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The prevalence and morbidity of asthma, a chronic inflammatory
airway disease, is increasing. Animal models provide a meaningful
but limited view of the mechanisms of asthma in humans. A systems-
level view of asthma that integrates multiple levels of molecular and
functional information is needed. For this, we compiled a gene ex-
pression compendium from five publicly available mouse microarray
datasets and a gene knowledge base of 4,305 gene annotation sets.
Using this collection we generated a high-level map of the functional
themes that characterize animal models of asthma, dominated by
innate and adaptive immune response. We used Module Networks
analysis to identify co-regulated gene modules. The resulting mod-
ules reflect four distinct responses to treatment, including early
response, general induction, repression, and IL-13–dependent re-
sponse. One module with a persistent induction in response to treat-
ment is mainly composed of genes with suggested roles in asthma,
suggesting a similar role for other module members. Analysis of
IL-13–dependent response using protein interaction networks high-
lights a role for TGF-b1 as a key regulator of asthma. Our analysis
demonstrates the discovery potential of systems-level approaches
and provides a framework for applying such approaches to asthma.
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Asthma is a chronic lung disease characterized by airway in-
flammation, hyperresponsiveness, remodeling, and obstruction
(1). The lung phenotype in asthma is believed to be determined
by the interaction of the environment with the patient’s genetic
background (2). This interaction leads to a dramatic change in
the airway microenvironment that includes activation of inflam-
matory pathways, recruitment of immune cells that are not usu-
ally present in the airway, and a dramatic change in the phenotype
of airway resident cells. While individual changes in many of these
factors may generate components of the asthmatic phenotype, it
is the converging effects of these pathways on recruited and
altered cells that determine the patient’s disease.

The advent of high-throughput technologies for gene and
protein profiling has greatly improved our ability to characterize
the behavior of genes and proteins in health and disease. Using
animal models of allergic airway disease, investigators applied
DNA microarrays to identify potential regulators of asthmatic
airway inflammation such as C5 (3), ARG1 (4), ADAM8 (5),
SPRR2 (6) as well as to explore the pathways activated by IL13

and STAT6 during the development of allergen-induced lung
inflammation (7–9). Transcriptional analysis of the response to
IL-13, allergen challenge, syncytial virus infection, and cortico-
steroids in epithelial cells identified multiple and rarely over-
lapping genes (10–14). While many of these studies used elegant
experimental approaches to dissect pathways and to identify
and validate potential novel key regulatory molecules, the ma-
jority of their insights were obtained using statistical methods
that select individual genes based on their relevance to a specific
experimental setup, such as a certain knockout or allergen. These
approaches, although successful, tend to reduce the complexity
of the data and do not provide a global, systems-level view of
the process studied. Furthermore, the dependence on gene-level
analysis magnifies the impact of the noise generated by the ex-
perimental models and the different technical aspects of micro-
array sample preparation, hybridization, and scanning. Lastly,
such methods are not capable of integrating multiple levels of
information. Recently, there has been an increased interest in
methods that allow a systems view of the studied process, a view
that observes not only the components of a system but also their
emergent properties. This includes methods that uncover the
functional themes that characterize gene expression profiles
(15, 16) as well as methods that use advanced computational
algorithms for the integration of multiple levels of information
(17–19) and identification of regulatory modules in complex
tissue and in disease (20).

In this study we create a global map of asthma using publicly
available gene expression datasets from multiple sources and
tools that allow integration of multiple levels of information, such
as functional annotations and protein interactions (Figure 1). In
addition to providing a comprehensive description of this map,
we present examples of novel observations. These observations
include individual gene expression heterogeneity of genetically
identical animals, a transcriptionally distinct module of known
and potentially novel asthma genes, and support for a central role
of TGF-b in IL-13–dependent allergic lung inflammation. The
map, as well as all datasets, analyses, and additional examples,
are available on the interactive AsthmaMap website (http://
compbio.cs.huji.ac.il/AsthmaMap).

MATERIALS AND METHODS

Datasets

We searched NCBI Gene Expression Omnibus (GEO) for all in vivo
asthma murine models gene expression datasets, publicly available by
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June 2006. Five datasets that passed our inclusion criteria (see online
supplement) were combined to generate the expression compendium,
and an additional dataset published in 2007 was used for independent
validation (Table 1). IL-13 (GEO series GSE1301, Wills-Karp and
coworkers): 12 lung samples from IL-13 knockout (IL-13–KO) and
BALB/cJ wild-type (WT) mice that were treated with house dust mite
(HDM) or with PBS as control. RAG (GEO series GSE483, Wills-Karp
and colleagues): 7 lung samples from BALB/cJ mice that were treated
with ragweed pollen protein plus Alum or with PBS as control. MAH
(Murine Airway Hyperresponsiveness, GEO series GSE3184, Wills-
Karp and associates): 20 lung samples taken from asthma-sensitive A/J
mice and 2 lung samples taken from resistant C3H/MeJ mice. Lungs were
harvested at 6 and 24 hours after challenging the mice with HDM/
ovalbumin or with PBS as control. DEA (Dissection of Experimental
Asthma [4]): 11 lung samples from BALB/cJ mice that were treated with
ovalbumin or aspergillus fumigatus (ASP) allergens, or with saline as
control. FTM (Focused Transgenic Modeling [8]): 50 lung and tracheal

