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Plants can be attacked by arthropods both above and
below ground. The ensuing systemic defense response
of the plant can affect even the most distant tissues. Both
primary and secondary metabolic profiles of shoots can
be altered upon root herbivory and vice versa (Gange
and Brown, 1989; Bezemer et al., 2003; Hol et al., 2004;
Schwachtje et al., 2006), making plants powerful medi-
ators of interactions between otherwise loosely connected
food webs (van der Putten et al., 2001; Bardgett and
Wardle, 2003). Whereas the ecological relevance of such
processes has been recognized and the role of primary
and secondary metabolites acknowledged (for review,
see Blossey and Hunt-Joshi, 2003; van Dam et al., 2003;
Bezemer and van Dam, 2005), it remains to be explored
exactly how plants coordinate their root and shoot re-
sponses against herbivores.

We propose that results from current research into
the mechanisms governing plant stress responses
might provide several starting points to explore the
physiological basis of plant-mediated aboveground
and belowground interactions. Priming (Ryals et al.,
1996; van Wees et al., 1999; Ton et al., 2005; Conrath
et al., 2006; Frost et al., 2008) and plant volatile sig-
naling (Engelberth et al., 2004; Heil and Kost, 2006; Ton
et al., 2007) may be particularly relevant, and we
attempt to place these novel insights in the context of
interactions between aboveground and belowground
plant defense responses.

Because of the scope of this Focus Issue, we limit
our review to arthropod-induced plant defense re-
sponses. We do not discuss induced changes in primary
metabolites, which can be of substantial importance
(Mattson, 1980; Gange and Brown, 1989; Babst et al.,
2005; Schwachtje et al., 2006; Schwachtje and Baldwin,
2008). We also acknowledge the importance of putting

the current findings in an appropriate ecological context
(Rasmann and Agrawal, 2008) and the necessity of
including microorganisms as important players in both
rhizosphere and phyllosphere interactions. Several ex-
cellent reviews cover these and other intricacies of
aboveground and belowground interactions (van der
Putten et al., 2001; Blossey and Hunt-Joshi, 2003; van
Dam et al., 2003; Bonkowski, 2004; Wardle et al., 2004).

PLANT DEFENSE RESPONSES UPON
ABOVEGROUND AND BELOWGROUND HERBIVORY

Changes of Defenses in Nonattacked Tissues

Various studies on interactions between above-
ground and belowground plant responses have found
an increase in basal levels of shoot defenses (defined
here as the level of shoot defenses in the absence of
aboveground herbivores) following root herbivory,
artificial damage, and plant defense hormone appli-
cation (Table I). Root treatments have been shown to
increase shoot concentrations of terpenoids in Gossypium
herbaceum and maize (Zea mays; Bezemer et al., 2003,
2004; Rasmann et al., 2005), phenolics in Brassica nigra
(van Dam et al., 2005), pyrrolizidine alkaloids in Senecio
jacobea (Hol et al., 2004), certain glucosinolates in Brassica
spp. (Birch et al., 1992; van Dam et al., 2004; Soler et al.,
2005, 2007; van Dam and Raaijmakers, 2006), phyto-
ectosteroids in spinach (Spinacia oleracea; Schmelz et al.,
1998), proteinase inhibitors in Nicotiana attenuata (van
Dam et al., 2001), and extrafloral nectar in G. herbaceum
(Wäckers and Bezemer, 2003). Within this wide array of
defensive metabolites, negative effects of root herbivory
on basal levels of shoot defenses are also possible in
some plant genotypes (Hol et al., 2004) and under certain
experimental conditions (van Dam et al., 2005). Current
results are as yet inconclusive about whether the gener-
ally observed increase of shoot defensive compounds is a
result of active defense signaling and de novo synthesis
in the shoot or whether the metabolites are translocated
from the root to the shoot. We discuss both possibilities
below.

In the reverse direction, effects of shoot herbivores
on basal levels of root defenses have been observed
(Table I). Shoot herbivory or treatment with jasmonic
acid can increase root concentrations of nicotine and
proteinase inhibitors in N. attenuata (Baldwin et al.,
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Table I. Summary of the literature on effects of root treatments (herbivory, mechanical damage, or defense hormone application) on shoot
defenses and vice versa

MD, Mechanical damage; ST, shoot treatment; RT, root treatment; AB, above ground; BG, below ground; n.a., not applicable. For a complementary
table, see Rasmann and Agrawal (2008).

