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ABSTRACT The filamentary model of the metal-
insulator transition in randomly doped semiconductor impu-
rity bands is geometrically equivalent to similar models for
continuous transitions in dilute antiferromagnets and even to
the l transition in liquid He, but the critical behaviors are
different. The origin of these differences lies in two factors:
quantum statistics and the presence of long range Coulomb
forces on both sides of the transition in the electrical case. In
the latter case, in addition to the main transition, there are two
satellite transitions associated with disappearance of the
filamentary structure in both insulating and metallic phases.
These two satellite transitions were first identified by
Fritzsche in 1958, and their physical origin is explained here
in geometrical and topological terms that facilitate calcula-
tion of critical exponents.

The topological structure of the quantum metal-insulator
transition (MIT) in the limit T3 0 in a disordered system (such
as a semiconductor impurity band) differs from a classical
random resistor network (1, 2) in two fundamental ways. In the
quantum case, there are strong Fermion interference effects,
and the long range Coulomb interactions cannot be neglected.
Both of these effects alter the topological dynamics of the
quantum system relative to the classical one. Earlier papers (3,
4) on the metallic critical region showed that proper treatment
of the quantum case produces excellent agreement with ex-
periment, notably on Si:P at very low temperatures both very
close to, and quite far from, the transition (5) and on neutron-
transmutation doped, isotopically pure Ge:Ga (6), in which the
uncompensated dopants are truly randomly distributed. This
theory is successful because it emphasizes the filamentary
aspects of the phase transition in this dilute system, instead of
making the effective medium approximation (EMA). The
latter apparently has been responsible for many earlier failures
(7, 8) to describe observations of critical metallic behavior and
for a long time has been thought (9) to be inadequate for
treating critical quantum behavior of dilute systems.

The filamentary theory just described is radically different
from the overwhelmingly popular theories (7, 8) based on the
EMA. Although most workers in this field still hope that the
latter can be repaired somehow, one should note that more
than 40 years have passed since research began on this subject,
and the problem remains unsolved. Thus, all theories based on
the EMA are unable to explain why, at the electrical MIT there
is apparently no thermal transition, and they are unable to
explain why the metallic side of the electrical transition is so
sharp. During these 4 decades many different approaches have
been tried. Most of them have some merit, at least for fitting
curves derived from experiment, and one is reminded of the

Indian fable of the seven blind men and the elephant, except
that here the number of viewpoints that is partially correct is
probably closer to 70 than it is to seven.

Why is this problem so complex? I believe that the problem
is not only multi-faceted, as implied by analogy with the Indian
fable, but also multi-layered. Because of disorder and long
range Coulomb interactions and because the problem con-
cerns charge transport rather than just thermal equilibrium
properties, it contains new kinds of broken symmetries that
cannot be described only in spectral (equilibrium) EMA terms.
Moreover, although some aspects of the problem can be
treated with the techniques of continuum mathematics, such as
Fermi liquid theory, still others (especially the new broken
symmetries needed to explain the sharpness of the electrical
transition and the existence of separate thermal and transport
transitions) require the methods of discrete mathematics. The
interplay between these two layers of complexity, continuous
and discrete, produces the multifaceted, and often seemingly
contradictory (from the viewpoint of continuum models only),
phenomena that are observed experimentally.

To gain an overview of this problem, one can begin by
discussing the multiple transition model of Fritzsche (10, 11),
which contains, in addition to (II) the central MIT, satellite
transitions on both the insulating (I) and metallic (III) sides.
This heuristic spectral model was formulated within the EMA,
but it turns out to have much more general significance and,
despite its antiquity, still holds the keys to many more recent
puzzles. Because emphasis in more recent theories and exper-
iments has been placed on treating the MIT as if it were
analogous to single critical magnetic transitions, it is useful to
review what is known about the latter, especially in the dilute
case with spatial disorder (12). The new electric broken
symmetry is best understood through analogy with the me-
chanical stiffness transition of a disordered harmonic oscillator
network (13, 14). Given this background, the reader easily
should follow several finite scaling calculations, which are
apparently similar to conventional scaling theory but which
contain several surprises.

