
A novel mutation in GJA8 associated with jellyfish-like cataract in
a family of Indian origin

Vanita Vanita,1 Jai Rup Singh,1 Daljit Singh,2 Raymonda Varon,3 Karl Sperling3

1Centre for Genetic Disorders, Guru Nanak Dev University and; 2Dr. Daljit Singh Eye Hospital, Amritsar, India; 3Institute of Human
Genetics, Charitè, University Medicine of Berlin, Berlin, Germany

Purpose: To identify the underlying genetic defect in a three-generation family with five members affected with dominant
bilateral congenital cataract and microcornea.
Methods: Detailed family history and clinical data were recorded. Mutation screening in the candidate genes, CRYAA,
CRYBB1, MAF, GJA3, and GJA8, was performed by bidirectional sequencing of the amplified products.
Results: Affected individuals had a jellyfish-like cataract in association with microcornea. Sequencing of GJA8 (connexin
50) showed a novel, heterozygous c.134G→C change that resulted in the substitution of a highly conserved tryptophan
by serine (p.W45S). This sequence change segregated completely with the disease phenotype and was not observed in
108 ethnically matched controls (216 chromosomes). However, an identical substitution has previously been described
in GJA3 (connexin 46) leading to autosomal dominant nuclear cataract without microcornea.
Conclusions: This is a novel mutation identified in the first transmembrane domain (M1) of GJA8. These findings further
expand the mutation spectrum of connexin 50 (Cx50) in association with congenital cataract and microcornea.

Congenital cataract is one of the common causes of visual
impairment and childhood blindness. Its incidence is
estimated to be 2.2-2.49 per 10,000 live births [1,2]. Wide
clinical and genetic variability has been observed. Nearly one-
third of the cases show a positive family history of which
autosomal dominant inheritance is the most common [3].
Congenital cataract can occur either as an isolated anomaly,
in association with other ocular anomalies, or as a component
of multi-systemic disorder. Microcornea-cataract syndrome
(OMIM 116150) is characterized by the association of
congenital cataract and microcornea without any other
systemic anomaly or dysmorphism. Mutations in CRYAA
(OMIM 123580), CRYBB1 (OMIM 600929), GJA8 (OMIM
600897), and MAF (OMIM 177075) have been reported in
families affected with cataract-microcornea syndrome [4-7].

The eye lens is an avascular structure, and intercellular
transport of small biomolecules of less than 1 kDa is mediated
through connexins (Cx) that encode gap junction channel
proteins [8,9]. In humans, at least 20 connexins classified into
three families have been identified [10,11]. Three of these
connexins belong to the α-connexin family and are expressed
in the lens, connexin 43 (Cx43, GJA1) in the epithelial cells,
connexin 46 (Cx46, GJA3), and Cx50 (GJA8) in lens fibers
[12-15]. Lens fibers are connected to the epithelial cells via
gap junctions and are dependent on a metabolically active
epithelium for maintenance of the intracellular ionic
conditions necessary to prevent precipitation of crystallins
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and hence cataract formation [16]. Cx46 and Cx50 are
responsible for joining the lens cells into a functional
syncytium; in addition, Cx50 is also important for lens growth
[17].

We encountered a three-generation Indian family with
bilateral congenital cataract at the Dr. Daljit Singh Eye
Hospital, Amritsar, India. The appearance of the cataract was
reminiscent of a jellyfish. All affected individuals showed
microcornea in association with congenital cataract. Upon
sequence analysis of the candidate genes, CRYAA, CRYBB1,
MAF, GJA3, and GJA8, we identified a heterozygous c.
134G→C change in GJA8 that resulted in the substitution of
a highly conserved tryptophan by serine at codon 45
(p.W45S). This change co-segregated completely with the
disease phenotype.

METHODS
Family description: The index case, a 12-year-old child, was
diagnosed with bilateral cataract. The family history revealed
five affected members in three generations (Figure 1). A
detailed ophthalmologic examination, which included slit
lamp examination and photography of the affected lenses, was
performed on seven members of the family and revealed that
five members were bilaterally affected (four had a history of
cataract extraction in childhood) and two individuals were
unaffected.

