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ABSTRACT Fluorescent proteins are often used as reporters of transcriptional activity. Here we present a mathematical
characterization of a novel fluorescent reporter that was recently engineered to have a short half-life (;12 min). The advantage
of this destabilized protein is that it can track the transient transcriptional response often exhibited by signaling pathways. Our
mathematical model takes into account the maturation time and half-life of the fluorescent protein. We demonstrate that our
characterization allows transient transcript profiles to be inferred from fluorescence data. We also investigate a stochastic
version of the model. Our analysis reveals that fluorescence measurements can both underestimate and overestimate
fluctuations in protein levels that arise from the stochastic nature of biochemical reactions.

INTRODUCTION

A common property of signaling pathways is that they often

act transiently in the presence of a sustained stimulus. For

example, yeast respond to mating pheromone by inducing a

transient transcriptional program. Therefore there is great

interest in measuring gene expression changes in individual

living cells as they respond to stimuli in real time. In prin-

ciple, this could be accomplished with fluorescent proteins.

In a recent study, one of us (Beverly Errede) engineered and

experimentally characterized a set of short-lived fluorescent

reporters (1). These novel reporters were shown to accurately

track the time-dependent behavior of pheromone-induced

transcription. Fluorescent proteins also have been used to

measure variability, both temporal and intercellular, in protein

expression levels (2–14). Determining the origins and mag-

nitude of these fluctuations is of interest because of their im-

plications for cell fate decisions and nongenetic individuality.

Many studies on gene expression in single cells have been

motivated by theoretical and computational analyses of math-

ematical models of the underlying system (15–21). Using

mathematical models to interpret fluorescence measurements

requires a quantitative characterization of the biochemical

properties of fluorescent proteins used as reporters. In partic-

ular, knowledge of the fluorescent reporter’s half-life and

maturation kinetics (i.e., folding and oxidation (22)) is critical

for this comparison. Here, we use mathematical modeling to

quantitatively characterize the short-lived fluorescent proteins

reported in Hackett et al. (1). We show that this characteriza-

tion allows us to infer the underlying transcriptional response

from fluorescent measurements, thereby providing a tool for

monitoring transcript levels in single cells. Next we use

stochastic modeling to investigate how the fluorescence mat-

uration time and protein half-life influence fluctuations in

fluorescence levels. Our analysis reveals that for proteins with

short half-lives fluorescence measurements can overestimate

fluctuations in protein levels, whereas for long-lived reporters

fluorescence measurements typically underestimate these fluc-

tuations.

METHODS

Experimental characterization of short-lived
fluorescent protein reporters

We begin by briefly summarizing recent work carried out in the Errede

laboratory to develop and experimentally characterize a novel class of short-

lived fluorescent proteins (1). The approach used to generate a family of cyan

fluorescent reporter proteins (CFP) with different stabilities was based on the

ubiquitin fusion strategy for programmable N-end rule degradation devel-

oped by Varshavsky and colleagues (23). None of the proteins involved in

the degradation process are regulated by the cell cycle (24). To experimen-

tally characterize the novel short-lived reporters, the galactose-dependent

and glucose-repressible GAL1 promoter was used to drive their expression.

Immune blot analysis of protein extracts and fluorescence imaging of indi-

vidual living cells were used to determine protein half-lives after further

transcription was inhibited. Protein accumulation and the emergence

of fluorescence were also monitored after shifting cultures from a glucose to a

galactose medium. These measurements revealed a long delay between the

appearance of newly synthesized protein and the onset of fluorescence (see

Hackett et al. (1) for details).

Having experimentally characterized the intrinsic properties of the short-

lived reporters, we next tested them for their ability to act as reporters of time-

dependent transcriptional activity. Yeast respond to mating pheromone by

inducing a transient transcription program. FUS1 expression is strongly in-

duced by pheromone and serves as a standard indicator for mating specific

gene expression. Therefore, the FUS1 promoter was exploited to compare the

performance of destabilized (PFUS1-UbiY-dkCFP) versus stable (PFUS1-UbiM-

dkCFP) fluorescent genes as transcription reporters. The pheromone-in-

duction kinetics measured by fluorescence for both reporters is significantly

delayed compared with that measured by messenger RNA (mRNA) abun-

dance (Fig. 1). The speed with which either reports transcription induction is
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constrained by the inherent time required for fluorophore maturation.

However, the advantage of the short-lived reporter is evident in that the at-

tenuation phase of the pheromone-induced profile is similar to that for its

mRNA. By contrast, accumulation of the stable MdkCFP reporter com-

pletely masks the transient profile.

RESULTS

Mathematical characterization of fluorescent
protein reporters

Our ultimate goal is to use short-lived reporters as experi-

mental readouts that can be quantitatively compared with

output from computational models of pathway activity.

Therefore it is critical to have a mathematical model that

accurately describes the synthesis, maturation, and degrada-

tion events associated with these proteins. Here we present a

model that reproduces experimental data used to characterize

these reporters. In our model, premature (nonfluorescent)

protein, P, is synthesized at a rate that is proportional to

current mRNA concentration. Once synthesized the prema-

ture protein can either mature into a fluorescently competent

protein, PM, or be ubiquitinated, PU. We assume that the

ubiquitination process is reversible and that ubiquitinated

protein is subject to degradation. Mature protein can be

ubiquitinated, and likewise ubiquitinated protein can mature.