perfusate (TP) samples from four mice strains, which were treated with
ovalbumin or with PBS. The four strains are: (1) IL-131, Stat61/2; (2) IL-
131, Stat62/2; (3) IL-13–Epi (IL-13 overexpresses, STAT6 expressed
only in epithelial cells); and (4) BALB/cJ WT. The datasets have been
previously described (3–5, 8) and recently reviewed by Rolph and
coworkers (21). TEST (GEO series GSE6858 [22]): 16 lung samples
taken from BALB/cJ recombinase-activating gene–deficient (RD) mice
and from WT mice. Lungs were collected 1 day after challenging with
ovalbumin or PBS as control. This dataset was used to as an independent
validation set. See Table 1 for description of all datasets.

Compendium Generation

Transcript levels of four datasets (IL13, RAG, MAH, DEA), generated
with Affymetrix GeneChip arrays, were determined from their data
image files using RMAExpress (23, 24). Transcript levels of FTM were
taken from the original article (8), as this is a two-channel array that

Figure 1. Analysis flow. (A)

The data were combined, nor-
malized, and filtered, resulting

in a unified compendium of

102 experiments and 7,238

genes. (B) A total of 4,305 gene
sets were generated from three

types of data: experimental,

functional, and sequence. Ex-

perimental sets are differen-
tially expressed genes from

other expression studies in hu-

man and mice lungs, and func-
tional and sequence gene sets

are derived from multiple data-

bases. (C) Enrichment analysis

was performed on experiments
and signatures using hypergeo-

metricdistribution.Unsupervised

reconstruction of transcriptional

modules was performed using
the Module Networks algo-

rithm (D), and was validated

using an independent valida-
tion dataset (E). (F) The mod-

ules were utilized to generate

Protein regulatory network.
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cannot be processed using RMAExpress. Each dataset was normalized
such that the mean expression of every gene is zero. Two compendiums
were created. The first (Table E1 in the online supplement), which was
used for the supervised analysis, includes the five datasets and consists of
102 samples and 7,238 genes that have at most two absent calls across all
samples (6,963 of the 7,238 genes had no absent calls).

For the Module Network analysis, a second compendium was gen-
erated from the first four datasets only (Table E2) by choosing all genes
that had at most seven absent calls across all samples This unified com-
pendium consists of 8,086 genes and 52 samples (8,084 of the 8,086 genes
had no absent calls). FTM dataset was not included in this analysis
because its inclusion introduced a bias (see methods portion of the online
supplement).

Gene Set Knowledgebase Generation

Three groups of gene sets were used for our analyses.

Functional sets: genes annotated according to their cellular function.
These included Gene Ontology, pathway data (KEGG and Super-
array), literature-based annotations (Biocarta), and the Genetic
Associations Database (25).

Expression datasets: genes that were significantly overexpressed or under-
expressed in various microarray studies. Including mouse and human
lung resident cells, airways cells, and peripheral blood cells, that were
treated with cytokines, growth factors, and stimuli (11, 26, 27).

Sequence sets: genes annotated with their predicted regulatory binding
sites taken from TRANSFAC (28) and a comparative study (29), or
with their protein domains, taken from InterPro (30). Annotations
that originally describe human genes were mapped into mouse genes
using Homologous groups as defined in NCBI HomoloGene data-
base (www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB5homologene).
See Table 2 for a detailed description of all gene set sources. All
gene sets are available at the AsthmaMap website.

Data Visualization and Enrichment Analyses

Visualization, heatmap generation, and gene set enrichments were per-
formed using Genomica software (http://genomica.weizmann.ac.il/).
Differentially expressed gene signatures were calculated with parametric
Student’s t test that rejects the null hypothesis if the means are not equal.
The t test score was controlled for False Discovery Rate (FDR) (31),
using ScoreGenes software (http://compbio.cs.huji.ac.il/scoregenes/).
Protein interaction regulatory networks were generated using Ingenuity
Pathways Analysis (Ingenuity Systems, Redwood City, CA).

Expression Profile of Gene Sets in Individual Animals

The functional expression profile was generated by calculating for each
gene set and each sample the enrichment of genes that are substantially
increased (. 2-fold change), compared with all the genes in that
sample. For example, if in a certain sample there are X genes, of which

x are significantly overexpressed, and there are K genes in a gene set, of
which k are significantly overexpressed, the P value is calculated with
the hypergeometric distribution over [X,x,K,k] (also known as Fisher’s
exact test). The same is done for underexpressed genes. We controlled
FDR at 5% for all analyses. This strict correction ensures the enrich-
ment is statistically significant. We obtained 258 gene sets enriched
with a significant number of substantially changed genes. To address
redundancy between gene sets we manually curated them and merged
the overlapping ones. The resulting 62 GO and Superarray gene sets
are presented in Figure 2.

