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A large number of cis-regulatory motifs involved in transcriptional control have been identified, but the regulatory
context and biological processes in which many of them function are unknown. Here, we computationally identify
the sets of human core promoters targeted by motifs, and systematically characterize their function by using a
robust gene-set-based approach and diverse sources of biological data. We find that the target sets of most motifs
contain both genes with similar function and genes that are coregulated in vivo, thereby suggesting both the
biological process regulated by the motifs and the conditions in which this regulation may occur. Our analysis also
identifies many motifs whose target sets are predicted to be regulated by a common microRNA, suggesting a
connection between transcriptional and post-transcriptional control processes. Finally, we predict novel roles for
uncharacterized motifs in the regulation of specific biological processes and certain types of human cancer, and
experimentally validate four such predictions, suggesting regulatory roles for four uncharacterized motifs in cell
cycle progression. Our analysis thus provides a concrete framework for uncovering the biological function of
cis-regulatory motifs genome wide.

[Supplemental material is available online at www.genome.org.]

Coordinated control of gene expression is key in nearly all bio-
logical processes. The instructions for achieving this coordina-
tion are encoded in the DNA sequence by a regulatory network
that, for each gene, specifies a small number of transcription
factors responsible for controlling its expression. Each transcrip-
tion factor recognizes short DNA-binding site motifs, typically
6–12 bp in length, and by binding these sites can induce or in-
hibit transcription of the nearby gene. Various experimental and
computational approaches, most notably genome-scale chroma-
tin immunoprecipitation analysis (ChIP-chip) and comparative
genomic methods that exploit evolutionary conservation
(Cliften et al. 2003; Kellis et al. 2003; Xie et al. 2005), have had
much success in cataloging regulatory motifs for transcription
factors (Wingender et al. 2001). However, the next task of iden-
tifying the biological functions regulated by these motifs remains
an important challenge, and the function of many of the motifs
is not known or is poorly characterized based on examination of
a handful of target genes of the motif.

Here, we present a gene-set-based approach to systemati-
cally characterize the function of cis-regulatory motifs in human
core promoters. Our approach consists of two main steps. First,
we use a probabilistic approach to computationally identify the
targets of each motif and motif combination. Next, we identify
the biological function of the motifs and the conditions in which
they are active by testing the overlap of their predicted targets
with sets of genes known to have similar biological functions and
analyze the behavior of their targets in large compendiums of
gene expression profiles.

For the first step of identifying the targets of each motif,
simply searching for motif occurrences in promoters results in
many false positive predictions, since the motifs, being short
sequences, appear by happenstance in many promoter regions.
For this reason, approaches for identifying transcription-factor
targets genome wide are based on discovering statistically signifi-
cant clusters of motifs (Berman et al. 2002; Blanchette et al. 2006;
Chang et al. 2006; Hallikas et al. 2006). We previously developed
a hidden Markov model (HMM) for this task (Sinha et al. 2003),
which computes the likelihood that a regulatory region was gen-
erated by the model, thereby removing the need for using ad-hoc
thresholds and conservation filters for defining motifs. Through
extensive experimental validation, our approach was shown to
have much utility for identifying regulatory regions in fly
(Schroeder et al. 2004). Here, we extend our HMM model into a
computational pipeline for identifying targets of both individual
motifs and motif combinations (pairs and triplets of nonredun-
dant motifs), and apply it to human core promoters, thus deriv-
ing a “motif target map” of human (Fig. 1A). This map assigns a
set of core promoters (and respective genes) as being the target set
of each motif or motif combination considered.

Given these target sets, our second step attempts to charac-
terize the biological function of each motif by testing the asso-
ciation of its target set with biologically meaningful gene sets.
Motifs whose targets are significantly enriched with genes of
similar biological function are probable candidates for regulating
that biological function. Similarly, motifs whose targets are co-
ordinately expressed in specific genome-wide expression micro-
arrays are likely to regulate their targets under the biological con-
ditions represented by those microarrays. A critical feature of our
approach is that when characterizing the function of each motif,
all of the analyses are done at the gene-set level by comparing the
target set of the motif to biologically meaningful gene sets. Since
significant enrichments can still be identified even if some mem-
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bers of the compared gene sets are incorrectly classified, such a
gene-set-based approach will be robust to errors in predictions of
individual motif–target interactions from the first step, and can

thus be used for associating biological functions to motifs with
high confidence.