Both processes produce the species PMU. These consider-

ations lead to the following four equations for the concen-

trations of the various protein species:

dP

dt
¼ g mRNAðtÞ � ku P� km P 1 dku PU (1)

dPU

dt
¼ ku P� dPU � km PU � dku PU (2)

dPM

dt
¼ km P� ku PM 1 dku PMU (3)

dPMU

dt
¼ ku PM � dPMU 1 km PU � dku PMU: (4)

In Eq. 1, mRNA(t) represents the concentration of mRNA

at time t, and g is the translation efficiency. The parameters

ku, dku, km, and d are the ubiquitination, deubiquitination,

maturation, and degradation rates, respectively.

Fig. 1 shows data for the short-lived reporter YdkCFP
(half-life ¼ 12 min, triangles) and the long-lived reporter

MdkCFP (half-life ¼ 76 min, squares). The half-lives cor-

respond to d ¼ 0.055 min�1 for the short-lived reporter and

d¼ 0.009 min�1 for the long-lived reporter (1). The input for

the model is the time-dependent mRNA profile (Fig. 1,

crosses). These data were fit assuming a functional form that

consists of the difference of two exponentials (i.e., mRNA(t)¼
a exp(�a1 t) � b exp(�a2 t)). This produced the solid curve

shown in Fig. 1. This curve then served as input for Eq. 1. The

total mature protein concentration PM 1 PMU was fit to both

sets of fluorescence data using the nonlinear least squares

routine in MATLAB (The MathWorks, Natick, MA). The

results of this process are shown as the dotted (half-life ¼
76 min) and dashed (half-life ¼ 12 min) curves in Fig. 1.

The estimated parameter values are km¼ 0.0054 min�1, ku¼
34 min�1, and dku ¼ 81.7 min�1. Because we do not know

the absolute levels of mRNA and protein concentrations, the

synthesis rates cannot be directly determined from fitting the

data. This is not a problem if we are only trying to determine

the shape of the transcript profile from fluorescent measure-

ments. However, to investigate fluctuations in gene expres-

sion requires these values (see below).

Note that the estimated ubiquitination and deubiquitination

rates are much faster than the other biochemical processes in

the model. Therefore, we can utilize a quasi-steady-state ap-

proximation that assumes the ubiquitinated and deubiquiti-

nated forms of the protein are in equilibrium to simplify the

model. This results in the following two equations:

dPA

dt
¼ g mRNAðtÞ � km PA � d9PA (5)

dPMA

dt
¼ km PA � d9PMA; (6)

where PA ¼ P 1 PU, PMA ¼ PM 1 PMU, and (d9 ¼ d/(1 1

dku/ku)). Equations 5 and 6 can be written in dimensionless

form as follows:

dP9A

dt
¼ ðkm 1 d9Þ ðmRNAðtÞ � P9AÞ (7)

dP9MA

dt
¼ d9ðP9A � P9MAÞ (8)

where PA9 and PMA9 are defined as PA(km 1 d9)/g and PMA

d9 (km 1 d9)/(km g), respectively. For the estimated model

FIGURE 1 Time courses for the transcript level (crosses) and fluores-

cence measurements from a short-lived reporter YdkCFP (half-life¼ 12 min,

triangles) and long-lived reporter MdkCFP (half-life¼ 76 min, squares) (1).

The solid curve is the mRNA profile used as input for the model. The dashed

and dotted curves are the model output for the short- and long-lived

reporters, respectively (see text for details). The values of the parameters

estimated from fitting the model to the experimental data are km ¼ 0.0054

min�1, ku ¼ 34 min�1, and dku ¼ 81.7 min�1.
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parameter values, the simple model produces results that are

visually indistinguishable from Eqs. 1–4 (data not shown).

Therefore we use the model defined by Eqs. 7 and 8 to further

characterize the properties of the fluorescent reporters. Below

we investigate the validity of the simple model when sto-

chastic effects are considered.

Having developed a mathematical model that accurately

predicts the time-dependent behavior of the fluorescent re-

porters, we used the model to investigate the reporter’s ability

to track time-dependent changes in mRNA levels. To do this

we used an oscillating time series with a period of 100 min

(Fig. 2, inset) for mRNA(t), which is comparable to the

transcriptional response of the pheromone pathway. The

dashed black curve in Fig. 2 is the abundance of a protein

with a half-live of 12 min. This value, which is the half-life of

the short-lived fluorescent reporter, is comparable to the half-

life measured under pheromone-inducing conditions for

several components of the pheromone response pathway,

such as Ste2 (t1/2 ¼ 16 min), Ste11 (t1/2 ¼ 17 min), and Ste7

(t1/2 ¼ 17 min) (C. Fraser, Y. Wang, and H. Dohlman, per-

sonal communication of unpublished data/results). As can be

seen, the protein faithfully tracks the mRNA levels. Fluo-

rescent levels of the long-lived reporter (dashed shaded
curve) cannot see changes in transcript levels, whereas the