Gene Set Enrichment in Experimental Signatures

Signatures of differentially expressed genes were identified for each
dataset independently. The threshold for including a differentially
expressed gene in a signature is relatively liberal (t test P value , 0.05).
This choice facilitates identification of significant enrichments even when
the gene level changes are relatively mild. The enrichment of gene sets in
each signature was calculated with the hypergeometric model (FDR ,

5%), relative to the enrichment in the complete dataset. We found 281
gene sets enriched in the signatures, of which 161 are presented in Figure
3 after manual curation that merged redundant gene sets.

Module Networks Analysis

The modules and their regulation programs were automatically detected
using Module Networks procedure (32). This method, based on probabi-
listic graphical models, detects modules of co-expressed genes and their
shared regulation programs. The regulation program is a small set of genes,
which determines the expression level of the module genes using a decision
tree structure (regression tree). Given the expression values and a pool of
potential regulator genes, a set of modules and their associated regulation
programs are automatically inferred by an iterative procedure. This
procedure searches for the best gene partition into modules and for the
regulation program of each module, while optimizing a target function. The
target function is the Bayesian score, derived from the posterior probability
of the model (see Ref. 33 for a detailed description of the algorithm).

We employed the Module Networks on the second compendium,
which consists of 52 samples and 8,086 genes. From them, a pool of
1,764 potential regulators was created by choosing all the genes that
carry a regulatory role, according to Gene Ontology annotations. The
number of modules was determined as the number that achieved the
best Bayesian score during the learning (Figure E1). Of the set of
potential regulators, 217 regulators were found to regulate at least one
module in the inferred network.

Generation of Module Cluster Map

The global view of the modules (Figure 4A) was generated by cal-
culating the average expression over all the genes in each module. In
the presented matrix, each column represents the average expression of
a single module, and the rows represent experiments. The resulting
values were clustered using hierarchical clustering (using Genomica).
Four clusters of modules were selected according to their profiles. The

TABLE 1. GENE EXPRESSION COMPENDIUM DATASET SOURCES AND SIGNATURE NAMES

Name Source Strains Treatment Platform

Signatures dataset_strain/

tissue/time_treatment

IL-13 GEO GSE1301 BALB/cJ Wild type;

IL-13 knockout

House Dust Mite Affymetrix GeneChip Mouse

Expression Array 430A and

Mouse Genome 430A 2.0 Array

IL13_WT_HDM;

IL13_KO_HDM

Rag GEO GSE483 BALB/cJ Ragweed Pollen 1 Alum Affymetrix GeneChip Murine

Genome U74A/B/C Version 1

RAG_RWP

MAH GEO GSE184 A/J; C3H/MeJ (C3H) Ovalbumin at 6 h and 24 h Affymetrix GeneChip Mouse

Expression Array 430A and

Mouse Genome 430A 2.0 Array

MAH_OVA; MAH_6_OVA;

MAH_24_OVA

DEA (4) BALB/cJ Ovalbumin; Aspergillus

Fumigatus

Affymetrix GeneChip Murine

Genome U74A Version 2

DEA_OVA; DES_ASP

FTM (8) IL-131, Stat1/2(Stat6p);

IL-131, Stat62/2 (Stat6n);

hStat61 (IL13-Epi); BALB/cJ

Ovabumin; Samples taken

from Whole Lung and

Tracheal Prefusate

UCSF 10Mm Mouse v.2 Oligo

Array; UCSF Gladstone 18K

Mouse v.2 Oligo Array

FTM_WT_OVA;

FTM_Stat6_OVA

TEST (22) BALB/cJ Wild type; Recombinase

activating gene deficient mice

Ovalbumin Affymetrix GeneChip Mouse

Expression Array 430A and

Mouse Genome 430A 2.0 Array

TEST_WT_OVA;

TEST_RD_OVA
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gene set enrichment of the modules was calculated with the hyper-
geometric distribution, and 94 gene sets found to be significant (FDR ,

5%); of these, 68 are presented after manual curation that merged re-
dundant sets.

Module Network Validation

We used TEST dataset to independently validate our analysis. This re-
cently published dataset was generated on Affymetrix GeneChip Mouse
Genome 430 2.0 Arrays. Cell files were downloaded and normalized using
RMAExpress. To measure how well the modules predict the expression of
their genes in the new dataset, we measured the correlation of the modules
between the new dataset and the old compendium. Pearson correlation
was measured for 1,025 genes that participate in the four clusters. Their
average expression in the WT treated mice in the TEST data was compared
with the average expression in three sample groups from the compendium:
the average of OVA-DEA samples, the average of OVA 24-hour BALB-
MAH samples, and the average of all treated WT samples.

Ingenuity Protein Network Analysis

Interaction networks were generated by analyzing genes in distinct module
clusters using Ingenuity Networks analysis. Examples of significant net-

works and canonic pathways for every cluster are presented on the
AsthmaMap webiste. In the case of IL-13–dependent cluster presented
below, eight significant networks (P value , 0.01) were algorithmically
generated based on their connectivity. The two highest scored networks (P
value , 1e-43) were merged to generate the network presented in Figure
5B. Here, genes are represented as nodes, and the biological relationship
between two nodes (e.g., protein–protein interaction) is represented as an
edge. All edges are supported by at least one reference from the literature,
from a textbook, or from canonical information stored in the Ingenuity
Pathways Knowledge Base. Edges which are supported only by co-
expression evidence are not presented. Human, mouse, and rat orthologs
of a gene are represented as a single node in the network.