Fritzsche’s Model. According to Fritzsche’s heuristic spec-
tral model (10, 11), the conventional MIT (II) occurs at dopant
density n 5 nc, a satellite insulating transition (I) occurs at n 5
nh, and a satellite metallic transition (III) occurs at n 5 ncb, as
shown in Fig. 1. This paper develops the theme that for nh ,
n , ncb, the dominant topological structure is filamentary,
which some would call strange. At n 5 nc, the Fermi energy EF
coincides with Mott’s mobility edge at E 5 EC, and EC lies
below the extrapolated conduction band edge at E 5 EO. One
can think of EO as the conduction band edge in the EMA. For
nh , n , nc, we have a strange insulating phase where
conduction takes place through a mixture of metallic conduc-
tion in clusters and many-electron Coulomb hopping or tun-
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neling between clusters, whereas for nc , n , ncb, we have the
strange (non-Fermi liquid) metallic phase mentioned in the
title of this paper. Both EC and EO are now regarded by many
field and scaling theorists as archaic heuristic constructs
without a firm microscopic basis, but nc and ncb are revived
here and defined rigorously in terms of the filamentary model
and quantum percolation theory; as we will see, in the new
context, EC and EO retain much of the physical content
envisioned by Fritzsche and Mott. Just as a transport phase
transition occurs at (II) n 5 nc, so a thermal phase transition
occurs at (III) n 5 ncb; II is sharp, and in the limit T 3 0, its
asymptotic (finite size scaling) critical behavior is only slightly
affected by the presence of background (oxygen) impurities,
whereas III corresponds to a local order–disorder transition
that is broadened greatly by random dopant density fluctua-
tions, which have no effect on the critical exponents of II.

One of the key assumptions of scaling theories (8, 15) of the
MIT is that nc 5 ncb and that there is only one phase transition;
this assumption implies that the thermodynamic coherence
length j should be identified with the transport mean free path
l. However, in the limit T 3 0, by analogy with conventional
Boltzmann transport theory (or Fermi liquid theory), one
would expect that, in a true metal, the residual resistance and
l would be determined by scattering from background impu-
rities or nonrandom density fluctuations in the dopant impu-
rities, with an average spacing Lb, not from random density
fluctuations in the dopant impurities or the electronic charge
density, which determine j. Thus, there is no reason to suppose
that nc 5 ncb, and experimentally, the electronic specific heat
coefficient g(n) appears to be a smooth function of n at n 5
nc (16), as shown in Fig. 2. However, the data do show an
unambiguous plateau in g(n) for n ' (1–2) nc, which can be
identified with ncb 5 2 nc. As we shall see later, the filling factor
associated with the strange percolative metallic phase at n 5
nc is small, and this factor flattens g(n) in the region nc , n ,
ncb so much that it is difficult to determine ncb from the small
change in slope of the specific heat at nc 5 ncb. Fritzsche was
well aware of this point, and he therefore attempted to
estimate ncb from the (also broad, but not quite flat) maximum
in the Hall mobility, which gave ncb ' 6nc. In any event, the
plateau (16) in g(n) for n . nc is fundamentally inconsistent
with the scaling assumption (8, 15) that the thermal and
transport phase transitions are the same. Finally, the differ-
ence in screening of internal electric fields in the filamentary
and Fermi liquid phases is apparently the origin of the 2%

first-order jump in the Debye U at n 5 ncb; this point is
discussed below in connection with the phase diagram.