short-lived reporter (solid black curve) is able to follow the

mRNA level. The dynamic range of the fluorescent reporter

depends not only on the protein half-life but also on the

maturation time. This transition is governed by the rate

constant km. The solid shaded curve in Fig. 2 is the fluores-

cence level for a reporter with the same half-life as the short-

lived reporter, but the maturation rate has been increased

10-fold. Increasing the maturation rate increases the dynamic

range of the reporter and allows it to more accurately track

rapid changes in transcript levels. These results are consistent

with previous theoretical studies based on frequency domain

analysis (25), which revealed that long maturation times act

to suppress high-frequency fluctuations.

Inferring transcript levels from
fluorescent measurements

Next, we asked if the model described by Eqs. 7 and 8 can be

used to infer mRNA levels from fluorescence measurements.

As an initial test, the fluorescence data for the short-lived

reporter shown in Fig. 1 was taken as the experimental

readout. Again, we assumed that the mRNA profile could be

described by the function mRNA(t) ¼ a exp(�a1 t) � b
exp(�a2 t). Using the parameter values for ku, dku, km, and

d found above, the model equations were used to infer the

values of a, b, a1, and a2. To perform the parameter esti-

mation, 100 sets of parameter values were generated at ran-

dom. These sets were then used as initial guesses in the

nonlinear least squares curve fitting routine. Of the 100 initial

guesses, 9 did not produce reasonable fits to the fluorescence

data and hence are excluded as outliers. Fig. 3 shows the

average 6 2 standard deviations of the distribution of time

series for the mRNA level (black curves) and fluorescence

levels (shaded curves) generated from the remaining 91 pa-

rameter sets. The mean and standard deviation for a, b, a1,

and a2 are 0.126, 0.095, 0.028, and 0.051 and 0.033, 0.018,

0.004, and 0.011, respectively. The good agreement between

the model output and the experimental data suggests that

mathematical models can be used to infer mRNA profiles

from fluorescence data.

FIGURE 2 Response of the system to a time-dependent transcript profile.

The dashed black curve represents the time-dependent abundance of protein

with a 12 min half-life generated from the mRNA profile shown in the inset.

The dashed shaded and solid black curves represent fluorescence levels

produced by long-lived (76 min half-life) and short-lived (12 min half-life)

reporters driven by the same mRNA profile. The solid shaded curve is the

fluorescence level of the short-lived reporter when the maturation rate is

increased 10-fold.

FIGURE 3 Inference of the transcript profile from fluorescence measure-

ments. Using fluorescence data for the short-lived reporter (triangles), the

parameterized model is used to infer the mRNA profile. The solid black

curve is the average result for the distribution of estimated mRNA profiles,

and the dashed black curves are 62 standard deviations. The solid shaded

curve is the average fit of the model to the fluorescence data, and the dashed

shaded curves are 62 standard deviations.
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Next we investigated how robust the model is at predicting

mRNA levels. Using two different sets of values for a, b, a1,

and a2, representing slow and fast mRNA dynamics, the

model was run to produce the fluorescence time series shown

as triangles and squares in the inset of Fig. 4. We then as-

sumed that the values of a1, a2, a, and b were not known and

used the same parameter estimation method as described

above to infer mRNA levels using the data points shown in

the inset of Fig. 4. For these cases 89 of the initial 100 pa-

rameter choices produced reasonable fits to the data. The

dashed curves shown in Fig. 4 represent 62 standard devi-

ations of the distribution of time series. Note that for the case

in which the mRNA profiles have rapid activation and de-

activation kinetics (square data points) it was necessary to

include an early time point (5 min) in the inference step.

Otherwise the model could not accurately predict the location

of the peak mRNA level. The excellent agreement between

the inferred and actual mRNA time series provides further

evidence of our ability to infer transcript profiles from fluores-

cence measurements made from well-characterized reporters.

We note that the inference step requires an assumption about the

functional form of the mRNA time series. Here we assumed

mRNA levels could be accurately represented as the difference

of two exponentials. However, it may be necessary to use dif-

ferent functional forms in more complicated situations.

Finally, to investigate how robust our method is to intrinsic

fluctuations, we developed a stochastic model of the system

described by Eqs. 5 and 6. Details of the stochastic model are

given below. To construct a stochastic time-dependent

mRNA profile, we used the following simple model. We

assume that the mRNA synthesis rate of the fluorescent

protein depends on the abundance of a transcriptional regu-

lator (TR) in the following way: smRNA ¼ b TR. The TR is

synthesized at a rate sTR and degraded at a rate dTR. Using the

parameter values that produce an average mRNA number of

0.02, the system is run to steady state. At t ¼ 0, the synthesis

rate of the TR is increased 100-fold, and after 30 min the

synthesis rate is returned to its constitutive level. The shaded

curve shown in Fig. 5 A is a single realization of the mRNA

profile generated using this model.

This profile is then used to drive synthesis of the fluores-

cent protein and produces the shaded trajectory shown in Fig.