AsthmaMap Website

The complete map, containing all the pre-processed data (expression
compendium, 4,305 gene sets, and new gene lists reported here), is
available on the interactive AsthmaMap website (http://compbio.cs.
huji.ac.il/AsthmaMap). The website allows visualizing the sets along
with the expression patterns of their genes. The sets can be downloaded
in a format applicable for Genomica software. In addition, user-defined
gene lists can be uploaded and analyzed for enrichment in respect to
any of the sets available in this study.

TABLE 2. SOURCES OF GENE SETS

Name Type Source Description Date

Kegg Functional

Pathway

http://www.genome.jp/kegg KEGG pathways January 2005

SA Functional

Pathway

http://www.superarray.com Superarray pathway annotation January 2005

Biocarta Functional http://www.biocarta.com BioCarta annotations January 2005

GO Functional http://www.geneontology.org Gene Ontology. 688 terms up to level 7

In the tree

January 2005

Genetic

Association

Functional http://geneticassociationdb.nih.gov/ Association of genes with human

diseases

January 2005

CSPC Experimental (11, 27) Human Primary cell lines of NHBE, NHLF

and BSMC, exposed to cytokines or

PBS. Differentially expressed genes

(t test P value , 0.05)

2000

FMC Experimental (26) Lung Fibroblast, exposed to IFN and

TGF. Differentially expressed genes

(t test PDR 5 5%)

2002

DMM Experimental http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc5GSE4231

Different Asthma Mouse Models: Genes

that were upregulated or downregulated

(t test P value , 0.01) in mouse whole

lung after treatments of OVA and Bleo

December 2006

HAH Experimental http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc5GSE3183

Human Airway Hyperresponsiveness:

Genes that were upregulated or

downregulated (t test P value , 0.01)

in response to IL-13 treatment in

airway cells

August 2005

HCL Experimental http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc5GSE473

Human CD41 Lymphocytes: Genes that

were differentially expressed (t test

P value , 0.01) between cells from

patients with asthma and healthy

patients with and without atopy.

July 2003

HBE Experimental http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc5GSE470

Human Asthma Exacerbatory Factors:

Genes that were up-regulated or

down-regulated (t test P value , 0.01)

in Human airway epithelial cells, after

different treatments

July 2003

HAE Experimental http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc5GSE3004

Human Airway Epithelial: Genes that

were upregulated or downregulated

(paired t test P value , 0.01) in

bronchial epithelium of human

subjects before and after an allergen

challenge.

August 2005

Promoter Sequence http://www.broad.mit.edu/

seq/HumanMotifs/

Discovered promoter motifs, Xie et al. February 2005

TRANSFAC Sequence http://www.gene-regulation.

com/pub/databases.html

Binding motif prediction from

TRANSFAC version 8.3, P value

, 0.01, 1,000 bp upstream

December 2004

InterPro Sequence http://www.ebi.ac.uk/interpro/ InterPro domains December 2004
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RESULTS

Expression Compendium and Gene Knowledgebase

We combined five different studies of pulmonary gene expres-
sion from mouse models of asthma. After normalization and
filtering (see MATERIALS AND METHODS), we had a unified
compendium describing the expression of 7,238 genes in 102

samples (Table E1). The sample set includes treatments of
various mouse strains and cell types with different inducers of
asthma (Table 1). We analyzed the compendium with a gene
knowledgebase that includes 4,305 gene sets from three types of
information sources (Table 2): functional annotations derived
from different annotation databases such as Gene Ontology,
pathway analyses, and disease association; sequence annota-

Figure 2. Functional profile of individual animals. Gene sets from Gene Ontology (GO) and Superarray (SA) databases that are enriched with substantially
expressed genes. Rows correspond to gene sets, columns correspond to experiments, and color indicates the average expression of the genes in each

significant gene set. The label of each experiment is presented above the heat map, while red indicates treatment. Rectangles denote function enrichment of

general immune response (A, B) and lymphocytes regulation pathways (C). Gene sets were manually curated to eliminate redundancy.
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Figure 3. Enrichment of gene sets within signatures of differentially expressed genes. The enrichment is determined for each gene set and each

signature, compared with the prevalence of that gene set in the complete dataset. One hundred sixty-one gene sets that are significantly enriched
(FDR , 5%) within one signature or more are presented. Colored pixels are significantly enriched; color indicates gene set data source. (A, B) Gene

sets induced by most treatments. (C, D) Repressed gene sets. (E) Genes induced by IL-13 in human airway cells. (F) IL-13–dependent gene set

induction in IL-13–KO and WT mice. (G) Genes induced by TGF-b1 in human airway cells. (H) Genetic association gene sets induced by treatment.
Gene sets were manually curated to eliminate redundancy.
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Figure 4. Module global map. Global view of the 61 modules (columns) that were generated with Module Networks algorithms. (A) For each