Plant
Root

Treatment

Induced

Root Defense

Altered Basal

Shoot Defense

Shoot

Treatment

Altered

ST-Induced

Shoot Defense

Influences

on Herbivore

AG

Reference

Effects of root treatments on shoot defenses

G. herbaceum Agriotes

lineatus

Terpenoids 1 Increase of terpenoids S. exigua 0 None Reduced

growth

Bezemer

et al.

(2003)

G. herbaceum A. lineatus,

MD

Terpenoid

aldehydes

1 Higher terpenoid

aldehyde levels

S. exigua 0 None n.a. Bezemer

et al.

(2004)

B. oleracea,

Brassica

napus

Delia

floralis

Glucosinolates,

indole-based

compounds

1/2 Higher glucosinolate

contents, lower

indole- based

compounds

n.a n.a. n.a. Birch et al.

(1992)

S. jacobea MD Pyrrolizidine

alkaloids

1 Partially increased

pyrrolizidine

alkaloids (genotype)

M. brassicae 0 None Partially

reduced

survival

Hol et al.

(2004)

B. campestris D. radicum Unknown volatiles 1 Induced volatiles n.a. n.a. n.a. Neveu et al.

(2002)

Maize D. virgifera (E)-b-caryophyllene 1 Increased

(E)-b-caryophyllene

(foliage)

n.a. n.a n.a. Rasmann

et al.

(2005)

Maize D. virgifera (E)-b-caryophyllene 0 None

(headspace)

S. littoralis 2 Reduced

volatiles

(trend)

n.a. Rasmann

and Turlings

(2007)

Spinach MD, MeJA 20-Hydroxyecdysone 1 Small induction

of 20E

S. exigua,

MD, MeJA

0 None n.a Schmelz

et al.

(1998)

Spinach Otiorhynchus

sulcatus

20-Hydroxyecdysone 0 None n.a. n.a. n.a. Schmelz

et al.

(1999)

B. nigra D. radicum n.a. 1 Higher sinigrin levels P. brassicae 0/1 None/trend

for increased

sinigrin levels

(young leaves)

Reduced

growth

Soler et al.

(2005)

B. nigra D. radicum n.a. 1 More volatile sulfides

(headspace)

P. brassicae 2/1 Altered volatile

profile

n.a. Soler et al.

(2007)

N. attenuata MeJA Proteinase

inhibitors

1 Higher proteinase

inhibitor levels

n.a. n.a. n.a. van Dam et al.

(2001)

B. oleracea,

B. nigra

JA/SA Glucosinolates

(JA)

1 Induced glucosinolates

(JA)

JA, SA 1 More total

glucosinolates

(JA/JA)

n.a. van Dam

et al.

(2004)

B. nigra D. radicum n.a. 2/1 Less total

glucosinolates,

more phenolics

P. rapae 1 More total

phenolics

Reduced

growth and

survival

van Dam

et al.

(2005)

B. oleracea,

B. nigra

D. radicum Indole

glucosinolates

0/1 None/higher

glucosinolate levels

(plant species)

n.a. n.a. n.a. van Dam and

Raaijmakers

(2006)

G. herbaceum A. lineatus,

MD

n.a. 1 Induced

extrafloral

nectar

n.a. n.a. n.a. Wäckers and

Bezemer

(2003)

Plant Shoot

Treatment

Induced

Shoot Defense

Altered Basal

Root Defense

Root

Treatment

Altered

RT-Induced

Root Defense

Influences

on Herbivore

BG

References

Effects of shoot treatments on root defenses

N. attenuata MD Nicotine 1 Nicotine n.a. n.a. n.a. Baldwin

et al.

(1994)

G. herbaceum S. exigua Terpenoids 0 None A. lineatus 2 Nonsignificant

reduction of

terpenoids

None Bezemer et al.

(2003)

G. herbaceum S. exigua Terpenoid

aldehydes

0 None A. lineatus,

MD

2 Reduced terpenoid

aldehyde levels

n.a. Bezemer

et al.