5 B. The protein synthesis rate is 5 min�1, which produces an

average protein abundance of 3504. This value is typical of

proteins in the pheromone response pathway. The black

FIGURE 4 Further characterization of the model’s ability to infer time-

dependent mRNA levels. Two different mRNA profiles were used to

generate fluorescence data. The model output is shown as squares and

triangles in the inset. These data points were used to infer the corresponding

mRNA levels also shown as squares and triangles in the main figure. The

solid curves represent the average estimates, and the dashed curves are 62

standard deviations.

FIGURE 5 Robustness of the inference process to intrinsic fluctuations.

(A) A single stochastic realization of the mRNA level (shaded curve) and 62

standard deviations (black curves) for the distribution of profiles estimated

from the fluorescence data. The black circles are mRNA values correspond-

ing to the sampled fluorescence levels in B. (B) A single stochastic

realization of the fluorescence level (shaded curve) and 62 standard

deviations (black curves) of the distribution of estimated fluorescence

profiles. The black circles are the sampled fluorescent data points used in

the inference process.

2020 Wang et al.
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circles shown in Fig. 5 B are the sampled fluorescence data

points used to infer the mRNA dynamics. Again we assume

that the mRNA abundance has the functional form m(t) ¼ a
exp(�a1 t) � b exp(�a1 t) and use the same procedure as

described above to estimate the parameter values. The solid

black curves shown in Fig. 5 A are 62 standard deviations of

the distribution of mRNA levels generated by the fitting

procedure, and the black circles are the true mRNA values

corresponding to the sampled fluorescence points shown in

Fig. 5 B. In this case, only 61 of the 100 initial parameter

guesses produced reasonable fits to the fluorescence data. As

can be seen, even with relatively large fluctuations in the

transcript level and a sparse sampling rate, the model can be

used to infer transcript levels from fluorescent measurements.

Fluorescent proteins as reporters of noise in
transcriptional regulation

Recently there has been great interest in determining the or-

igins and consequences of noise in transcriptional regulation.

Fluorescent proteins seem to be the ideal reporters for making

the single-cell measurements needed to investigate the sour-

ces of fluctuations in transcriptional regulation. However a

systematic analysis of how the maturation and degradation

rates affect fluctuations in fluorescence levels has not been

conducted. To investigate this issue, we use stochastic ver-

sions of the two deterministic models presented above.

To construct a stochastic version of the model given by Eqs.

5 and 6, we consider the following set of biochemical reactions:

O0�
Kk0

Kk1

O1 (9)

B �
l0O0 1 l1O1

m
mRNA (10)

mRNA�
g

d9
PA 1 mRNA (11)

PA /
km

PAM /
d9

B: (12)

Equation 9 models the stochastic activation and deactivation

of the gene. In the state (O0 ¼ 1, O1 ¼ 0), the gene is off and

transcribed at a constitutive level l0; whereas in the state (O0¼
0, O1 ¼ 1), the gene is active and transcribed at a rate l1.

To be definite, we assume that transitions between the active

and off states occur because of a TR binding to the promoter.

The parameters k0 and k1 satisfy the relationship k0 1 k1¼ 1,

and the parameter K determines the timescale of the stochas-

tic on-off transitions. Equation 10 models the synthesis and

degradation of mRNA. The mRNA degradation rate is m.

Equation 11 models the synthesis and degradation of the

nonfluorescent form of the protein, PA. The synthesis rate is

g, and the degradation rate is d9. Finally, Eq. 12 models the

maturation of newly synthesized protein to fluorescently

competent protein and its subsequent degradation.

The stochastic version of the model given by Eqs. 1–4 is

described by Eqs. 9 and 10 plus the following set of bio-

chemical reactions:

mRNA /
g

P 1 mRNA (13)

P�
ku

dku
PU (14)

P /
km

PM (15)

PM�
ku

dku
PMU (16)

PU /
km

PMU (17)

PU /
d

B (18)

PMU /
d

B: (19)

Equation 13 models the synthesis of new (nonfluorescent)

protein. Equations 14 and 16 model the ubiquitination and

deubiquitination of nonfluorescent and fluorescent protein,

respectively, where the rates ku and dku are the same as those

in the deterministic model. Equations 15 and 17 model the

maturation process. Finally, Eqs. 18 and 19 model the deg-

radation of ubiquitinated protein. As described above, the

simple and full model are related by d9 ¼ d/(1 1 dku/ku).

Below, we demonstrate that even when stochastic effects are

considered the two models produce similar results. The ad-

vantage of the simple model is it is mathematically tractable.

Therefore, we provide a detailed analysis of this model.