Critical Metallic Conductivity Exponent. Although neither
Fermi liquid theory (7) nor scaling theory (8, 15) has been able
to describe simultaneously the transport and thermal proper-
ties of the MIT, they are well established despite these failings
because they are accompanied by elaborate (but not internally
consistent) mathematical formulae that can be, and often are,
used for curve fitting of experimental data, thereby creating
respectable facades. In earlier papers (3, 4), I focused my
attention primarily on demonstrating that a filamentary model
based on quantum percolation can explain why the transport
MIT is continuous, rather than first-order, as it must be in the
EMA (compare the Wigner transition of electrons in a box),
with a critical metallic conductivity sM(x, T) described by
sM(x,0) } xm, where x 5 nync - 1 and m 5 1⁄2. This value of
m is surprisingly small; in liquid He, which has Bose statistics
and short range interactions, it is 2y3 at the thermal l
transition, and this value represents the lowest value accept-
able to finite-size scaling theories that require m $ 2y3 5 2yd,
so that the random fluctuations in a volume of order jd can be
internally consistent (17, 15). Some readers have requested
more justification for the assumptions made in the derivation
(3) of m 5 1⁄2, and this justification will be given here.

First, we note that the essentially percolative filamentary
character of dilute phase transitions is well established for
critical magnetic transitions (12), so that there is nothing
strange or radical about analyzing the MIT from this view-
point; indeed, quite the opposite is true, as in the EMA the
MIT should be first-order, whereas percolative transitions are
continuous by construction. The differences from the dilute,
short range Bose antiferromagnetic case [where also (12) m 5
2y3] must arise from either or, more likely, both many-electron
Fermi statistics and long range Coulomb interactions. To
analyze these differences quantitatively, one must categorize
and separate localized from extended states. In ref. 3, it was

FIG. 1. A schematic topological phase diagram for the semicon-
ductor impurity band MIT in the limit T 3 0, based on Fritzsche’s
heuristic spectral phase diagram (10, 11).

FIG. 2. The electronic-specific heat coefficient g(n) in Si:P. The
experimental data are from ref. 16, as is the dashed line, representing
noninteracting electrons in a rigid band with the same effective mass
value as in the pure crystal. The solid line is a smooth curve drawn
through the experimental points, except that a break in slope has been
placed at n 5 ncb for the reasons discussed in the text. Note that for
n . ncb, the observed specific heat is parallel to, but larger than, the
expected crystalline value, which corresponds to mass enhancement,
which can be attributed to electron–electron interactions that drive the
metallic carriers in extended states to blob and filament internal
surfaces, where the internal electric fields are least screened. The
plateau between nc and ncb has a quasi-spinodal character that
represents the latent first-order nature of the phase transition. This
first-order effect has been retained in the continuous phase transition
because of its fractal nature (3).
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shown how this can be done in principle in the limit T3 0; it
then becomes possible to make a small amplitude approxima-
tion to the quasi-particle excited states.

Some readers have suggested that it is not possible in
principle to identify extended states in the presence of spatial
noise because no algorithm is known for doing so. This is a very
general argument, which many theorists associate with the
existence of special high symmetry modes (called Goldstone
modes by mathematical physicists) obtained by group-
theoretic arguments. Those arguments are, in fact, too general:
They are valid for arbitrarily large amplitudes of some general
displacements, in other words, arbitrarily high temperatures,
where thermal mixing of excited states eventually destroys
phase coherence in the ground state. In the quantum case this
is true, but in the classical case of coupled harmonic oscillators
(atomic vibrations), Thorpe et al. (13, 14) have shown how one
can identify and count cyclical modes (v 5 0) near the
mechanical stiffness transition of a random network that is
fully connected geometrically but not mechanically; these
modes (first studied by Maxwell) have no recognizable sym-
metries. For the present transport problem, one should con-
sider these modes analogously to be extended states with
complex frequencies v 1 iG 5 0, corresponding to quasipar-
ticle states at the Fermi energy v 5 0, and a scattering rate G
5 0 in the absence of background or residual resisitivity
scattering. In this way we recover the residual resistivity
concept that is essential to avoid having infinite conductivity
in the limit T3 0 and Lb3 `. Note that in switching from a
thermal equilibrium quantity (the elastic constants of the
mechanical random system) to a transport property (the T 5
0 conductivity of the random metal), we have replaced the real
part of the self-energy (v) by the complex self energy v 1 iG.
Distinguishing between v and G is similar to distinguishing the
coherence length j from the mean free path l, which scaling
theory (8, 15) has not done so far, and it is this that will enable
us to distinguish ncb from nc.