Our analysis reconstructs validated roles for known motifs,

Figure 1. Overview of our approach and comparison to other methods. (A) Flowchart of our motif functional characterization pipeline. (B) Com-
parison of the number of significant enrichments between gene sets from Gene Ontology (GO) (Ashburner et al. 2000) and motif modules defined using
our approach, GO and an alternative approach based on best motif occurrences, or GO and our approach applied to permuted promoters. For each
particular FDR threshold f, the comparison shows the number of GO-motif target set pairs with FDR < f. (C) Comparison of the ability of our method
(Y-axis) and best motif occurrences method (X-axis) to predict TP53 binding to 542 sequences experimentally measured to be strongly bound to TP53
by genome-wide chromatin immunoprecipitation followed by sequencing of paired end ditags (PET) (Wei et al. 2006). For each experimentally
identified PET region, shown is the predicted binding P-value of each method, determined by comparing the likelihood score of the original region to
that obtained in 10,000 regions randomly selected from the human genome. PET regions are separated into two types by their length (green and blue).
Of the 542 PET regions, 397 have a fivefold lower P-value in our method (gray shaded area above diagonal), compared with nine with a fivefold lower
P-value in the score-based method.
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suggests novel roles for uncharacterized motifs in the regulation
of diverse biological processes, and identifies links between tran-
scriptional and post-transcriptional control processes by the
finding that targets of many motifs are also predicted to have a
common microRNA regulator. By examining the behavior of mo-
tif targets in large compendiums of genome-wide expression pro-
files, we identify prominent roles for many uncharacterized mo-
tifs in the dysregulation of gene expression in certain types of
human cancers, suggesting novel mechanisms of pathogenesis.
Finally, we experimentally validate four such novel predictions
generated by our approach, suggesting regulatory roles for four
uncharacterized motifs in cell cycle progression.

Results

Constructing a motif target map of human core promoters

To construct a motif target map of human core promoters, we
applied our computational pipeline (described below) to find tar-
gets of 432 motifs (Wingender et al. 2001; Xie et al. 2005) in
17,365 human core promoters, defined as the 500 bp upstream
and 200 bp downstream from the annotated transcription start
site. This choice of promoter size is motivated by the finding that
evolutionarily conserved motifs show a strong bias toward these
regions (Xie et al. 2005). The 432 motifs included 258 experi-
mentally characterized motifs (Wingender et al. 2001) and 174
computationally predicted motifs (Xie et al. 2005).

To identify targets of individual motifs, the pipeline uses our
HMM-based model (Sinha et al. 2003) to compute a likelihood
score for each input motif and promoter sequence, which cap-
tures the number and strengths of occurrences of the motif in the
sequence. This computation integrates contributions from both
weak and strong binding sites and does not use any arbitrary
cutoffs on binding-site strength. To take the local basepair com-
position of each input sequence into account, we compare this
likelihood score with that obtained in a fixed number of permu-
tations of the tested sequence, and only consider as significant
the likelihood scores that are higher than those obtained in all
permutations. Such comparisons are particularly important in
the human genome due to the large variability in basepair com-
position among promoters in general and among promoters of par-
ticular gene sets (Supplemental Fig. S1; Supplemental Table S1).

Next, we systematically identify motif combinations that
are likely to act together on a set of target genes. Specifically, we
iterate over every pair and three-way combination of constituent
motifs and report it as a motif combination if it meets two cri-
teria. First, the target set of the putative motif combination, as
determined by intersecting the target set of its constituent mo-
tifs, must be significantly larger than that expected by chance.
Second, the likelihood score of the motif combination has to be
significantly higher than that obtained from each constituent
motif alone. This latter requirement allows us to distinguish be-
tween true combinatorial interactions and apparent interactions
due to redundant or similar motifs. Finally, by iterating this step
of identifying motif combinations, we identify motif combina-
tions of higher order (Fig. 1A).

Overall, we found target sets for all individual motifs and for
471 motif combinations that were deemed significant based on
the above criteria. Each of these 903 target sets, henceforth called
“motif modules”, thus represents a unique combination of en-
riched transcription-factor binding sites. As a negative control,
we applied the same procedure to a promoter set generated by

permuting the sequence of each promoter. We found only
41,015 predicted targets (for individual motifs) in these permu-
tations, significantly less than the 281,012 targets found in the
real promoter set. Moreover, the permuted promoter set did not
produce any significant motif combinations, strongly validating
the specificity of our pipeline.

