initial
approximation of the minimum attainable energy (E0) of a given molecular system, enables
the construction of the energy ladder for a given conformational sampling problem.52 Thus,
EEMC allows exchanges between two conformations having similar energy, so that it can also
connect low energy basins that are separated by large energy barriers. Note that by varying the
type of the exchange (PT or EEMC), the two types of adjacent temperature replica swaps can
be mixed on the fly.

It has been clearly shown52 that EEMC beats PT in locating multiple energy basins of noisy,
low-dimensional, synthetic energy surfaces that include an off-lattice model protein.64,65
Additional tests revealed that optimal performance across many different high dimensional
problems is achieved with PT, but EEMC still has the beneficial property of potentially
connecting distant energy basins. As the present study aims to explore different energy surfaces
in a comparative manner, uniformly effective sampling is essential, we use a novel method
that combines EEMC and PT and is called EEMC enhanced PT (see below).

Definition of Target Space, Sampling Protocols—To accelerate the canonical
exploration of conformational space, we only vary the loop torsion angles between regular
secondary structure elements (the definition of coil residues are obtained from native structures
using STRIDE66). For the 3 point per residue model, there are two torsion angle degrees of
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freedom for each residue, resulting in dimensionality, Nd, = 2*Nlr (Nlr is the total number of
loop residues and Nd is less when there are loop residues at start or end of the chain). The
individual Markov Chains (MC), X(i) with temperatures, Ti, are propagated in Nd dimensional

torsion angle space using a multivariate Gaussian: , and a proposed step
size of the i-th order chain is taken to be , where l is the number of amino acids and
c is optimized so that the acceptance ratio of the isolated MCs is about 0.4. Applying this
proposal step size, we achieve a uniform acceptance ratio across different temperatures and
proteins with various lengths.

For each domain, sampling is improved by using nine replicas with temperatures ranging from
300 to 900 K. We run trajectories by performing an initial 200,000 MC steps starting from the
native state for each of the individual replicas without any multi-canonical exchange. This
equilibration is followed by a multi-canonical production run of 4,000,000 MC steps to collect
the statistics used in this study (this number of steps was found to be adequate to locate the
most attractive near-native energy basins). For each Chain, the probability of a torsion angle
change was set to pMC = 1 - pexch, where pexch, the probability of adjacent temperature replica
exchange was set to 0.05. The latter exchange was performed following either parallel
tempering49 or equi-energy Monte Carlo51 and the type of the exchange was sequentially
changed along the trajectory; every 1000 steps of parallel tempering was followed by 200 steps
of equi-energy Monte Carlo. For equi-energy Monte Carlo, E0 (see. above) was approximated
from a short preliminary sampling with parallel tempering. Although the focus of the present
work is the effective exploration (stochastic optimization) of near-native low energy minima,
the new protocol was rigorously tested to reproduce the analytical distribution of the synthetic
one dimensional rough energy landscapes used in previous studies.52 Furthermore, some
trajectories were regenerated using distinct pseudorandom sequences (different initial random
number seed) and no significant differences were found between the visited conformational
clusters.

Locating the maxima of RMSD distributions
In order to locate the three most dominant energy basins found for each protein, we use the
distribution of RMSD obtained from near-native sampling. The three numbers are found by
executing the following steps: (1) Find all the RMS values, where the distribution has a
maximum value; (2) Set RMSA, as the RMSD of the global maximum, RMSB as the next and
RMSC as the third highest maxima. (3) If two maxima are closer than 0.5 Å, merge them and
add one more maxima to the list.