Variational Stability. Another puzzle concerns the possi-
bility of scattering between localized and extended states, and
this puzzle leads directly to the recognition of a new kind of
broken symmetry (3). It has been known for a long time that
it is inadvisable to solve transport equations (or to attempt to
identify extended states) solely through the application of
boundary conditions (18), for example, in the electrical case,
because this method can generate spurious one-dimensional
localization; this localization can be avoided, for example, with
a local equilibrium variational condition on the extended
states, which assigns them an average drift velocity in the
presence of an applied field. The number density of the
extended states is ne(x), which goes to zero as x goes to zero.
Indeed ne is robust and is not affected to first order by resonant
scattering from extended to localized states because it has been
maximized to yield the maximum conductivity. One can simply
picture the T 5 0 extended states as flowing along dynamically
stationary one-dimensional percolative channels between
background impurity scattering events.

Once one has accepted this simple physical picture, one
easily can calculate m for oneself (19); in any d*-dimensional
electronic system where the carrier Fermi energy EF excess
DEF 5 EF(x) 2 EF (0) is proportional to x or to wave vector
k squared, and ds(x) 5 s(x) 2 s(0) ' ne(x) ' kd*, m 5 d*y2.
Here, the presence of strong disorder generates d* 5 1
filaments for much the same reasons as in the magnetic case
(12, 20, 21). Thus, m 5 d*y2 5 1⁄2 and because the filaments
have been selected from the set of all many-electron wave
functions by a variational condition, this result is exact.

Here many readers will be surprised that the calculation of
m, which has proved impossible in EMA models (7, 8), should
be so simple and easy algebraically. This simplicity is explained
by two points: (i) The algebra leading to a simple fraction, such
as 1⁄2, must itself be simple; the complexity lies not in the

algebra, but in the set-theoretic and variational concepts (3)
that justify the algebra. (ii) Of course, I am hardly the first
person to have considered this d* 5 1 mechanism, but it always
had been thought before, in the EMA context in which
extended states were not separated from localized states and
there was no distinction between thermal and transport tran-
sitions, that any one-dimensional mechanism would produce a
divergence of the specific heat. This question will now be
discussed in greater detail than before (3), relying on standard
descriptions of percolation in dilute systems and new aspects
of transport scaling associated with the residual resistivity and
the new scaling length Lb.

Percolative Quantum Transport in the Limit T3 0. To treat
the residual resistivity correctly, one begins by partitioning the
sample volume into Voroni polyhedra (volume ' Lb

d) cen-
tered on the background impurities (average spacing ' Lb).
How many filamentary paths can the average polyhedron
accommodate that cross it from one side to the other? Clearly,
that number is limited by the condition, characteristic of the
many-Fermion ground state electron wave function, that two
such paths should not cross, for if they did, one would have
destructive interference. [At the center of the crossing region,
the wave function intensity is proportional to A1A2 exp(i[w1 2
w2]), where Ai and wi represent the amplitude and phase,
respectively, of channel i. Averaging over [] gives zero by the
random phase approximation.] One may note here that, in the
semiclassical theory of the d 5 2 large integer quantum Hall
effect, such crossing of local paths (or ribbons) at saddle points
has been discussed extensively (22). In that case, one does not
have an MIT in the sense that one does for d 5 3, but one does
have localization–delocalization transitions, and then the
crossing points are treated as insulating tunneling volumes.
The latter have a substantial effect on the scaling exponents,
which agrees well with experiment.