As an independent validation of our method, we tested
whether genes in the predicted target sets (motif modules) are
significantly enriched in nonredundant biological categories
from Gene Ontology (Ashburner et al. 2000). Indeed, among
∼4 � 105 (motif, GO category) pairs that were tested, 487 pairs,
covering 160 different motifs and 164 different GO categories,
significantly associated at a false discovery rate (FDR) threshold
of 0.05. Moreover, no such statistical association was observed in
the negative control of permuted promoters (Fig. 1B), strongly
suggesting that the observed enrichments represent true biologi-
cal associations. This result highlights the robustness of our gene-
set-based approach for identifying the biological functions of
motifs: although 41,015 false positive targets are predicted in
permuted promoters, their resulting motif target map has no as-
sociations with known biological functions, in contrast to the
large number of such associations found for the map constructed
on real promoters. As another control, we also created permuted
versions of the input position-specific scoring matrixes (PSSMs),
and ran our analysis pipeline on these motifs. As with the control
of permuting sequences, we find that the resulting motif map in
this control has zero significant associations between GO catego-
ries and the target genes predicted for these permuted motifs
(data not shown).

To evaluate the utility of integrating contributions from
both weak and strong sites, and of not using arbitrary cutoffs on
binding-site strength, we compared our probabilistic HMM-based
method with an alternative method in which the best motif score
within the tested promoter is taken as the score of the motif on
each promoter, and the target set of each motif is taken as the top
N scoring promoters. By setting the target set size of each motif,
N, to be equal to that which our HMM model obtained for that
motif, we obtain the most fair comparison and find that our
method leads to significantly more (motif, GO category) associa-
tions than this alternative method (Fig. 1B).

As another validation, we tested the ability of our method to
predict target genes of the tumor suppressor TP53 in 542 strongly
bound regions that were recently identified using chromatin im-
munoprecipitation experiments (Wei et al. 2006). Our method
assigned a significant score (P < 0.01 by comparison with scores
assigned to randomly shuffled versions of each region) to 440
(81%) of these regions. Notably, for 397 (73%) regions, our
method was significantly better than the above described highest
motif occurrence score method at discriminating these sequences
from their randomly shuffled versions. Only nine (2%) sequences
scored higher using the highest motif occurrence score method
(Fig. 1C). These improved results were largely attributable to our
integration of weak binding sites, which we found to be particu-
larly important in the longer TP53-bound regions obtained by
the ChIP experiment (Wei et al. 2006) due to their higher prob-
ability of containing multiple low-affinity but functional sites
(data not shown).

Identifying biological processes regulated by cis-regulatory motifs

Given our motif target map, which specifies the targets of motifs
and motif combinations, we set out to identify the biological
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process regulated by each motif. To this end, we compiled a col-
lection of 3519 gene sets from various sources, comprising groups
of genes that share similar functions (Ashburner et al. 2000;
Dahlquist et al. 2002; Kanehisa et al. 2002), possess similar pat-
tern of expression (Segal et al. 2004; Su et al. 2004), or are pre-
dicted to be regulated by the same microRNAs (Krek et al. 2005;
Lewis et al. 2005), and tested the overlap of these gene sets with
our motif modules. If a set of coordinately functioning or coex-
pressed genes were to share a common upstream regulatory mo-
tif, such motifs may be important regulatory mechanisms for
that biological process. We found 9940 such significant associa-
tions (FDR < 0.05) for 809 gene sets and 568 motifs (or combi-
nations thereof), yielding what we call a “motif function map”
(Fig. 2A). This map assigns zero or more gene sets to each motif
(or combinations) in our collection, corresponding to the gene
sets whose member genes are enriched in the target gene set of
the motif. We next discuss several intriguing insights of the map,
but note that the full map is available for further exploration
from our website.

The motif function map identified the known master regu-
lators of specific biological functions, including E2F for cell pro-
liferation (Giacinti and Giordano 2006), NF-�B for immune re-
sponse (Hayden and Ghosh 2004), and the heat-shock factor HSF
for the unfolded protein response (Morimoto et al. 1997) (Fig.
2B). The enrichments also predicted the known role of several
tissue and organelle-specific transcription factors, such as REST
(also known as NRSF) for neuronal genes (Coulson 2005) and
NRF1 (nuclear respiratory factor 1) for mitochondria-related
genes (Goffart and Wiesner 2003) (Fig. 2C). The motif enrich-
ments also suggested novel regulators for various gene sets. For
example, cytoskeletal genes were enriched for the motif module
MYOD, a known regulator of myogenesis genes (Bergstrom et al.
2002), but these genes were also enriched for the factors TCF3
(E12/E47) and AP4 (TFAP4), neither of which have known cyto-
skeleton regulation roles (Fig. 2D). As another example, ELK1, a
known downstream effector of multiple MAPK pathways (Yordy
and Muise-Helmericks 2000), is predicted to regulate RNA pro-
cessing and translation (Fig. 2D). Finally, we identified 204 func-
tional enrichments for targets of uncharacterized motifs, suggest-
ing specific regulatory contexts and biological functions for 55 of
105 uncharacterized motifs (e.g., see Fig. 2B, discussed in detail
below). Overall, the comparison of motif modules with gene sets
from various sources predicts roles for hundreds of motifs and
motif combinations in the regulation of diverse biological pro-
cesses, a large number of which represent novel regulatory inter-
action hypotheses. These predictions reconstruct validated regu-
latory relationships from the literature and do not identify any
significant associations in permuted promoters, thus increasing
the likelihood that many of the predicted associations are bio-
logically meaningful.