module, the average expression of its genes in each sample is presented in a heat map. The sample attributes treatment type, strain, and time point
appear to the right of the heat map. Clusters of modules with a characteristic profile include: I, induction following a treatment; II, acute response to

ovalbumin; III, repression following a treatment; and IV, IL-13–dependent induction. (B) Gene sets enrichment in the modules. Colors indicate gene

set source. (C) Module validation (expression patterns of the 61 modules in external TEST data). Note the impressive similarity in module gene
expression patterns.
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Figure 5. Protein interaction regulatory networks within module clusters. (A) Module 494, globally induced following treatment, along with its

regulation program. The rows are genes, and the tree represents the regulation program. The left panel shows the expression of the genes and

regulators in the independent validation dataset TEST. (B) Protein interaction network within IL-13–dependent cluster of modules. Nodes represent

proteins, edges indicate all direct or indirect interactions besides co-expression. Red color indicates IL-13–dependent expression (i.e., genes that are
induced by treatment only at the presence of IL-13).
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tions (genes sharing the same predicted cis-regulatory motif in
their promoters or genes encoding the same protein domain);
and experimental annotations (genes that were differentially
expressed between two conditions in other DNA microarray
studies). We then identified modules of co-regulated genes
using Module Networks analysis (32), and validated them with
a new independent validation gene expression dataset. Finally,
we proposed potential regulatory networks within these modules,
by projecting the discovered modules to protein interaction
networks. The complete map, containing all the pre-processed
data (expression compendium, 4,305 gene sets, and new gene lists
reported here), is available on the interactive AsthmaMap
website (http://compbio.cs.huji.ac.il/AsthmaMap).

Gene Set Expression Profiles Reveal Diverse Response in

Individual Animals

To examine the functional profile of individual animals based
on their gene set expression, we inspected the expression
profiles of gene sets across all samples. Specifically, we looked
for gene sets that were enriched (FDR , 5%) for genes sub-
stantially changed (. 2-fold) in one sample or more. Out of
4,305 gene sets, only 258 were found to be significant, of which
62 GO and Superarray gene sets are presented in Figure 2.

We can see from the expression profiles that most treatments
cause an impressive homogenous increase in multiple gene sets,
including general immune response, cytokines, chemotaxis, and
G protein–coupled receptor signaling (Figures 2A and 2B). This
increase can be seen across all animals with an intact IL13-
STAT6 pathway. On the other hand, increase in regulation of
T cell and B cell activation, or antigen processing and pre-
sentation gene sets, seemed to vary among individual animals
(Figure 2C). Interestingly, in some treated animals none of the
gene sets are increased. Assuming that the experimental anno-
tations are correct and that these are genetically similar to their
experimental peers, we can only speculate that this lack of re-
sponse may suggest a technical cause or an overlooked bi-
ological cause, of which experimentalists should be aware.

Emergent Gene Set Enrichment in Experimental Signatures

To obtain a better global view of the themes in the data, we looked
at the gene set enrichment in differentially expressed gene
signatures that distinguish between each treatment and its control
experiments (Figure 3). Unlike the previous analysis, this global
view shows themes with moderate response to treatment and it
masks individual variance.

The most immediate conclusion from this view is that the
functional profile of genes induced by treatments is drastically
different from those repressed. As expected, Gene Ontology gene
sets related to antigen processing, hemopoiesis, cytokines, and
response to stimulus are induced by all treatments (Figure 3A).
Similarly, pathway gene sets like inflammation, cytokines, chemo-
kines, and receptors dominate induced genes across all treatments
(Figure 3B). Among the genes decreased, growth factors and
development-related genes are dominant (Figures 3C and 3D).

Reassuringly, IL-13–regulated gene sets identified in human
hyperresponsive airway cells (HAH) stimulated by IL-13 were
enriched in most models, but not in IL-13–KO mice (Figure
3E). Protease inhibitor activity and eicosanoid metabolism
(arachdionic acid pathway) characterize HDM-induced signa-
ture in WT but not IL-13–KO mice (Figure 3F).

Recently, there has been an increased interest in the role of
TGF-b, a master regulator of fibrosis that suppresses inflam-
matory response, in asthma (34, 35). Although several TGF-b
pathway genes were repressed after treatment and TGF-b1
itself was unchanged, we found that experimental gene sets of
genes induced by TGF-b in lung fibroblasts, were enriched in

most treated animals with an intact IL-13 pathway (Figure 3G),
supporting the notion that indeed TGF-b may regulate gene
expression patterns associated with acute inflammatory re-
sponse.

To assess whether the genes induced in every model were
enriched with genes known to be associated with human disease
we generated gene sets based on ‘‘Genetic Association’’ data-
base (http://geneticassociationdb.nih.gov/). Indeed, sets of genes
known to be associated with rheumatoid arthritis, inflammation,
and asthma were all enriched in signatures increased by treat-
ment (Figure 3H; see AsthmaMap website for detailed lists).