The master equation for the model described by Eqs. 9–12

can be solved exactly for the steady-state coefficient of var-

iation (CV ¼ standard deviation/mean) and autocorrelation

function (ACF) of all the chemical species in the system (See

Appendix for details). For the fluorescently competent form

of the protein, PAM, which we take to be the fluorescence

level, the square of the CV is given by

CV2

fluorescence ¼
1 1

gkmðm 1 dc 1 d9Þ
ðm 1 dcÞðm 1 d9Þðd9 1 dcÞ

1 CV
2

synR

d
;

(20)

where d ¼ ðlsgkm=ðmdcd9ÞÞ is the average number of fluo-

rescent proteins, dc ¼ km1d9is the combined loss rate of

premature protein, and ls ¼ l0k11l1k0 is the steady-

state average transcription rate. The quantity CV2
syn is the square

of the CV of the mRNA synthesis rate

CV
2

syn ¼
k0l

2

1 1 k1l
2

0 � l
2

s

l
2

s

(21)

and R is given by

R ¼ lsgkmðKðK 1 m 1 dc 1 d9Þðm 1 dc 1 d9Þ1 ðm 1 dcÞðm 1 d9Þðdc 1 d9ÞÞ
ðm 1 dcÞðm 1 d9Þðdc 1 d9ÞðK 1 dcÞðK 1 d9ÞðK 1 mÞ : (22)
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The numerator of the right-hand side of Eq. 20 is the noise

strength (NS ¼ variance/mean) of the fluorescence. The

square of the CV of the total protein abundance, PT ¼ PA 1

PAM, is

CV
2

protein ¼
1 1

g

m 1 d9
1

CV
2

synðK 1 m 1 d9Þlsg

ðK 1 mÞðK 1 d9Þðm 1 d9Þ
T

; (23)

where T ¼ lsg=md9 is the average number of total proteins,

and the NI for the total protein abundance is the numerator.

Equations 20 and 23 can be used to identify various

sources of noise. In Eq. 23, the first term in the numerator

represents the noise due to the random birth-death process of

the protein itself, which can be seen as ‘‘intrinsic’’ protein

noise. The second term represents the propagated noise from

fluctuations in the mRNA abundance. The third term repre-

sents the noise due to fluctuations in the state of the promoter.

The contribution of this term diminishes as the timescale

associated with the promoter fluctuations (1/K) decreases.

Likewise, noise in the fluorescence level, Eq. 20, can also be

decomposed into three parts. However, now the second two

sources also involve the maturation rate, which makes them

considerably more complicated and harder to interpret. Pre-

vious theoretical studies (14,16,26–28) using various ap-

proximation methods have produced similar results. Our

work extends these studies by taking into account the mat-

uration process and fluctuations of the state of the promoter.

To investigate the effect of the maturation time on fluc-

tuations in protein levels, we initially ignore fluctuations due

to transitions in the state of the promoter (i.e., K/N in Eqs.

20 and 23) and fix the mRNA synthesis rate at 0.428 min�1.

Fig. 6 A shows the CV for the fluorescence as a function of

the protein degradation rate d for various values of the mat-

uration rate km. The parameter values used to produce this

plot are given in the figure caption. In this figure, the average

transcript number is ;7, and the protein synthesis rate has

been chosen so that with the fastest degradation rate (d9¼
0.14 min�1, 5 min half-life) the average protein abundance is

518. Because stable fluorescent proteins have a half-life of 7

h in yeast (29), much longer than the 2-h yeast doubling time,

the depletion of the reporter is due mainly to cell division.

Therefore, the slowest degradation rate we consider is d9 ¼
0.006 min�1 (115 min half-life). For this case, the average

protein abundance is 12,000. The black solid line shown in

Fig. 6 A is the CV of the total protein abundance. The other

curves are the CVs of the fluorescence level for various dif-

ferent maturation rates. As expected, the fluorescence mea-

surements underestimate the fluctuations in the protein

abundance level when the degradation rate is small.

However for sufficiently slow maturation rates and large

degradation rates, the fluorescence measurements overesti-

mate the fluctuations in the total protein level. When the

degradation rate is small, fluctuations in the total protein

abundance are predominantly determined by variability in

the transcript level, which in our example is relatively large

(CVmRNA ¼ 0.37) due to the low average mRNA abundance

(;7) (13,26). In contrast, fluctuations in the fluorescence

level are primarily determined by fluctuations in the imma-

ture protein level, which, due to the relatively high mean level

of immature protein, are relatively small. However, when the

degradation rate is large, the amount of fluorescently com-

petent protein becomes relatively small and fluctuations in

the fluorescence level can exceed those in the total protein

abundance. To further investigate this effect, we varied the

translational efficiency and transcription rate in such a way

that the mean protein level remained unchanged (Fig. 6 B).

As can be seen, even for the same mean protein level, fluo-

rescence measurements can either overestimate or underes-

timate variability in the protein level depending on system

parameters such as the translational efficiency. Thus protein

maturation has nontrivial effects on fluctuations in the fluo-

FIGURE 6 (A) CV for the protein abundance and fluorescence level for

various values of the maturation rate km as a function of the protein

degradation rate. (B) The CV for the protein abundance (solid curve) and

fluorescence level (dashed curve) as a function of translation rate. The

transcription rate is also modified to ensure that the total protein level

remains constant as the translation rate is varied. In this figure km ¼
0.0054�1 min and d9 ¼ 0.069 min�1.

2022 Wang et al.
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rescence levels and must be considered carefully when in-

terpreting such data.