In ref. 3, it was noted that a sufficient condition that
precludes filamentary crossing is that there be no more than
one filamentypolyhedron. Here, this analysis is refined by
scaling with respect to Lb. In the EMA, the filament would be
straight and its length would scale with Lb

k, where k 5 1. If the
filament corresponded to a random walk, then k 5 2. In
classical percolation theory, near the percolation threshold,
the geometry of percolative paths is best described by the
blob-links or blob-dendrite model (23). Within this model, k 5
dmin as well as the fractal dimension dmin (d) has been
calculated (24) for d 5 2 and 3; quite generally, dmin (d $ dc

1)
5 2, with dc

1 5 6, and of course dmin (1) 5 1.
The mean number of path pair coincidences per polyhedron

is of order Pc ' Lb
2kyLb

d, and the probability of no coinci-
dences is given by the Poisson normalization factor exp(2Pc).
Thus, as Lb 3 `, one can have one or many coincidences
according to whether dmin is larger or smaller than dy2,
respectively. In the latter case, the maximum number of paths
N ' Lb

l is given by l 5 dy2 2 dmin.
Now let us calculate the electronic specific heat gT to see

whether or not it diverges as p 3 pc
1. Here g ' dNydE, the

electronic density of states, ' (dNydk)y(dEydk) ' k(d* 2

1)yk ' k(d* 2 2). The smallest possible current-carrying value of
k is Lb

21, and with d* 5 1, as Lb 3 `, so apparently does g,
in accordance with the usual argument mentioned above. One
must not forget, however, the noncrossing condition that gives
a weighting factor NyLb

d 5 Lb
l 2 d. Then g ' Lb

Ã, with Ã 5
2 - d* - dy2 - dmin. With dmin $ 1, even if d* 5 1, there is no
specific heat divergence for d $ 1, as Ã , 0.

One may wonder how this argument would change in a
quantum context. First, one can imagine that, in the blob
regions, the connectivity or coherence might not depend only
on pair connectedness, but this seems likely only to renormal-
ize nc. A more serious concern is dmin $ 1, but note that the
numerical value of dmin (d) for d 5 3 was not actually used. Had
it been necessary to use it, one could probably obtain it by
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interpolation (31) between dc
2 and dc

1, replacing the classical
value of dc

1 5 6 with the quantum value dc
1 5 4.

Conventional Scaling Theory Revisited. The treatment used
so far (3) emphasizes measurement of the electrical conduc-
tivity in an applied electrical field Fa. There is an alternative
picture that passes to the ohmic limit Fa 5 0 and describes the
filamentary metal in terms of fluctuating internal electric
fields Fi(r,t). This alternative raises the question of whether
such fields are screened in a filamentary metal with broken
symmetry as they are in a Fermi liquid with translational
symmetry. This question also will be discussed below after the
phase diagram has been sketched, but here it is enough to note
that the filaments (the backbone in classical percolation the-
ory) fill only a small part ' Lb

dy2 of the sample volume
occupied by the dopants and that the volatile (apparently
nonscalable) blobs (23) fill the remainder ' Lb

d. The average
strength of the incoherent Coulomb fluctuation fields that the
blobs generate is also ' Lb

dy2, but the tail of this distribution
will exceed the fixed screening capability of the filaments, so
that the internal fields acting on the latter will be unscreened
partially. Note that it is just in the links or dendrites that the
magnitudes of the internal fields depart most strongly from
their average values, so that it is there that screening is
expected to break down.

One can now repeat the scaling arguments previously used
(15, 17) to derive the result m $ 2y3 for disordered three-
dimensional systems with short range forces [dilute antiferro-
magnets (12), liquid He (17)] in the context of the d 5
4-dimensional space-time manifold (d) 5 (d, d*) 5 (r, rz
Fi(r,t)) 5 (r, t(Fi(r,t)). Here t is a dynamically f luctuating local
time that reflects the relative group velocities of electron wave
packets accelerated by the tangential component of the inter-
nal field Fi(r,t)). In this picture, the JC inequality (15, 17)
becomes m $ 2yd 5 1⁄2, which is exactly right because it says
that the smallest value of m is attained when the dopant
distribution is fully random. This picture also explains why
there are no renormalization corrections because mean field
theory is indeed valid for d 2 4 5 « 5 0. It has been stated (12)
that ‘‘Unfortunately, this result cannot be checked experimen-
tally,’’ but this is just what the MIT does. It is remarkable that
the ideas of scaling theory apply to complex two-fluid models
(localized and extended many-Fermion states) simply by using
the hyperspace (d, d*) 5 (d) construction.