Unsupervised Analysis Detects Four Distinct Responses

Analyzing the differentially expressed gene signatures reveals the
active functional gene sets, but is of course limited to pre-defined
sets. To obtain a refined view of the asthmatic response and to
create new gene sets, we employed the Module Networks algo-
rithm (32). This probabilistic method detects modules of co-
expressed and co-regulated genes using a Bayesian graphical
model, where for each module it reconstructs a regulation program:
a set of regulators and combinatorial rules, structured as a re-
gression tree, which determine the expression of the target genes in
the module. The regulation programs are the main advantage of
Module Network over other clustering methods that detect clusters
of genes, but not their potential regulators in the cell.

In this analysis we used only four datasets, as the fifth was
hybridized on a different platform, and its inclusion introduced
a strong bias (see online supplement). This second compendium
describes the expression levels of 8,086 genes in 52 samples (Table
E2). Among these genes, we defined 1,764 genes that carry
a regulatory role according to Gene Ontology as potential reg-
ulators (Table E3). We achieved the best Bayesian score when
learning with 61 modules (Figure E1). Examining the average
expression of these modules (Figure 4A), we obtained four
clusters of modules that could be characterized by their overall
response.

Global induction following a treatment (Figure 4A, Cluster I)
is characterized by a strong induction by any type of treatment.
It is enriched for general components of the immune response:
innate and adaptive responses, complement system; chemokines
and cytokines, and their receptors (Figure 4B and Table 3). In
addition, the cluster of modules is enriched for genes with
potentially direct correlation with asthma, such as IL-17 signaling
pathway and eicosanoid metabolism.

The other three responses are as follows. Acute response to
ovalbumin (Figure 4A, Cluster II) enriched for chemokines,
cytokines and their receptors, inflammatory and DNA damage
signaling pathways (nitric oxide, JAK-STAT, NF-kB, Ca-NFAT,
ATM) (Figure 4B and Table 3); repression following a treatment
(Figure 4A, Cluster III) enriched for angiogenesis, cell develop-
ment, and regulation of metabolism (Figure 4B and Table 3); and
IL-13–dependent response, characterized by induction only in
WT and not in IL-13–KO mice (Figure 4A, Cluster IV). A more
detailed analysis of this cluster is described below.

Module Network Validation

To evaluate the module network we used a new dataset (TEST)
that was published after the analysis was done (22). The dataset
includes lung gene expression measurements, collected from WT
and RD mice treated with ovalbumin. We wanted to estimate how
well the modules predict the expression of their genes in the new
dataset. For this purpose we measured for the four clusters (I–
IV), the correlation between the average of treated WT mice
samples in TEST data and the average of treated WT mice in the
old compendium. Pearson correlation between these two groups
is positive: 0.61. When calculating correlation between treated
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WT mice in TEST data, and ovalbumin-treated WT mice in DEA
dataset, the correlation is even higher (Pearson correlation 0.74),
and the same is true for ovalbumin-treated WT mice in MAH data
(Pearson correlation 0.81). Figures 4C and 5A provide visual
demonstration of the impressive similarity of gene expression
patterns in modules between gene expression compendium and
TEST dataset.

Potential Genes with Novel Role in Asthma Induction

An interesting member of in the global induction cluster is module
494 (Figure 5A). This module, regulated by CCL2, IL1RN, and
ADAM8, contains 14 genes that exhibit the most persistent
activation after treatment of all modules. Among the regulators,
ADAM8 and CCL2 were previously associated with allergic lung
inflammation based on microarray data (5, 36). The human gene
for IL1RN, an anti-inflammatory cytokine located within interleu-
kin-1 cluster on human chromosome 2q12–2q14, was found to be
associated with asthma in several populations (37, 38). Recently,
Ramadas and coworkers (39) found differences in IL1RN expres-
sion between asthma-susceptible and -resistant mouse strains (A/J
and C3H/HeJ, respectively) but not sequence differences.

The genes in the module include several chemokines such as
CCL11 (Eotaxin, a known asthma regulator [40]); immunoglob-
ulin-related molecules (IGHA1, IGJ); molecules suggested to be
involved in allergic lung inflammation based on array data
(ITLNA, CALCA3 [8], ARG1 [4], SPRR2A [6]); and chitinase
family members CHIA and CHI3L3. Recently Homer and
colleagues (41) demonstrated that both CHIA and CHI3L3 were
induced in models of allergic lung inflammation. However, they
differed in their distribution—CHIA was expressed in distal
airway epithelial cells in which mucus was not expressed, while
CHI3L3 expression was limited to central or proximal mid-
airways but not distal. While they observed that both were
induced by ovalbumin or IL-13 induction, in this module CHIA

induction is dependent on an intact IL-13 pathway and CHI3L3 is
not. The enrichment of this module with asthma-proven relevant
genes should encourage further study of the role of other
molecules in this module, such as SERPINA2G (a proteinase
inhibitor that regulates cathepsin B activity) and SAA3 (a
member of the serum amyloid protein family).

