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Lactobacillus helveticus MIMLIS was selected for its strong cinnamoyl esterase activity on chlorogenic acid
and employed for the preparation of a food product containing a high concentration of free caffeic acid. The
novel food product was demonstrated to display high total antioxidant power and potential probiotic

properties.

Hydroxycinnamic acids such as caffeic, ferulic, sinapic, and
p-coumaric acids are found in almost every plant (11) and
represent a major class of phenolic compounds. The most
abundant hydroxycinnamic acid is caffeic acid, which is con-
tained in foods mainly as ester with quinic acid, a form called
chlorogenic acid (5-caffeoylquinic acid) (Fig. 1).

Caffeic acid and chlorogenic acid have been demonstrated
previously to possess remarkably high levels of antioxidant
activity in vitro (8, 12, 13, 18, 25), and they have been associ-
ated with several health-promoting effects in vivo (17, 27-30,
33).

The biological properties of the hydroxycinnamic acids de-
pend on their absorption in the gastrointestinal tract. It has
been demonstrated previously that the absorption of caffeic
acid is drastically reduced when this molecule is ingested as
chlorogenic acid (10, 14, 20). The majority of chlorogenic acid,
in fact, reaches the large intestine, where it is quickly hydro-
lyzed by bacteria with cinnamoyl esterase activity and exten-
sively further degraded by the microbiota (10). In contrast, free
caffeic acid is well absorbed in the stomach and in the small
intestine (20, 23), and its intake is associated with a higher
concentration of intact caffeic acid and its tissular metabolites
in plasma and a higher level of urinary excretion of these
substances than those resulting from the intake of chlorogenic
acid (10).

Cinnamoyl esterases have commonly been found in rumen
and soil saprophytic microorganisms (6, 7, 16) and also in
bacteria from human and animal intestinal microbiota (5, 32).
However, very few reports describing cinnamoyl esterases of
food-associated bacteria are available (6).

In this study, 100 food and human intestinal bacterial strains
(Table 1) were screened for the production of cinnamoyl es-
terase activity by thin-layer chromatography on silica gel 60
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F254 plates (Merck, Milan, Italy). Bacterial strains were grown
in 1 ml of liquid medium for 72 h in the presence of a 0.5-
mg/ml concentration of the reference substrate, ethyl ferulate
or chlorogenic acid (Sigma, St. Louis, MO). Only 12 strains
gave undoubtedly positive results on both substrates, and these
strains belonged to the species Lactobacillus helveticus, L.
acidophilus, and L. fermentum (Table 2).

The percentages of chlorogenic acid hydrolyzed by the pos-
itive bacterial strains were determined by high-performance
liquid chromatography (HPLC) analysis. The HPLC apparatus
consisted of an Alliance 2695 pump system (Waters, Milford,
MA) equipped with a Waters 996 diode array detector. A
Hypersil AA octyldecyl silane column (2.1-mm internal diam-
eter by 250-mm length; film thickness, 5 wm; pore size, 120 A)
from Agilent Technologies (Santa Clara, CA) kept at 30°C was
used. Eluting solvents were water containing 4% (vol/vol) for-
mic acid (Sigma) and methanol (Merck, Darmstadt, Ger-
many). The linear elution gradient (200 pl/min) expressed as
the methanol proportion was as follows: 0 min, 5%; 0 to 5 min,
5%; 5 to 35 min, 5 to 20%; 35 to 36 min, 20 to 100%:; 36 to 38
min, 100%; 38 to 39 min, 5% (run-to-run time, 50 min). UV
spectra of chromatographic peaks were acquired by scanning
the range from 210 to 400 nm (resolution, 1.2 nm).

Two strains belonging to the L. helveticus species, named
MIMLAS and SIM?7, apparently hydrolyzed all the chlorogenic
acid used in the experiments (Table 2). In particular, the L.
helveticus strain MIMLh5, isolated from an Italian cheese nat-
ural whey starter culture, showed good growth in milk and in
apple juice, and therefore, it was chosen as a starter for the
preparation of the food product.

Development of fermented food product enriched with caf-
feic acid. The main intention of this work was the preparation
of a food product containing a significant concentration of free
caffeic acid, obtained from the chlorogenic acid naturally
present in the food through the esterase activity of a food-
grade bacterial starter. We selected the ingredients of the food
product with the purposes of obtaining an alimentary formu-
lation naturally rich in chlorogenic acid and creating the con-
ditions suitable for the growth of the microbial starter. More
specifically (Fig. 2), we chose Renetta cultivar apples because
they revealed the highest content of phenolic compounds
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FIG. 1. Structures of chlorogenic acid and caffeic acid. The arrow
indicates the esterase bond hydrolyzed by cinnamoyl esterase.

among the best-known apple cultivars (31), and we included a
green tea infusion because of the high concentration of anti-
oxidants, and particularly chlorogenic acid, in green tea (22);
ascorbic acid prevented the browning of the apple pulp during
production, and the presence of skim milk promoted the
growth of the bacterial starter. Nevertheless, we verified good
proliferation of the bacterial starter even in the absence of
skim milk and in the presence of soy milk.