Both the filamentary counting and the finite-size scaling
arguments give m 5 1⁄2, but the latter seems to be simpler.
There is, in fact, an even simpler derivation of d 5 4. Coherent
currents flow along the paths so that d 5 2 (complex k\) but
are attenuated (imaginary k') normal to the paths, d' 5 d 2
1. Thus d 5 d\ 1 d' 5 d 1 d* 5 d 1 1; all roads lead to Rome.
In this derivation, the internal fields seem to have disappeared,
but not so. Without some kind of electric field no coherent
current flow is possible in the limit T 3 0.

Phase Diagram. The three-transition phase diagram is
shown in Fig. 1. To compare Fritzsche’s spectrally motivated
phase diagram (10, 11), based implicitly on the EMA, with
more modern data (5, 6), it is necessary to realize that not only
were his data taken at temperatures ' 1K, compared with
temperatures ' mK in ref. 5 but that the effective energy scale
in the Ge samples used by Fritzsche and in (6) is 10 times larger
than that for Si samples (5). It was shown unambiguously in ref.
5 that, with their chemically doped samples of Si:P, such low
temperatures were essential to obtain reliable extrapolations
of s(x, T) to s(x,0) and thus reliable values of m. However, in
the neutron transmutation doped, uncompensated (isotopical-
ly pure) Ge:Ga samples of ref. 6, critical exponents very similar
to those of ref. 5 are reported for T ' 50 mK (equivalent to
500 mK in Si). This result is very surprising, especially when
one considers the difference in energy scales between Si and
Ge, but it seems to suggest that, with truly random doping,
critical behavior extends not only to unexpectedly large values

of composition x ' 1, instead of 1022, as already shown by ref.
5, but also to much higher values of T ('20 times larger) as
well.

This kind of behavior is not what is expected from the EMA,
or by comparison with magnetic (boson) critical behavior (12),
but it seems to be consistent with Fermion filamentary per-
colation because electron–electron fluctuation effects in the
filaments essentially have disappeared because of the varia-
tional nature of the filamentary selection process. If further
measurements with the samples of ref. 6 at lower temperatures
confirm the existence of a much wider critical temperature
range than was found in ref. 5, this would be taken as very
strong evidence in favor of the present variational model and
against EMA models. The latter then would be seen as suitable
only for qualitative discussions of the transport properties of
macroscopically inhomogeneously doped samples with locally
varying values of nc.

Another important fundamental point can be made without
detailed curve-fitting. In the Fritzsche model, the order–
disorder transition III occurs at xcb ' 2–6 so that there is
indeed ample room in ‘‘x space’’ for a wide filamentary critical
range from x 5 0 to x 5 1. It was noted earlier that the specific
heat transition III is very broad. The qualitative reason for this
is that there is a broad distribution of volumes of Voroni
polyhedra i, with transitions at different values of the local
average density ni. The tail of the distribution of Fermi-liquid
polyhedra can well extend down to the region near x 5 0, and
it is possible that this tail, with a width dependent on sample
dopant homogeneity, is what was responsible for the tail
variations of s(x, T) reported in ref. 25.

All of the analysis of the filamentary phase that has been
given, of course, did not prove that such a phase exists; this
could be done only by calculating the total energy of this phase
relative to that of a normal EMA phase, a Fermi liquid phase.
As noted earlier, we assumed that the phase between transi-
tions II and III must be a filamentary phase for two theoretical
reasons: (i) These are what are used to describe dilute magnetic
phases, as studied either experimentally (12), or in numerical
simulations (20, 21), and (ii) in the electric case, I believe that,
in the EMA, Coulomb forces always produce a first-order II
transition; the observed II transition is continuous.