Potential Role of TGF-b1 in IL-13–Induced Allergic

Lung Inflammation

One of the limitations of module network analysis is that it is
based solely on gene expression of the regulators and target
genes. To address regulatory events that are beyond transcrip-
tional regulation we need to add more complete biological
information, such as protein–protein interactions. We therefore
explored the nature of the interactions of genes between and
within modules using Ingenuity Pathways Analysis (Ingenuity
Systems). As an example, we subjected the IL-13–dependent
cluster of modules to network analysis using Ingenuity. We
generated eight potential networks, and merged the two highest
scoring networks (P value , 1e-43). The combined network,
which contains 40 genes, 31 of which significantly changed, is
presented in Figure 5B. This analysis uncovers potential key
regulatory effect of genes that do not change significantly in this
dataset on genes in this cluster of modules. Surprisingly, although
IL-13 is a member of the network, the network’s major regulators
are TGF-b1 and its downstream transcription factor JUNB
(Figure 5B). TGF-b1 regulates eight of the induced network
members and is activated or induced by four members, including
THBS1, MMP14, and IL-13, suggesting a positive feedback loop.
A close look at the network also suggests that at least some of the
effects of IL-13 on gene expression in mouse allergic lung
inflammation are mediated through TGF-b1.

Additional examples of ingenuity networks found in clusters
I, II, and III are available on the AsthmaMap website.

TABLE 3. ACTIVE MODULES

Module

Number

Number

of Genes Response Functional Themes Root Regulator Selected Genes

443 45 Global induction following

treatment

Receptors for interleukins and

cytokines; eicosanoid

metabolism

CHI3L3: Chitinase 3-like3-3 PTGS1, PTGES, PTGER4

488 38 Global induction following

treatment

Adaptive immunity: Leukocytes;

IL-17 signaling pathway;

T-cell co-stimulatory pathways

EMR1: EGF-like hormone

receptor with macrophage-

restricted expression

CD3D, CD3G, CD2, PTPRC, LCK

494 14 Global induction following

treatment

Chemokines and their receptors CCL2: chemokine (C-C motif)

ligand 2

CHIA, CHI3L3, ARG1, MMP12

678 21 Global induction following

treatment

complement system FCGR2B: Fc fragment of IgG,

low affinity IIb, receptor

(CD32)

C3, C3AR1, C1GA, C1GB, C1GC

697 15 Global induction following

treatment and IL-13–

dependent induction

Innate immunity response CXCL5: chemokine (C-X-C

motif) ligand 5

CCR1, CCL2, CCL7

585 54 Acute response to ovalbumin JAK/STAT pathway ID3: inhibitor of DNA binding 3 JAK2, JUNB, IL4, IL10 IL1RA,

IL4RA, IL17R, SOCS2

605 35 Acute response to ovalbumin Nitric oxide; Extracellular matrix

molecules

RGS16: regulator of G protein

signaling 16

SERPINE, FAS, NFKBI

649 6 Acute response to ovalbumin Chemokines with NF-kB binding

site in their promoters.

CMKOR1: chemokine orphan

receptor 1

CXCL1, CXCL2, CXCL5

666 39 Acute response to ovalbumin Nitric oxide; NF-kB signaling;

interleukins and their receptors

FZD2: frizzled homolog 2

(Drosophila)

IL1A, IL1B, IL1R2, CSF3, CCL3,

CCL4, FOS, EGR1, MMP8

548 43 Repression following treatment Transcription factor activity and

regulation of metabolism.

NUMB: numb gene homolog

(Drosophila)

SOX17, SOX18, HOCB5, TOB,

SMAD7

654 47 Repression following treatment Angiogenesis IL1RL1: interleukin 1 receptor–

like 1

VEGFA, KDR, ANGPT1, FIGF,

FIGF1

622 16 IL-13–dependent induction Genes repressed by IL-13 in

human airway cells

MAFF: v-maf musculoaponeurotic

fibrosarcoma oncogene family,

protein F (avian)

PTGS2
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DISCUSSION

The aim of this article is to provide a framework for systems-
level analysis of disease-relevant data from multiple sources.
Despite inherent difficulties (differences in model parameters,
nonideal experimental design, and limited number of animals in
experimental subsets), we observe highly meaningful and re-
producible patterns and themes that characterize allergic lung
inflammation, and are robust to a specific model setup.

One principle applied in this study is gene sets analysis rather
than individual gene analysis; here the main benefit is the
robustness to noise. Such robustness was critical when uncovering
heterogeneity between individual animals, which is not depen-
dent on changes in the levels of single genes (Figure 2). One
concern in applying gene expression studies in human clinical
research is diversity in genetic background that dictates individ-
ual variability. By being less affected by changes in the levels of
single genes, gene set profiles allow us to observe changes in
global trends and themes in response to a stimulus or an
intervention. Such analyses may be highly useful in applying
gene expression approaches to guiding human clinical research
and potentially, in the future, disease diagnosis and management.