Software
All cartoons of protein structures were generated by PyMol (http://www.pymol.org) using all-
atom reconstructed protein models obtained using MAXSPROUT.67 Multidimensional
scaling was used by employing the algorithm of Kamada and Kawai,68 which is implemented
into the open source program GraphViz.69 All sampling trajectories have been generated by
the Palo Alto Sampler (Minary et al.). This software with all input parameters (including the
tabulated knowledge-based potentials) needed to reproduce these results will be provided at
http://csb.stanford.edu/~minary.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1a.
Showing the variation of the root mean square deviation of all Cα atoms (RMSD) from the
native structure with the number of Monte Carlo iteration steps for four SCOP protein domains
representing the four major structure classes: α (d1ny9a_), β (d1r75a_), α/β (d1rvva_), and α
+β (d1c4ka3). Domains are described with the 3-point per residue model. All trajectories started
from the crystal structures and were propagated for a total of 4,000,000 steps using an advanced
combination of Parallel Tempering and Equi-Energy Monte Carlo methods. The simulation
explore the conformational space around the native structure with rapid and frequent transitions
between states that have very different RMSD values; at the end of the trajectories, the RMSD
generally reaches values lower than 5 Å.
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Figure 1b.
The distribution of RMSD values from native distribution (solid red curve) is plotted together
with the energy values obtained for sampled conformations (black dots) for d1ny9a_, d1r75a_,
d1rvva_ and d1c4ka3, the same protein folds shown in Fig. 1a. The green arrows indicate the
locations of: (1) the most probable RMSD value (denoted RMSA and marked with a dotted
green arrow); (2) the second most probable RMSD value (denoted RMSB, dashed green arrow);
and (3) the third most probable RMSD value (denoted RMSC, solid green arrow). In many
cases, there is a clear separation of clusters of conformations based on their energy and RMSD
values (d1r75a_, an all-β fold is an exception). The most probable cluster is often the closest
to the native structure (i.e. RMSA is smaller than RMSB or RMSC).
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Figure 2.
Showing the variation of the basin RMSD from crystal structure with the size of protein,
(Nseq). We show the results for all 280 domains studied here: domains from α, β, α/β and α
+β topological classes are colored black, red, green and blue, respectively. Here we consider
the three most probable basins for each protein, RMSA, RMSB and RMSC (see Fig. 1b). In (a)
we show the RMSD value of the least native-like of the top three dominant energy basins (max
(RMSA,RMSB,RMSC)) as a function of the number of residues. One third of the domains (88
out of 280, 31.4 %) have RMSD values above 6 Å (dashed black horizontal line). On average
α/β and β domains remain closer to the native state than other classes of domains. Only 4.29
% of proteins have RMSD values below 2 Å (dashed black horizontal line). 90 % of all-α, all-
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β, α/β and α+β class domains are below thresholds of 12.7 Å, 8.5 Å, 6.9 Å and 12.0 Å,
respectively. In (b) we show the RMSD value of the most dominant energy basin (RMSA) as
a function of the number of residues. In this case, only 19.3 % (54 out of 280) of the domains
have RMSD values above 6 Å (dashed black horizontal line) and almost all (66 out of 70 or
94.3 %) α/β domains are below the 6 Å line. 90 % of all-α, all-β, α/β and α+β class domains
are below thresholds of 9.1 Å, 4.8 Å, 5.0 Å and 9.2 Å, respectively.
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Figure 3.
In (a) we show the variation of RSMD value of the least native-like of the top three dominant
energy basins (max(RMSi)) for all 280 protein folds as a function of the alpha content, defined
as pα = nα/(nα+nβ), where there are nα residues in α-helix and nβ in β-sheet. In medium alpha
content (0.4 < pα < 0.6), most domains have cRMS values below 6.0 Å (there are only four
exceptions). In (b) we show how the max(RMSi)) varies with the fractional terminal coil residue
content, pTC (given by nTC/nseq, where nTC is the number of residues before the first or after
the last segment of α or β secondary structure). 259 out of the 280, (92.5 %) domains have few
unstructured terminal residues (pTC smaller than 0.15). In addition, as pTC increases, so does
the minimum RMSD of the most denatured basin from the native structure. Exceptions to this
rule are found below the dashed guide line given by max(RMSi)=15/0.4 pTC and marked with
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a black dotted circle if they have lower than 50 % α and/or β content. Among the exceptions
only 8 domains with high α and/or β content were found. Proteins from α, β, α/β and α+β
topological classes are colored black, red, green and blue respectively.
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Figure 4.
showing a two-dimensional projection of the high-dimensional conformational space of a
typical all-α fold trajectory (d1ny9a_) in which the dots mark the positions of each structure
as a function of x and y measured in Ångstroms. The projection was generated by using the
open-source program GRAPHVIZ69 with an all-to-all RMSD distance matrix derived from
400 structures sampled every 10,000th steps along the trajectory. The native conformation is
marked with N and various clusters of similar conformations are marked by letters from A to
G. In panel (I), conformations are colored by their energy. We ensure uniform use of all colors
by sorting the structures by the energy and linearly mapping the rank of each structure on the
color scale (the minimum and maximum energy values are indicated). In panel (II),
conformations are colored by their RMSD distance from the native structure; the clear
progression from blue to red in each of the four directions (up, down, right, left) as points are
further from the native conformation verifies the accuracy of our dimensional reduction. In
panel (III), conformations are colored by the step number along the sampling trajectory. Since
the most significant fraction of the trajectory and are located in some smaller clusters, a
normalized square color-bar-timestep mapping is used in order to avoid the accumulation of
multiple colors in narrow clusters. The latter non-linear monotonic scaling improves
visualization of the progress along the trajectory. The single headed arrows between clusters
point towards the lower energy cluster. In the right-hand panel, we show snapshots of typical
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conformations that represent the clusters shown in panels (I), (II) and (III). For each molecular
structure we show in parenthesis the RMSD from native in Å and the total energy in kcal/mol.
The conformation with the lowest energy (see (F)) is enclosed in a red box.
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Figure 5.
showing the same type of two-dimensional projection of conformational space used in Fig. 4
for a typical all-β fold trajectory (d1r75a_). In this case, conformational space has a more
diffuse character. We demarcate by the letters N, A and B three regions of the conformational
space representing the near-native states, the first quarter of the run and the final sixth of the
trajectory. The left-hand panels, which are like those in Fig. 4, show how the conformation has
a high energy at first and moves though much of the space before settling down close to the
native structure in lowest energy basin B. The lowest energy conformation of the whole
trajectory belongs to basin B and then a conformation for basin A is chosen as the lowest energy
conformation among the top 2.5 % most denatured ones. The conformations associated with
each basin and the native is shown in three different orientations to facilitate comparison to
the native state. Each snapshots is shown with its RMSD values in Å and their total energy in
kcal/mol.
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Figure 6.
showing the same two-dimensional projection of conformational space used in Fig. 4 but now
for two α + β domains, d1c4ka3, which has 161 residues, and d1div_2, which is much smaller
with 55 residues. In the case of d1c4ka3, the two major conformational clusters are marked by
A and B according to the order they were visited. The MC step subplot in panel (III) shows
how the initially visited conformations (green nodes) transforms into orange and then finally
red exploration paths (the single headed arrows between clusters point towards lower energy
ones, the double headed arrows between clusters indicate their similar energy). The snapshots
of the conformations show that the sampling path passes through a very unfolded state (basin
A) before locating a near-native, low-energy conformation in basin B (framed in red). In the
case of d1div_2, there are four major conformational clusters denoted A to D in the order
visited. The representative conformations for each cluster are depicted. The snapshots of the
conformations show that the simulation passes through very unfolded states (basins A and C)
before locating an near-native, low-energy conformation in basin D (framed in red).
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