On the other hand, the thermal transition III is definitely a
first-order transition in the enthalpy, as is shown by the gigantic
('2%) jump (36) in the Debye U at n 5 ncb; the dopant atomic
density, relative to the host, here is 2.1024, and the dopant
charge density, again relative to the host, is four times smaller.
Thus, the effectiveness of the donor electrons in enhancing the
lattice stiffness is '25 times larger in the Fermi liquid phase
than in the filamentary phase. The origin of this huge factor is
the presence of unscreened electric fields in the filamentary
phase. That such fields must be present is proved strikingly by
the contrast (36) in the composition dependence of the
thermal Debye U (which shows the 2% jump) with the elastic
Debye U (which does not). This contrast is a direct result of
broken symmetry. The measured elastic constants reflect the
cubic symmetry of the crystalline space group, whereas the
dopant dependence of the thermal Debye U reflects the
tetrahedral point symmetry of the P donors. The latter lacks
inversion symmetry, and so the internal field can have a
first-order stiffening effect in the filamentary phase that is
absent in the Fermi liquid. This symmetry analysis directly
confirms a key feature of the Fritzsche model, which is that the
III transition occurs when EC crosses E0. One can suppose that
the factor 25 reflects the “spread-out” nature of the dopant
electrons (binding energy 0.1 eV compared with the conduc-
tion band width ' 2.5 eV).

From what has been said above concerning the wide tem-
perature range of the transport critical transition, I do not
believe that measuring the specific heat (not a transport
property) at lower temperatures than did the authors of refs.
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16 and 36 would yield much new information. Indeed, this was
done for a few samples (26), with the result that, in Si:P,
localized spin enhancement was evident below 1K not only for
x , 0 (insulating) but also for x . 0, which is interpreted not
only in ref. 26 but also here as evidence for the existence of
isolated blobs in the filamentary metallic phase, in other
words, localized states do persist in the filamentary metallic
phase, with a filling factor that becomes smaller as x increases
but by no means vanishes for x . 0. The actual filling factor is
difficult to estimate because presumably the average size of
isolated blobs also increases with x, which reduces the tem-
perature at which paramagnetic effects set in.

Weak Localization. The term ‘‘weak localization’’ is used to
describe the effects in the EMA of bare electron–electron
interactions on the temperature dependence of the metallic
conductivity, as calculated in ref. 27. With our present phase
diagram, the combination of the EMA with unscreened e-e
interactions places us on the horns of a dilemma: The EMA
assumption is valid only for the Fermi liquid region, n . ncb,
where the e-e interactions are screened; the interactions are
unscreened only for n , ncb, where the plane-wave basis states
of the EMA, which give the Coulomb interaction the form '
q22 (which is essential to obtaining ds ' T1y2) are no longer
correct. In other words, there is no region of the phase diagram
of a dilute, randomly disordered system for which weak
localization is correct. So great, however, are either (or both)
the attachment to the EMA or the fear of the complications
of percolative models that this model has been used very
widely to discuss experimental data. In particular, it is mean-
ingless to discuss the sign of a term that depends essentially on
two mutually contradictory assumptions. It is to be hoped that,
with the emergence of a new class of experiments (6), these
conditions will change, especially as an alternative, nonper-
turbative, and internally consistent percolative explanation not
only for the functional form but also for the sign changes of ds
' T1y2 is available (3, 28).