Mutation analysis: Informed consent was obtained from each
individual studied. This study was approved by the Ethics
Review Board of the Guru Nanak Dev University, consistent
with the provisions of the Declaration of Helsinki. Blood was
drawn and DNA was isolated by standard methods. Mutation
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screening was performed in the exonic regions of candidate
genes, CRYAA (GenBank NM_000394), CRYBB1
(NM_001887), MAF (NM_001031804), GJA3 (GenBank
NM_021954), and GJA8 (GenBank NM_005267), localized
at 21q22.3, 22q11.2-q12.2, 16q23.1, 13q11, and 1q21,
respectively. The coding regions and exon-intron boundaries
of the candidate genes were amplified using previously
published primer sequences [4,5,18-20]. Initially, genomic
DNA from two affected and one unaffected individual was
amplified. Upon identification of a nucleotide substitution in
GJA8 in tested affected individuals, three more affected and
one unaffected individual’s DNA were tested. Amplification
was performed in 25 μl reactions containing 50 ng genomic
DNA, 10 pmoles of each forward and reverse primer,
200 μM dNTP, 10X polymerase chain reaction (PCR) buffer,
1.5 mM MgCl2, and 0.25 U Taq DNA polymerase (AmpliTaq
Gold; Applied Biosystems, Foster City, CA). To amplify GC-
rich amplicons, 5% DMSO was used in the reaction.
Amplification conditions consisted of an initial denaturation
step at 95 °C for 5 min followed by 35 cycles consisting of a
denaturation step at 95 °C for 10 s, optimal annealing step for
30 s at temperatures ranging between 53 °C-61 °C for different
amplicons, and an extension at 72 °C for 45 s followed by a
final extension step at 72 °C for 10 min. PCR products were
purified using a PCR products purification kit (QIAquick;
Qiagen, Valencia, CA) and sequenced bidirectionally with
ABI BigDyeTM Terminator Cycle Sequencing Ready Reaction
Kit version 3.1 (Applied Biosystems) as described elsewhere
[18]. Sequencing results were assembled and analyzed using
the SeqMan II program of the Lasergene package (DNA
STAR Inc., Madison, WI).

Figure 1. Pedigree of a family with individuals affected by congenital
cataract and microcornea. The pedigree of an autosomal dominant
congenital cataract (ADCC) family with affected individuals
(indicated as filled circles and squares) in three generations is shown.
All the affected members showed microcornea in association with
congenital cataract. The asterisk indicates those individuals who
underwent ophthalmologic examinations and were genetically
investigated. The proband (II:5) is indicated with an arrow.

RESULTS

Phenotype description: The lens opacity appeared axial,
extending from the anterior capsule to the posterior capsule.
At the anterior end, the round opacity was about 2 mm in
diameter and placed slightly eccentrically toward 10 o'clock.
There appeared to be a 1 mm x 1/2 mm blunt projection
extending from the anterior end on the nasal side. On the
temporal side, there was a fan-like opacity, which tends to hide
the deeper structure of the opacity, comprising about a dozen
finger-like projections radiating in all directions (Figure 2).
The cataracts in this family had a jellyfish-like appearance,
different from the coralliform cataract, which has a more
delicate and sparse structure and axial branches that are sharp
and thin. All five affected individuals also had microcornea,
their corneal diameter was less than 10 mm in both horizontal
and vertical meridians (average normal diameters are 12.6 mm
and 11.7 mm, respectively [21]. Apart from congenital
cataract and microcornea, no other ocular anomalies such as
microphthalmia, amblyopia, strabismus, or glaucoma were
detected in any of these affected members.

Mutation screening: Bidirectional sequencing of the coding
region of GJA8 in the five affected (I:1, II:2, II:4, II:5, and III:
1) and two unaffected individuals (I:2 and II:3) showed a
heterozygous change, G>C (), at position 134 (c.134G→C)
from the translation start site in the affected individuals. The
alteration was not seen in any of the unaffected family
members tested nor in the 108 unrelated control subjects (216
chromosomes) from the same Northern Indian population
(data not shown) but was confirmed in all affected individuals.
This nucleotide substitution replaces an evolutionarily highly
conserved tryptophan with serine at amino acid position 45

Figure 2. Photograph (three-dimensional lens) of a patient taken
through a slit lamp. The lens opacity is axial, extending from the
anterior capsule to the posterior capsule. At the anterior end, there is
a round opacity about 2 mm in diameter, placed slightly eccentrically
toward 10 o'clock. There is a 1 mm x 1/2 mm blunt projection on the
nasal side. On the temporal side, there seems to be a fan-like opacity,
which tends to hide the deeper structure of the opacity, comprising
about a dozen finger-like projections going in all directions. The
cataract appears like a jellyfish.
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(p.W45S) in the first α-helical transmembrane domain 1 (M1)
of connexin 50.