When the gene sets analysis principle is applied to gene ex-
pression signatures, a global view of the nature of the genes that are
changed during allergic lung inflammation in the mouse lung
emerges (Figure 3). This view provides system-level support to
previous hypotheses as well as generation of new ones. As an
example in this analysis, we found that protease inhibitor activity
and eicosanoid metabolism characterize HDM-induced signature in
WT but not IL-13–KO mice (Figure 3F). Considering the differ-
ence in response to allergen in IL-13–KO and WT mice, the
difference in eicosanoid metabolism is predictable: this pathway is
often implicated in asthma in humans. More specifically, recently
Shim and coworkers (42) demonstrated that ALOX5, a key
enzyme in arachidonic acid metabolism, mediates IL-13–induced
pulmonary inflammation; Trudeau and colleagues (43) also
demonstrated that PTGS2, another key enzyme in this pathway,
is regulated by IL-13 in airway epithelial cells. Our findings, which
are based on microarray data created years before these articles
and on analysis performed independently, provide a systems-level
support for the observations by Shim and coworkers and Trudeau
and colleagues. In parallel, their results validate and support our
analyses. The differences in protease inhibitors activity, however,
were not reported so far. These differences suggest that IL-13
effects on airway inflammation and remodeling may also be
mediated by modulation of anti-protease activity, a finding that
may have important therapeutic implications.

An additional principle used in this study is an unbiased
integration of multiple levels of biological information. This
principle aims to enhance what the biologists often do, which is
to prioritize hypotheses and insights based on their knowledge by
using tools that integrate such knowledge. A good example of this
approach is the potential regulatory role for TGF-b1 in allergic
lung inflammation that we propose. This observation became
obvious when we combined gene expression analysis, gene set
analysis, and protein–protein interactions information. In fact,
the role of TGF-b1 in allergic lung inflammation is not completely
understood. Increased levels of TGF-b1 and evidence for TGF-
b1 activation have been found in airways, bronchoalveolar
lavage, and cells from of patients with asthma (44–46). Poly-
morphisms in the TGF-b1 promoter have been identified in
patients with asthma (47–49) as well as increased levels of TGF-
b2 in patients with severe asthma (50). Recently, Leung and
coworkers demonstrated that inhibition of TGF-b1 receptor
kinase reversed bronchial hyperreactivity in a murine model of
allergic lung inflammation (51). Similar results were obtained by

Hirano and colleagues with pirfenidone, an antifibrotic agent
(52), and by Nakao and coworkers using transgenic mice that
overexpress SMAD7, an inhibitor of TGF-b1 signaling (53). Lee
and colleagues (54) demonstrated that IL-13–mediated pulmo-
nary fibrosis was mediated through TGF-b1, as did Fichtner-
Feigl and coworkers (55). Zhou and colleagues demonstrated
synergism between IL-13 and TGF-b1 in TIMP1 induction (56).

In our analysis, lungs of mice after antigen challenge are
almost universally enriched with genes induced by TGF-b in
airway resident cells (Figure 3G). In addition, protein network
analysis demonstrates that IL-13–dependent gene cluster of
modules is significantly regulated by TGF-b1 (Figure 5B). Our
results indicate that TGF-b1 is induced early in allergic asthmatic
response and may play a significant role in all of its stages and not
necessarily only in the remodeling phase. Together with the
murine TGF-b1 inhibition experiments, these findings suggest
that modulating TGF-b1 signaling in the airway may be a poten-
tial target for therapeutic intervention in asthma.

One of the interesting questions arising from gene expression
data is whether there are a few key molecules that regulate the
expression of the rest of the genes. The Module Networks algorithm
attempts to address this question by detecting modules of genes that
have a similar transcription under some context (context-specific
clustering), and a set of regulators and rules that together predict the
transcription levels of the target genes under the different contexts.

We presented in details an example of a module (494, Figure
5A) which shows a persistent activation after all types of
treatments and consists of many known asthma-related genes,
both as module members and as regulators. However, this
module also illustrates the limitations of the Module Network
approach in gene expression data. It is tempting to hypothesize
that the regulators CCL2, IL1RN, and ADAM8 indeed regulate
the behavior of the genes in the module. But we cannot rule out
that what we obtain is a conditional co-expression that may be
driven by regulators outside the data set. Such regulation may
occur at the protein level, or by miRNA, or even by simpler
mechanisms such as changes in cellular admixtures. Neverthe-
less, in many cases the transcriptional level reflects a true reg-
ulation relationship (32), and the chosen regulators are valid. To
address regulatory events that are beyond transcriptional regu-
lation, we need to add more complete biological information,
such as physical interactions that support the regulation relation-
ship. The analysis of cluster IV, in which we found that TGF-b
may be a regulator of IL-13–dependent genes although its tran-
scriptional levels are not informative, illustrates this point.

In conclusion, although many of the observations that we present
were found in single datasets or traditional experiments, our global
analysis supports the generalizability and reproducibility of these
results beyond the specific experimental settings in which they were
found. More importantly, by integrating multiple levels of infor-
mation and complementary analytic approaches, we infer effects of
novel regulators that are not necessarily obvious when single
datasets are analyzed. Our results demonstrate that the discovery
potential in these publicly available datasets is not fully realized.
This article and the accompanying AsthmaMap website are a sig-
nificant step toward realizing this potential.
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