(2004)

(Table continues on following page.)
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1994; van Dam et al., 2001), as well as glucosinolates in
Brassica campestris and B. nigra (Ludwig-Müller et al.,
1997; Soler et al., 2007). In contrast, reduced concen-
trations of other defense-related compounds can also
be observed, such as in the case of pyrrolizidine
alkaloids in the roots of S. jacobea after herbivory on
shoots (Hol et al., 2004). Other studies found no clear
effects of shoot treatments on basal levels of root
defensive compounds, including terpenoids in G.
herbaceum and maize (Bezemer et al., 2003, 2004;
Rasmann and Turlings, 2007), phytoectosteroids in
spinach (Schmelz et al., 1998), pyrrolizidine alkaloids
in Cynoglossum officinale (van Dam and Vrieling, 1994),
and glucosinolates in Brassica oleracea and B. nigra (van
Dam et al., 2004). Various patterns can be found, even
for different genotypes of the same species (van Dam
and Vrieling, 1994), making it difficult to draw general
conclusions on how shoot treatments affect basal
levels of root defenses.

Aboveground and Belowground Changes of
Induced Defenses

The above examples deal with single challenges of
plant tissue that affect nonattacked parts of the plant.
However, recent studies show that effects of herbivory
on distant tissues do not always result in changes of
defense substances, but rather in how these tissues
respond when they themselves are subsequently at-
tacked (Table I). This is the principle of priming for

defense, a cost-effective way of ‘‘getting ready for battle’’
that results in faster and stronger defense responses
upon attack (Conrath et al., 2006; van Hulten et al.,
2006; Frost et al., 2008). Whereas several studies indi-
cate that root herbivory results in enhanced resistance
against aboveground attackers (Bezemer et al., 2003;
Hol et al., 2004; Soler et al., 2005; van Dam et al., 2005),
the importance of priming has not been thoroughly
investigated in this context. van Dam et al. (2005) found
that Delia radicum attack of the roots resulted in lower
initial glucosinolate levels in the shoot of B. nigra. Upon
leaf damage by Pieris rapae, however, aboveground
glucosinolate levels increased more strongly in these
plants, suggesting that B. nigra leaves were primed for
defense. In contrast, Soler et al. (2005) found no clear
effect of belowground herbivory on glucosinolate levels
in B. nigra leaves attacked by Pieris brassicae, implying
that aboveground and belowground responses may
depend on the herbivore combination. Because prim-
ing often merely involves a faster defense reaction upon
attack, its occurrence can easily be missed if measure-
ments are taken only at one time point. Intensity and
timing of direct defenses might be most easily ob-
served by measuring the expression of defense marker
genes and hormone levels (Engelberth et al., 2004; Ton
et al., 2007) rather than a small subsample of defense-
related secondary metabolites present in a plant. It has
also been found that root herbivory can reduce herbi-
vore-induced defense responses in the shoot, specifi-
cally the production of volatile terpenoids as shown

Table I. (Continued from previous page.)

Plant
Shoot

Treatment

Induced

Shoot Defense

Altered Basal

Root Defense

Root

Treatment

Altered

RH-Induced

Root Defense

Influences

on Herbivore

BG

References

S. jacobea Mamestra

brassicae

None

(pyrrolizidine

alkaloids)

2 Reduced

pyrrolizidine

alkaloids

MD 0/2 Partially reduced

pyrrolizidine

alkaloids

(genotype)

n.a. Hol et al.

(2004)

B. campestris JA, SA Glucosinolates 1 Higher level of

glucosinolates

n.a. n.a. n.a. Ludwig-Müller

et al.

(1997)

Maize S. littoralis (E)-b-caryophyllene 0 None D. virgifera 2 Reduced

(E)-b-caryo-

phyllene

n.a. Rasmann and

Turlings

(2007)

Spinach S. exigua,

MD, MeJA

None (20E) 0 None n.a. n.a. n.a. Schmelz et al.

(1998)

B. nigra P. brassicae n.a. 1 Higher indole

glucosinolate

levels

D. radicum n.a. Reduced

survival

and

size

Soler et al.

(2007)

N. attenuata MJ, MD Proteinase inhibitors 1 Higher level

of trypsin

proteinase

inhibitors

n.a. n.a. n.a. van Dam et al.

(2001)

B. oleracea,

B. nigra

JA, SA Glucosinolates 0 None JA, SA 0 None discussed n.a. van Dam et al.

(2004)

C. officinale MD Pyrrolizidine

alkaloids

1/2 Higher/lower

level of

pyrrolizidine

alkaloids

(genotype)

n.a. n.a. n.a. van Dam and

Vrieling

(1994)
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for B. nigra (Soler et al., 2007) and maize (Rasmann and
Turlings, 2007). Suppression of inducible plant de-
fenses could be of benefit if the plant has to ‘‘set
priorities’’ in cases of resource limitations and differ-
ential effects on fitness.