DISCUSSION
In the present study, we report a novel p.W45S substitution in
the connexin 50 polypeptide associated with jellyfish-like
cataract and microcornea. The p.W45S substitution is likely
to cause disease since it segregated with the disorder and was
not detected either in any of the tested unaffected family
members nor in the 108 unrelated controls. The tryptophan-45
in connexin 50 is predicted to lie within the first
transmembrane domain (M1) and is well conserved in
different species (Figure 3B). Furthermore, the mutation is
adjacent to a previously reported mutation, p.V44E, also
associated with cataract and microcornea [6]. Recently,
Ponnam et al. [22] have identified a frameshift mutation,
p.T203fs, associated with autosomal recessive total cataract,
microcornea, and microphthalmia in one of two affected
siblings.

Different mutations have been detected in GJA8 in
association with congenital cataract and significant
interfamilial phenotypic variability has been observed. The
phenotypes in most of the cases that have mutations in
GJA8 have been described as zonular nuclear pulverulent
cataract with dust-like opacities. The cataract phenotype in the
present family differs from these because there are no
“pulverized” dust-like opacities in the lens. Diverse
mutational mechanisms like a dominant negative effect for
p.P88S and p.P88Q [20,23,24] or a loss of function for
p.D47A, p.G22R, and p.R23T [25-27] have been proposed.
Functional implications of these mutations may account for
the phenotypic differences.

Interestingly, Ma et al. [28] have reported an identical
substitution, p.W45S, in another connexin polypeptide,
connexin 46 (Cx46), in a Chinese family with 10 members
over three generations affected with nuclear cataract but
without microcornea. This indicates an essential role for
tryptophan-45 in Cx46 and Cx50 in maintaining eye lens
transparency.

This is also illustrated in connexin knockout and knockin
mice. While Cx46 knockout mice develop nuclear cataracts
only, Cx50 knockout mice show nuclear cataracts in
combination with smaller lenses. This is associated with
delayed fiber cell maturation and reduced epithelial cell
proliferation. Interestingly, in knockin Cx46 mice, where
connexin 46 is expressed under the endogenous Cx50
promoter, the lenses are transparent but smaller, which
suggests that connexin 46 cannot substitute for connexin 50
in lens growth [29].

In summary, we describe a novel, heterozygous p.W45S
mutation in Cx50 co-segregating completely with congenital
cataract and microcornea in a three-generation Indian family.
The phenotype observed in this family showed marked

differences to the previously reported phenotypes linked with
GJA8. As a result, the possibility that variants in other genes
involved in maintaining lens transparency, development, and
growth thus determining the cataract phenotype cannot be
excluded.
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Figure 3. DNA sequence of a part of GJA8 from an unaffected and
an affected individual with jelly-fish like cataract followed by a
multiple alignment of partial amino acid sequences of connexin 50
from different species and of connexin 46 from homo sapiens. A:
DNA sequence analysis of a part of GJA8 from an unaffected and an
affected individual are displayed in the electropherograms (forward
strand; individuals II:3 and II:5, respectively). The wild-type G in
the sequence of the unaffected individual and the heterozygous c.
134G→C change resulting in substitution of tryptophan-45 by serine
(p.W45S) in the affected individual’s sequence are indicated by
arrows. F indicates the portion of GJA8 sequence, the forward strand,
in the unaffected and affected individuals. B: A multiple alignment
of partial amino acid sequences of connexin 50 from different species
and of connexin 46 from Homo sapiens is shown. The alignment data
indicate that tryptophan at position 45 (indicated by an arrow) is
highly conserved in different species in connexin 50 and also in
connexin 46 in Homo sapiens.
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