We next investigated the behavior of NS on various system

parameters. If fluctuations in the state of the promoter are

ignored, then the NS of both the total protein abundance and

the fluorescence remains constant as the transcription rate is

varied. In contrast, Fig. 7 shows that the NS of both the total

protein and fluorescence level increase as a function of the

transcription rate when fluctuations at the promoter are in-

cluded. Note that the NS of the total protein abundance is

much more sensitive to changes in the transcription rate than

is the fluorescence level. Recent studies have demonstrated

both constant (13,14,26) and changing (4,14) NS as tran-

scription rate is varied. From Eq. 23 we can see that when K is

small, the transcription rate contributes significantly to the

NS. Previous studies (4,14) used varying inducer levels to

change the transcription rate. When the parameter k0, which

determines the relative rate at which the transcription factor

binds to the promoter, is varied from 0 to 1, the NS shows

nonmonotonic behavior (Fig. 8). This property might explain

the experimental results of Blake et al., in which the NS

shows a similar nonmonotonic pattern (4).

The monotonic decrease of the NS as transcription rate

increases observed in Raser and O’Shea (14) is probably due

to the fact that the promoter considered in this study cannot

be efficiently repressed, making the initial rise in the NS seen

in Fig. 8 inaccessible to experimental measurement. The

theoretical analysis of Raser and O’Shea (14) did not take

into account constitutive gene expression from the inactive

promoter. This simplification leads to a monotonic decrease

of CV2
syn as a function of k0. This explains why their simu-

lation results did not reveal a nonmonotonic dependence of

the NS as a function of protein abundance. The NS also de-

pends nonlinearly on the maturation rate. Therefore, inter-

preting the source of fluctuations (promoter fluctuations

versus maturation time) based on scaling arguments of the

fluorescence intensity is not straightforward. The analytical

expressions for the NS derived above are consistent with

existing experimental evidence (4,13,14,26) and represent a

valuable tool to further investigate sources of variability in

gene expression.

To investigate how the maturation time and protein deg-

radation rate affect the dynamic properties of the fluctuations,

we calculated the ACF for the fluorescence level and total

protein abundance (see the Appendix for details). The ACF

of the fluorescence level, ACFF(t), for the model described by

Eqs. 9–12 is

ACFFðtÞ ¼ Ae
�dct

1 Be
�d9t

1 Ce
�mt

1 De
�Kt
; (24)

where

A ¼ g
2
km

2ðK2
ls 1 Kðl1k

2

0 1 l0k
2

1 � l
2

s Þ � lsd
2

cÞ
dcðK2 � d

2

cÞðm
2 � d

2

cÞðd9
2 � d

2

cÞ
(25)

B ¼ g
2
km

2ð�K
2
ls 1 Kð�l1k

2

0 � l0k
2

1 1 l
2

s Þ1 lsd9
2Þ

d9ð�K
2
1 d9

2Þð�m
2
1 d9

2Þðd9
2 � d

2

cÞ
1 d

(26)

C ¼ g
2
km

2ð�K
2
ls 1 Kð�l1k

2

0 � l0k
2

1 1 l
2

s Þ1 lsm
2Þ

mð�K
2
1 m

2Þðm2 � d9
2Þðm2 � d

2

cÞ
(27)

D ¼ � g
2
km

2ðl1k
2

0 1 l0k
2

1 � l
2

s Þ
ð�K

2
1 m

2Þð�K
2
1 d9

2ÞðK2 � d
2

cÞ
: (28)

For comparison, the ACF total protein abundance,

ACFP(t), is

ACFPðtÞ ¼ Ae�d9t
1 Be�mt

1 Ce�Kt
; (29)

FIGURE 7 NS for the protein abundance and fluorescence level as a

function of transcription rate. When the maturation rate and transitions in the

promoter state are taken into account, the NS is no longer independent of the

transcription rate. Note that the NS of the protein abundance is much more

sensitive to changes in the transcription rate than is the fluorescence level. In

this figure km ¼ 0.0054�1 min and d9 ¼ 0.069 min�1.

FIGURE 8 The NS as the function of k0, which governs the activation rate

of the promoter. In this figure km ¼ 0.0054�1 min and d9 ¼ 0.009 min�1.
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where

A ¼ g
2
Kðl1k

2

0 1 l0k
2

1 � l
2

s Þ
d9ðK2 � d9

2Þðm2 � d9
2Þ

1
g

2
ls

d9ðm2 � d9
2Þ

1
lsg

md9
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B ¼ g
2ðKðl1k

2

0 1 l0k
2

1 � l
2

s 1 KlsÞ � lsm
2Þ

mðm2 � K
2Þðm2 � d9

2Þ
(31)

C ¼ g
2ðl1k

2

0 1 l0k
2

1 � l
2

s Þ
ðK2 � m

2ÞðK2 � d9
2Þ
: (32)