The effects of shoot herbivory on belowground
herbivore-induced root defenses have received little
attention. Bezemer et al. (2003, 2004) found that shoot
attack leads to a reduction of root treatment-induced
terpenoids and terpenoid aldehydes in G. herbaceum. A
similar phenomenon was observed for terpenoid vol-
atiles in maize (Rasmann and Turlings, 2007). We are
not aware of any study that reports an increase of
belowground herbivore-induced root defenses upon
shoot herbivory, and it has been speculated that when
attacked by both aboveground and belowground her-
bivores simultaneously, plants preferentially allocate
their defenses to the shoot (Bezemer et al., 2004;
Rasmann and Turlings, 2007). This hypothesis awaits
further testing. Another exciting possibility is that
herbivores themselves manipulate plant defenses in
their favor, which could also result in changes in

distant tissues. This could simply be suppression of
defense responses (Musser et al., 2002) or activation of
defenses that are ineffective against the herbivore
itself, but might affect other attackers. Such ‘‘decoy
strategies’’ could be of major ecological significance
and should be kept in mind when investigating above-
ground and belowground interactions.

THE PHYSIOLOGICAL BASIS OF
ROOT-SHOOT INTERACTIONS

The findings discussed in the previous section
strongly suggest that signals are exchanged between
roots and shoot upon herbivore attack. Root-shoot
communication likely follows either the internal vas-
cular network of the plant (i.e. phloem and xylem
bundles; Orians, 2005; Atkins and Smith, 2007) or the
external route via volatile signaling. These possible
routes and preferential flows are depicted in Figure 1.
It remains largely unclear which signals and/or com-
pounds are mediating the interactions between root

Figure 1. Model of the signaling processes behind plant-mediated aboveground and belowground interactions. Herbivores
attack roots and shoot of a plant, resulting in the production of various stress-related signals. As depicted in the enlarged section
of a monocotyledonous vascular bundle (right), aboveground and belowground signaling will most probably involve root-to-
shoot transport via xylem vessels (1), bidirectional translocation via the phloem (2), exchange between the vascular tissue and the
surrounding cells (3), and nonvascular cell-to-cell signaling (4). External communication with volatile compounds that can reach
distant parts of the plant is also possible (5), as illustrated for a maize seedling (left). Possible mediators of the interactions are
typical stress signals such as plant hormones and volatiles, as well as bioactive nonhormonal metabolites.
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and shoot. The extremely variable effects of root
herbivores on shoot responses and vice versa make it
unlikely that one specific signal or process is involved.
We discuss three classes of compounds that could be of
major importance in this context: plant hormones,
volatile organic compounds, and nonhormonal sec-
ondary metabolites.

Plant Hormones

Plant hormones are crucial components of the reg-
ulatory network underlying plant growth, develop-
ment, and defense reactions. Several hormones have
been implicated in root-shoot communication and
might therefore mediate aboveground and below-
ground interactions in response to herbivory.

Auxin is readily translocated from the shoot to the
roots (Reed et al., 1998), where it promotes root cell
proliferation and elongation (Hager et al., 1971). Be-
lowground attack can result in compensatory root
growth (Steinger and Müller-Schärer, 1992), thereby
likely affecting the auxin-cytokinin balance (Woodward
and Bartel, 2005), which is of major importance in reg-
ulating aboveground and belowground metabolic states.
Application of synthetic auxin (1-naphtaleneaic acid)
to spinach roots has been found to enhance levels of root
phytoecdysteroids (Schmelz et al., 1999) and causes
root to shoot dry mass ratios to shift. This shift indi-
cates higher resource allocation to the roots (Schmelz
et al., 1999) and implicates auxin’s role as a possible
regulator of aboveground and belowground feedback.
Indeed, transcriptional up-regulation of the auxin marker
gene ZmSAUR2 in the roots of maize upon belowground
feeding by Diabrotica virgifera was found (M. Erb, J.
Ton, and T.C.J. Turlings, unpublished data), indicative
of increased auxin shoot-root translocation or biosyn-
thesis in the roots.