Filamentary Insulating Phase. The filamentary insulating
phase occurs between transitions I and II and for densities in
the range nh , n , nc; from the data of refs. 6 and 11 on Ge:Ga,
it seems that nh ' ncy20. In the insulating phase, it is by now
quite well established (6) that the Coulomb pseudogap model
(29, 30) gives a good account of sI(x, T) as a function of T, but
not as a function of x. Can this filamentary model explain both
functional dependences? Yes, providing that we recognize that
the insulating behavior must come, for small x, from breaks in
the dendrites or links of a blob-link percolation model (23).
Thus, the pseudogap is associated with states with large
amplitudes in the gap region, in other words, surface states of
the blobs that are mutually overlapping in virtual link regions
where the breaks have been formed. These breaks are all
essentially equivalent; the break resistance can be minimized
by an optimization procedure analogous to Mott’s variable
range hopping model, except that allowance must be made for
the effects of unscreened Coulomb forces } r21 on the states
near EF in these regions (29). The temperature dependence
will then be given by (6, 29, 30) sI(x, T) 181 exp(2T0yT)1y2

with the pseudogap width T0.
In refs. 29 and 30, T0 is not optimized but is simply matched

smoothly to a background density of states with the result T0
} (k(n)j(n))21, where in the spirit of the EMA the density
dependencies of the dielectric constant k(n) and the coherence
length j(n) are to be taken from experiment. The reader will
not be surprised to learn that (once again!) the EMA fails; this
procedure yields T0 } xa, with a 5 1.5 for Si:P, for example (6),
compared with an experimental value (6) for Ge:Ga of a 5 1.0.
I believe the latter value to be correct. It can be derived very
simply from the filamentary model. One dopant atom will be
associated with each optimized filamentary break (not zero, no
break; not two, because at the weak points one is enough), and
in the impurity band because of charge neutrality exactly one

orbital state is associated with each missing dopant atom; thus,
the number of pseudogap states is proportional to x, but it is
also proportional to T0, so T0 is proportional to x and a 5 1
exactly. This brief yet exact analysis again shows how powerful
and precise discrete variational filamentary counting methods
(13, 14) can be in the transition regions compared with
nonvariational continuum approximations (7, 8) based on the
EMA.

Application to d 5 2. Within the filamentary model of
random metals, all of the transport properties of metals
familiar to electronic theorists from the basically isotropic
Bloch–Sommerfeld theory of uniform crystalline metals are
retained save one: This is the d-dimensional isotropy, which is
replaced by the local anisotropy of a d* 5 1 filament embedded
isotropically in a d-dimensional space. As a consequence, the
effective dimensionality becomes d 5 d 1 d* 5 d 1 1. Not only
does this enable us to understand why there are three phase
transitions (I-III) in the electrical case, compared with only
one in the magnetic case, but it also explains why m(d 5 3) 5
m(d 5 4) 5 1⁄2 instead of 2y3, as expected from arguments (15,
17) based on short range forces.

In the case d 5 2, many old arguments (32, 33) suggested that
a true MIT was not possible because it was not possible to form
metallic states (d 5 2 is marginal). In very high quality
depletion layers, however, indications of an MIT have been
observed (34). Because such a transition is not consistent with
the old ideas, it was suggested (34) that the unexpected
coherence might be caused by superconductivity. A much less
exotic explanation is based on the new filamentary broken
symmetry discussed here, especially because d 5 3 is not
marginal. The unscreened surface fields Fa induce the forma-
tion of metallic states; this formation is possible when Fa ..
Fr, where Fr is a surface roughness field associated with dopant
nonrandomness.

Compensated Samples. In chemically doped samples, one
expects significantly nonrandom effects from chemical asso-
ciation of impurities so that to study randomly doped com-
pensation one should use neutron-transmutation doped sam-
ples. In that case, the effects of compensation are primarily to
disrupt metallic ballistic coherence and replace quantum
conductivities by diffusive conductivities, much as one does in
uncompensated samples at high temperatures. One also, in
effect, greatly increases the level of background impurity
densities, so that by the Voroni partitioning construction, the
average number of dopantsypolyhedron is no longer .. 1. The
effect of the crossover from uncompensated to compensated
percolation on critical exponents is discussed in ref. 19. The
qualitative effects of this crossover on nc and ncb are discussed
in ref. 35.
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