Fig. 9, A and B, shows plots of the ACFs for the total protein

abundance and fluorescence level using the same parameter

values as those in Fig. 6. In Fig. 9, A d ¼ 0.009 min�1,

corresponding to a half-life of 77 min; and in Fig. 9 B d ¼
0.057 min�1, corresponding to a half-life of 12 min. The two

different maturation rates are 0.0054 min�1, which corre-

sponds to the rate found from fitting the data, and the faster

rate is 0.05 min�1. The circles are ACFs computed from

simulations of the full model described by Eqs. 9, 10, and 13–

19. The good agreement between the stochastic simulations

and the analytical results validates the simple model. Fig. 9 A
shows that the maturation rate can contribute significantly to

ACF and must be considered when analyzing fluorescent

measurements in this way. One way to quantify this effect is

to compute the half correlation time (HCT), defined as the

time for the ACF to decay to half its initial value. The HCT is

easily calculated from Eqs. 24 and 29. In Fig. 9 A, the HCTs

for the fluorescence levels with slow and fast maturation

kinetics are 412 min and 309 min, respectively, whereas the

HCT for the protein concentration is 299 min. In Fig. 9 B, the

HCTs for these quantities are 85 min, 70 min, and 62 min,

respectively.

DISCUSSION

We developed and analyzed a mathematical model for a

novel short-lived fluorescent protein. The model included

terms that describe both the ubiquitination and fluorophore

maturation processes. The model was shown to successfully

capture time-dependent fluorescence measurements made

when the reporter was placed under the control of the pher-

omone-inducible promoter FUS1. Furthermore, the model

demonstrates that in addition to the protein half-life, the rate

of maturation determines the reporter’s ability to track time-

dependent changes in transcript levels. The model was next

used to demonstrate the feasibility of inferring the mRNA

time series from fluorescence measurements. To investigate

the robustness of the inference step to fluctuations in tran-

script and protein levels, a stochastic model was used to

generate transcript and fluorescence time series. Again, good

agreement was found between the mRNA profiles estimated

from the simulated fluorescence data, thereby indicating the

feasibility of inferring mRNA profiles from single-cell fluo-

rescence measurements.

Many recent studies have focused on establishing the or-

igins of variability in gene expression observed from isogenic

cell populations. Such variability arises from two general

sources: ‘‘intrinsic noise’’, due to the inherent random nature

of the biochemical processes necessary for expression of

a particular gene, and ‘‘extrinsic noise’’, which affects all

genes (e.g., variation in ribosome or polymerase numbers).

Many of these investigations relied on stable fluorescent

proteins as reporters of transcriptional activity (3,4,9,14).

Therefore, the fluorescent reporters are expressed at levels

greater than many endogenous proteins, which can have half-

lives of 15 min or shorter. Because intrinsic fluctuations

typically decrease with abundance, it is likely these studies

underestimate the contribution of intrinsic fluctuations to

FIGURE 9 (A) The ACF for the protein abundance and fluorescence level

of the stable (77 min half-life) reporter. The ACFs for a slowly maturing

fluorescent protein (km ¼ 0.0054 min�1, dotted curve) and fast maturing

fluorescent protein (km ¼ 0.05 min�1, dashed curves) are compared with the

ACF for actual protein abundance (solid curve). The circles are the results

from stochastic simulations using the full model. (B) Same as A except the

fluorescent protein has a half-life of 12 min. The values of the additional

parameters required for the stochastic simulations are K¼ 1, k0¼ 0.85, k1¼
0.15, l0 ¼ 0.02, and l1 ¼ 0.5.

2024 Wang et al.

Biophysical Journal 94(6) 2017–2026



variability in expression levels. In fact, two recent studies in

which fluorescent labels were fused to endogenous proteins

revealed that for moderately expressed genes intrinsic and

extrinsic noise contribute roughly equally to the total fluctu-

ations and that gene expression noise is correlated with pro-

tein function (8,12). However, these two studies did not take

into account the maturation time of the fluorescent protein.

To investigate how the maturation process influences

variability in fluorescence measurements, we analyzed a

stochastic model that takes into account both the maturation

rate and protein half-life. Our investigations revealed that the

maturation process significantly affects steady-state mea-

sures of variability, such as the CV, NS, and dynamic

properties of the fluctuations as characterized by the ACF.

First, the model demonstrates that fluorescence measure-

ments can either over- or underestimate variability in protein

levels, as measured by the CV, depending on the maturation

rate and other system parameters. Second, the model revealed

that when the maturation process and transitions in the state

of the promoter are taken into account, the NS depends on the

transcription rate. Additionally, the analytical expression

derived for the NS explains the nonmonotonic dependence of

this quantity on the activation rate of the promoter and ex-

tends and summarizes previous theoretical analyses of the NS

(4,14). Finally, the model was used to compute the ACF of

both protein and fluorescence levels.

These investigations revealed that the maturation rate

significantly affects the rate at which the fluorescence ACF

decays. This finding suggests that estimates of intrinsic noise

based on measurements of the ACF may underestimate the

contribution of intrinsic fluctuations to the total variability

(5). Therefore, our results indicate that to accurately deter-

mine the magnitude and origins of variability in gene ex-

pression from fluorescence measurements requires an

approach that combines mathematical analysis with a careful

experimental quantification of the intrinsic properties of the

reporter protein.