Abscisic acid (ABA) represents a classic example of
a xylem-translocated root-shoot hormone (Davies and
Zhang, 1991; Jackson, 1997; see also Christmann et al.,
2005, 2007). Whereas ABA is traditionally associated
with responses to drought stress (Davies and Zhang,
1991), it is becoming evident that it may also have an
important role in herbivore defense (Anderson et al.,
2004). Schmelz et al. (1999) found that application of
ABA to the roots of spinach decreased the concentration
of the defensive phytoecdysteroid 20E in the shoot. ABA
deficiency has been shown to enhance the performance
of both Spodoptera exigua on Solanum lycopersicum and
Spodoptera littoralis on Arabidopsis (Arabidopsis thaliana;
Thaler and Bostock, 2004; Bodenhausen and Reymond,
2007). Furthermore, root herbivory can elicit drought-
like responses in plants (Gange and Brown, 1989), which
may represent an additional link between ABA and
aboveground and belowground interactions. This is
expected to be especially important when herbivores
severely damage root systems, as is the case for var-
ious chewing insects. Hence, further research into the
role of ABA in plant-mediated interactions between
root and shoot herbivores is certainly warranted.

Jasmonic acid (JA) is often considered to be the
central hormone governing systemic plant responses
to herbivory above ground (Farmer and Ryan, 1992;
Howe et al., 1996; McConn et al., 1997) and probably
has a similar role below ground (McConn et al., 1997;
Schmelz et al., 1999; Puthoff and Smigocki, 2007).
Compounds of the JA family are suggested to be re-
sponsible for long-distance wound signaling (Stratmann,
2003; Wasternack et al., 2006), a fact supported by the
ability of methyl jasmonate (MeJA) to move readily
along both xylem and phloem pathways (Thorpe et al.,
2007), as well as through the air (Farmer and Ryan,
1990). The potential of JA as an aboveground and be-
lowground regulator is indicated by the fact that, when
applied to the leaves of Nicotiana sylvestris, it seems to
be transported to the roots, where it induces nicotine
synthesis (Zhang and Baldwin, 1997). Furthermore,
application of JA (or MeJA) to roots induces shoot
defenses (Baldwin, 1996; van Dam et al., 2001, 2004),
providing additional evidence for its key role in root-
shoot interactions.

Salicylic acid (SA) is usually implicated in defense
responses to pathogens, but can also be involved in
plant responses upon herbivore attack (Zarate et al.,
2007). It is not clear, however, in what respect SA
functions as a systemic signal. It is unlikely that SA is
the translocated signal inducing resistance in plant-
pathogen interactions (Ryals et al., 1996), and van Dam
et al. (2004) found no systemic effects of SA applied to
either roots or shoots on glucosinolate levels in two
Brassica species. However, the methylated form of SA
(MeSA) is a mobile signal that is required for systemic
resistance induction in tobacco (Nicotiana tabacum)
plants (Park et al., 2007). MeSA and may also function
as an airborne signal (Shulaev et al., 1997). Root
systems damaged by herbivores can be assumed to
have an increased risk of colonization by microorgan-
isms, be it from the oral secretions of the attacker itself
or from the rhizosphere. Hence, SA-related defenses
induced in response to herbivory could be adaptive
and also modulate aboveground defenses, for exam-
ple, via SA/JA cross talk (Niki et al., 1998).

Finally, ethylene and its precursor 1-amino-cyclo-
propane-1-carboxylic acid have a well-known function
in positive root-shoot signaling (Bradford and Yang,
1980; Jackson, 1997). Research focusing on plant hor-
monal cross talk has shown the importance of ethylene
in modulating responses to biotic stress above ground
(Xu et al., 1994; Odonnell et al., 1996; van Loon et al.,
2006), which includes activity upon attack by arthro-
pod herbivores (Kendall and Bjostad, 1990; von Dahl
and Baldwin, 2007). Puthoff and Smigocki (2007)
found an up-regulation of genes responsive to root
herbivory in Beta vulgaris upon ethylene treatment, a
first indication that ethylene is also involved in root
defenses. Because of its volatility, ethylene can either
diffuse through the vascular tissue directly into the
shoot (Jackson and Campbell, 1975) or travel exter-
nally, diffusing from the rhizosphere (Jackson and
Campbell, 1975) to the phyllosphere. Because it is
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likely that ethylene is involved in volatile defense
signaling within and between plants (Ruther and
Kleier, 2005; J. Ton, unpublished data), it is imperative
to study this compound as a possible root-shoot signal
in plant-arthropod interactions.