After fermentation, the food product had the texture of
yogurt and a mixed flavor of yogurt and apple. The taste was
fresh, and the flavors of apple and green tea were dominant.
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The homolactic fermentation by the microbial starter reduced
the pH from about 7 to 3.6.

At the end of the fermentation process, the final biomass
was 8.6 X 10® cells/ml of the food product. Experiments with
propidium iodide (1-wg/ml final concentration; Sigma) and
counts on MRS agar plates supplemented with 0.05% cysteine
hydrochloride showed a log decrease in viable cells not higher
than 0.8 after 3 weeks of storage at 4°C.

The quantitation of caffeic and chlorogenic acids in unfer-
mented and fermented food products was carried out by HPLC
at 320 nm as described above. For the extraction of hydroxy-
cinnamic acids, the pH of the food product was brought to 1.5
with HCI and 1 g of the acidified sample was incubated twice
with stirring at 4°C for 1 h in 5 ml of methanol and 0.1%
ascorbic acid. Standard solutions of caffeic and chlorogenic
acids in methanol at a concentration of 1,000 mg/liter were
prepared and gradually diluted. Both spiked and unknown
samples were run in duplicate, and three independent deter-
minations were done. The assignment of chromatographic
peaks to caffeic and chlorogenic acids was further confirmed by
UV spectra and HPLC-electrospray ionization-mass spectrom-
etry experiments. Particularly, the recognition of hydroxycin-
namic acids was carried out by different means: (i) selected-
ion-monitoring scanning (peak width, 1.0 Da) for specific
monoprotonated ions [(M + H)'"; m/z, 181.2 and 355.3 for
caffeic and chlorogenic acids, respectively] and (ii) a full scan at
m/z 100 to 400. The mass accuracy was ensured by calibration
with a mixture of caffeine and reserpine and the tripeptide
PFK (in a 1:1 methanol-water solution with 0.1% acetic acid)
infused separately. After 70 h of fermentation, chromato-
graphic peaks with retention times corresponding to those of
standard chlorogenic (23.0 min) and caffeic (19.8 min) acids

TABLE 1. Bacterial strains screened for cinnamoyl esterase activity

Genus Species No. of strains® Source
Lactobacillus L. paracasei Human gut
L. paracasei 4 Fermented milk
L. paracasei 1 (DSM 5622T) International culture collection
L. acidophilus 7 Fermented milk
L. acidophilus 2 (ATCC 4356™) International culture collection
L. helveticus 9 Dairy starters
L. casei Human gut
L. fermentum 4 Human gut
L. rhamnosus 1(GG) Human gut; probiotic commercial strain
Carnobacterium C. maltaromaticum Meat
C. maltaromaticum 2 Fish
C. maltaromaticum 1 (DSM 203427) Milk
C. divergens 12 (LMG9199™) Meat
Enterococcus E. faecalis 5 Cheese
E. faecium 1 Cheese
Streptococcus S. thermophilus 2 (DSM 206177) Yogurt
Bifidobacterium B. bifidum 7 Human feces
B. pseudocatenulatum 7 Human feces
B. longum 7 Human feces
B. animalis subsp. lactis 4 (Bb12) Probiotic commercial product
B. adolescentis 4 Human feces

“The names of the most relevant strains included in the study are listed in parentheses.
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TABLE 2. Enzymatic activity of the 24 bacterial strains testing positive for the presence of cinnamoyl esterase

Level® of activity as determined by

% of chl i
thin-layer chromatography with: 7 of chlorogenic

Genus Species Strain(s) acid hydrolyzed as
Ethyl ferulate Chlorogenic acid determined by HPLC

Lactobacillus L. helveticus MIMLhAS +++ +++ 100
L. helveticus SIM7 +4++ +++ 100
L. helveticus CBT17 ++ +++ 92.5
L. helveticus LH22 +4++ +++ 91.5
L. helveticus LH28 ++ ++ 70
L. helveticus LH23 ++ + <5
L. helveticus LH4 ++ + <5
L. helveticus LH164 +4 - NT®
L. acidophilus ATCC 4356" +4++ ++ 81.4
L. acidophilus LA47 ++ ++ 70.5
L. acidophilus LA48 +++ ++ 59.4
L. acidophilus LAS1 +++ ++ 56.6
L. acidophilus LAS3 ++ ++ 54.8
L. acidophilus LA46 +++ + <5
L. acidophilus LAS0 ++ - NT
L. fermentum LB12, LB18 ++ + <5
L. fermentum LB19 ++ + 41.6
L. casei LB21, LB22 + — NT
L. rhamnosus GG + + <5

Enterococcus E. faecalis SMT, TD1, TA15 + — NT

¢ —, not detectable; =+, very weak or uncertain; +, weak; ++, good; +++, strong.