APPENDIX: DERIVATION OF THE
COEFFICIENT OF VARIATION AND
AUTOCORRELATION FUNCTION

In this Appendix we outline the approach used to compute the CV and ACF

for the simplified stochastic model presented in the text.

Illustration of the method: the birth-death process
for mRNA abundance

To demonstrate our method, we start from the simple case of a birth-death

process for mRNA abundance. Let l and m denote the mRNA synthesis and

degradation rates, respectively, and let m(t) denote the number of mRNA

molecules at time t. To compute the ACF, first we calculate Æmð0ÞmðtÞæ. We

assume that at time zero, the system is in steady state. Then Æmð0ÞmðtÞæ can

be computed as follows

Æmð0ÞmðtÞæ ¼ +
N

i¼0

+
N

j¼0

ijPð0; i; t; jÞ ¼ +
N

i¼0

iPsðiÞ+
N

j¼0

jPijðtÞ (33)

dÆmð0ÞmðtÞæ
dt

¼ +
N

i¼0

iPsðiÞ+
N

j¼0

j
dPijðtÞ

dt
(34)

where Pð0; i; t; jÞ is the joint probability distribution for having i mRNA

molecules at time 0 and j mRNA molecules at time t and PsðiÞ represents the

steady-state probability that the system has i mRNA molecules. To simplify

the notation, Æmð0ÞmðtÞæ is defined as F(t), and +N
j¼0

jPijðtÞ is defined as AiðtÞ.
Using the master equation for this process we find

Therefore Eq. 34 can be written as

dFðtÞ
dt
¼ +

i

iPsðiÞðl� mAÞ ¼ l
2
=m� mFðtÞ: (36)

The initial condition for the ordinary differential equation (ODE) given

above is Fð0Þ ¼ l2=m21l=m. Solving Eq. 36, we find that FðtÞ ¼ r21re�mt.

Then ACF ¼ FðtÞ � �m2 ¼ re�mt; where r ¼ l=m.

The ACF for the protein abundance

To study more general cases we extend the birth-death processes to include

protein synthesis:

f�
l

m
mRNA

mRNA�
g

d
mRNA 1 protein

To compute the ACF of the protein, we need to manipulate the master

equation of a two-dimensional Markov chain. Let n(t) denote the number of

protein molecules at time t. G(t) and H(t) are defined as Ænð0ÞnðtÞæ and

Ænð0ÞmðtÞæ; respectively. Using similar methods as in the previous section we

find

dGðtÞ
dt
¼ �dGðtÞ1 gHðtÞ (37)

dHðtÞ
dt
¼ �mHðtÞ1 l

�
lg

md

�
: (38)

+
j

j
dPijðtÞ

dt
¼ +

j

j½�ðl 1 jmÞPijðtÞ1 lPi;j-1ðtÞ1 ðj 1 1ÞmPi;j11ðtÞ� ¼ �ðl +
j

jPijðtÞ

1 m +
j

j
2
PijðtÞÞ1 l +

j

ðj � 1 1 1ÞPi;j-1ðtÞ1 m +
j

ðj 1 1� 1Þðj 1 1ÞPi;j11ðtÞ

¼ �ðlA 1 m +
j

j
2
PijðtÞÞ1 lA 1 l 1 mð+

j

j
2
PijðtÞ � AÞ ¼ l� mA: (35)
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To get the initial conditions for the ODES listed above, we need G(0) and

H(0), which are the steady-state second moment for the protein, Ænð0Þ2æ; and

the cross term, Ænð0Þmð0Þæ; respectively. These also can be computed from

the master equation. The results are

Hð0Þ ¼ rg

d 1 m
1 r

2
r2 (39)

Gð0Þ ¼ r2ðHð0Þ1 rÞ; (40)

where r and r2 are l=m and g=d; respectively. Solving Eqs. 37 and 38 with

initial conditions given by Eqs. 39 and 40 produces the ACF for the protein.

Inclusion of the maturation time and
promoter fluctuations

Finally we consider the stochastic model presented in the main text. Let dðtÞ
denote the abundance of mature (fluorescently competent) protein. The variable

lsðtÞ takes on a value of l1 when the promoter is active and l0; otherwise. Let

IðtÞ ¼ Ædð0ÞdðtÞæ; KðtÞ ¼ Ædð0ÞnðtÞæ; LðtÞ ¼ Ædð0ÞmðtÞæ; and QðtÞ ¼
Ædð0ÞlsðtÞæ. Here m(t) and n(t) denote the mRNA and immature protein

abundances, respectively. Using these definitions, the master equation can be

used to derive the following equations for the second moments:

dIðtÞ
dt
¼ �dIðtÞ1 kmKðtÞ (41)

dKðtÞ
dt
¼ �dcKðtÞ1 gLðtÞ (42)

dLðtÞ
dt
¼ �mLðtÞ1 QðtÞ (43)

dQðtÞ
dt
¼ �KQðtÞ1 Kkd; (44)

where �k ¼ l0k11l1k0. Again, the master equation can be used to derive the

appropriate initial conditions for Eqs. 41–44. Then solving these equations

for I(t) produces the results presented in the text.
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