Volatile Organic Compounds as Root-Shoot Signals

Apart from ethylene, a wide range of other volatile
organic compounds are synthesized and released after
herbivore attack above and below ground (e.g. Rasmann
et al., 2005; D’Alessandro et al., 2006). Plant volatiles,
in particular induced volatiles, have long been impli-
cated in plant-plant communication. The benefit of
such communication for the emitting plant is ques-
tionable, unless the information is passed on to a closely
related plant. Moreover, volatile signals can be exploited
by herbivores (Carroll et al., 2006; Halitschke et al.,
2008) and even parasitic plants (Runyon et al., 2006). A
more adaptive functioning of volatiles is in overcom-
ing the plant’s vascular constraints and communicat-
ing between parts of the same plant (Frost et al., 2007;
Heil and Silva Bueno, 2007). There is increasing evi-
dence that green-leaf volatiles (GLVs) play an im-
portant role in this context (Arimura et al., 2001;
Engelberth et al., 2004; Ruther and Furstenau, 2005).
Some GLVs belong to the family of reactive electro-
phile species, which have recently been implicated as
stress and defense signals (Farmer and Davoine, 2007).
Several reactive electrophile species are very short-
lived and therefore could be ideal short-range signals.
We have found evidence that GLVs, despite their name,
are also released from crushed roots of maize (M. Erb
and T.C.J. Turlings, unpublished data). In the only
study that looked for belowground GLVs, Steeghs
et al. (2004) did not detect any emission from artifi-
cially damaged Arabidopsis roots, possibly because
the ecotype they used (Columbia-0) carries a mutation
severely affecting hydroperoxide lyase activity and C6
volatile synthesis (Duan et al., 2005). GLVs, if indeed
produced by the roots, and other volatiles are likely to
diffuse into the phyllosphere and change the physio-
logical state of plants above ground (Fig. 1). Research
on the biochemistry of GLVs and other volatile organic
compounds is progressing rapidly (Matsui, 2006;
Schnee et al., 2006; D’Auria et al., 2007), revealing
new experimental approaches to test for their effects.

Translocation of Nonhormonal Secondary Metabolites

Secondary metabolites with defensive properties are
by no means bound to either the roots or the shoot of a
plant, and their translocation could account for many of
the observed effects of cross-resistance and interactions
between aboveground and belowground plant de-
fenses. Nicotine is the prime example of a secondary
metabolite that it synthesized in the roots of Nicotiana
spp. and then translocated to the shoots to unleash its
antiherbivore properties (Shoji et al., 2000, and refs.
therein). van Dam and Vrieling (1994) report a negative

relationship between changes in wound-induced pyr-
rolizidine alkaloid content in the roots and shoots of C.
officinale, which can be seen as an indication for within-
plant transport of this class of compounds. Rasmann
et al. (2005) found increased levels of (E)-b-caryophyl-
lene in maize shoots upon root feeding by D. virgifera.
Koellner et al. (2008) found no indication of higher
transcriptional activity of the corresponding terpene
synthase in the shoot upon D. virgifera feeding on the
roots, indicating that it is the compound itself that is
translocated from the roots to the shoot. A recent study
on terpenoid synthesis in carrots (Daucus carota) found
(E)-b-caryophyllene to be independently synthesized in
the roots and shoots (Hampel et al., 2005). These indic-
ative results underpin the possibility that it is not nec-
essarily only the activation of aboveground defenses
that leads to higher concentrations of secondary com-
pounds in the shoot upon root herbivory, but also simple
translocation, be it active transport or passive diffusion.

CONCLUSION

Plant-mediated interactions between aboveground
and belowground arthropod herbivores can have pro-
found effects on natural and agricultural food webs.
Although only few studies have specifically looked at
defense responses of plants that have been subjected to
both root and shoot herbivory, it is clear that there is
considerable complexity, which depends on a variety
of biotic and abiotic factors. Even with our limited
knowledge, we can conclude that it is unlikely that all
effects are the result of the same physiological pro-
cesses. Research into the mechanisms as well as the
ecological significance of root-shoot feedback effects is
sorely needed, and current progress in plant biochem-
istry and targeted molecular manipulation is likely to
reveal which genes and pathways are involved. Recent
discoveries focusing on priming for defense and the
role of volatiles as external cues involved in plant
defense responses show great promise for better un-
derstanding of within-plant signaling. Applying this
knowledge for comprehensive insight into the ecolog-
ical relevance of cross-effects between aboveground
and belowground interactions requires close collabo-
ration between plant physiologists and ecologists.
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