P NT, not tested.

were present in the HPLC pattern of the fermented food
product (Fig. 3). The bacterial starter converted most of the
chlorogenic acid into caffeic acid, the concentration of which
increased from 6.4 = 3.9 to 149 = 11 mg/liter during the
fermentation process (results are shown as means *+ standard
deviations; n = 3).

The amount of caffeic acid ingested in consuming, for in-
stance, 100 ml of the food product described here may signif-
icantly increase the total daily amount of absorbed phenolic
compounds (24) and may have a significant biological effect on
the consumer (4, 19, 26). Indeed, studies of rats and humans
have shown that, different from chlorogenic acid, caffeic acid is
efficiently absorbed through the upper part of the gastrointes-
tinal tract and is found in the body either intact or in gluc-

50 ml, Green tea infusion
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i
Pasteurization
90 °C, 30 min
i

| Cooling to 40 °C
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50 ml, NaOH 0.125 M

1
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)

‘ Cooling and storage at 4 °C ‘

FIG. 2. Flow sheet depicting the preparation of the fermented food
product.

uronidated, sulfated, and O-methylated forms (ferulic and iso-
ferulic acids), increasing the total antioxidant status of plasma
(19, 20, 23).

Other potentially functional features. We verified the total
antioxidant capacity by evaluating the ability of the food
product to reduce Fe**' ions into Fe*' ions under acidic
conditions as demonstrated by assaying the ferric reducing
ability of plasma (see the supplemental material for details
on the experimental protocol), a method already success-
fully applied to a variety of food products (3, 21). The total
antioxidant capacity of our fermented product proved to be
much higher than those of the other fermented dairy prod-
ucts tested and also higher than those of beverages with high
concentrations of antioxidant compounds, such as red wine
and black tea (Fig. 4), suggesting that the fermented food
described herein can be considered an antioxidant alimen-
tary product. The antioxidant power of the fermented prod-
uct was not significantly different from that of the unfer-
mented food. This result indicates that the activity of the
bacterial starter did not alter the reducing potential of the
food or eventually counteracted its loss.

L. helveticus MIMLhS belongs to a species that is generally
recognized as safe and has been often associated with health-
promoting effects (1, 15). We studied its ability to resist gas-
trointestinal transit and to bind to intestinal epithelial cells in
vitro (data not shown; see the supplemental material for details
on the experimental protocols). Experiments with simulated
gastric juices at pH 2 and pH 3 showed that L. helveticus
MIMLAS can survive for 3 h, very similar to the control strain
L. rhamnosus GG, which is the most studied probiotic and is
known to survive gastrointestinal transit (9). We also observed
that MIMLAS can survive very well in the presence of 0.3%
oxgall and can grow in MRS liquid medium supplemented with
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FIG. 3. HPLC chromatograms of the methanolic extracts of the food product before (A) and after (B) the fermentation with L. helveticus

MIMLAS. C, standard solution of caffeic and chlorogenic acids.

0.05% cysteine hydrochloride and 0.2% oxgall. Finally, we
found that L. helveticus MIMLAS can adhere to cells of the
Caco-2 human epithelial cell line, very similar to the control
strain L. rhamnosus GG, which is known to be able to tran-
siently colonize the human intestinal tract (2) (data not
shown).

In conclusion, the alimentary product prepared and charac-
terized in this work is a novel functional food exhibiting high

antioxidant power and presenting probiotic potential. Further-
more, the novelty of the present work resides in the use of a
bacterial probiotic starter, selected for its high level of cinnam-
oyl esterase activity, for the production of a significant concen-
tration of free caffeic acid during the fermentation of a food
matrix rich in antioxidants (S. Guglielmetti and D. Mora, 27
April 2007, European patent application EP 07008593.1). The
promising potential health-promoting effects of this food prod-
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FIG. 4. Antioxidant activities of 10 different food products as determined by assaying the ferric reducing ability of plasma. RAU, relative
antioxidant units; FFP, functional food product developed in this work; nf-FP, nonfermented FFP; ACE juice, commercial orange and carrot juice
enriched with vitamins A, C, and E; Actimel, probiotic fermented milk from Danone. Vertical bars represent standard deviations. Unpaired
Student’s ¢ test revealed a statistically significant difference between FFP and nf-FP and either red wine or green tea (P < 0.05).



1288 GUGLIELMETTI ET AL.

uct need to be proven by upcoming studies of human nutrition
and physiology.
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