A link between transcriptional regulation and microRNA
regulation

An intriguing finding from the above comparisons of motif mod-
ules and biological gene sets (Fig. 2A) is that 334 motif modules
have significant overlaps with sets of microRNA targets (Krek et
al. 2005; Lewis et al. 2005). MicroRNAs bind the 3� untranslated
regions of target mRNAs and either degrade or block the transla-
tion of the target mRNA (Lim et al. 2005). Since microRNAs are
predicted to target ∼20% of human genes (Xie et al. 2005), the
fact that their target genes often are motif targets is not surpris-

ing. However, our above finding goes beyond a generic overlap
between motif targets and microRNA targets, and identifies a
large number (6865) of specific motif and microRNA pairs, in
which the motif targets are significantly enriched with targets for
its paired microRNA. This correspondence thus suggests a strong
connection between transcriptional and post-transcriptional
control mechanisms, whereby many sets of genes that share a
common transcription-factor regulator also share a common
post-transcriptional microRNA regulator.

Notably, the strongest such overlaps are for motifs whose
consensus sequence is enriched in CG dinucleotides (e.g., ETF,
KROX), raising the possibility that the CG-richness of the motifs,
rather than their specific sequences, underly this association.
Promoters of many genes contain clustered regions of CG-
dinucleotides (CpG islands), and a recent computational study
found a natural partition of human promoters into high and low
levels of CG-dinucleotides (Saxonov et al. 2006). Indeed, separate
from the comparison with our motif modules, we found that
microRNA targets from two independent prediction algorithms
(Krek et al. 2005; Lewis et al. 2005) are strongly enriched for
genes with high CG-dinucleotides, beyond the number of such
genes that would be expected by chance given the large number
of genes with high CG-dinucleotides (Fig. 3A; data not shown).
Analysis of experimental data also confirmed this intriguing en-
richment of microRNA targets in genes with high CG-
dinucleotides in their promoters. First, depletion of DICER1
(Schmitter et al. 2006), required for microRNA biogenesis, led to
coordinate genome-wide induction of genes with high CpG pro-
moters (Fig. 3B). Second, overexpression of miR-1 or miR-124
(Lim et al. 2005) coordinately repressed their respective predicted
microRNA target genes, most of which had high CG-
dinucleotides in their promoters (Fig. 3C). Thus, both gain and
loss of function of microRNAs preferentially target genes
with high CpG promoters, as predicted by the association of
microRNA targets with our motif modules.

To test whether the connection between motif modules and
microRNA targets extends beyond genes with high CG-
dinucleotides in their promoters, we first excluded motifs that
are enriched in CG-dinucleotides. To this end, we only extracted
single cis-motifs with fewer than 1000 targets, as CG-related mo-
tifs almost always contained large numbers of targets (data not
shown). Next, we tested the enrichment of these extracted motifs
in microRNA targets. Indeed, we found 601 significant asso-
ciations, to the extent that 23% of the motifs coregulate target
genes with one or more microRNA, and conversely, 75% of the
microRNAs coregulate targets with at least one motif (Fig. 3D).
For example, target genes of the CEBPA transcription factor
significantly overlap with the targets of miR-20a (P < 10�10), and
FOXO1 targets significantly overlap with miR-9 targets (P < 10�9;
Fig. 3E). Taken together, our results suggest that there is a high
correspondence between the transcriptional and post-tran-
scriptional networks, whereby many sets of genes share both
their transcription factor and microRNA regulators.

Diverse roles for cis-regulatory motifs in human cancers

Next, we asked whether we can identify the roles that our motif
modules may have in driving gene expression programs in can-
cer. Previous approaches to mine cis-regulatory motifs in cancer
gene expression identified only a small number of enriched mo-
tifs, mostly those associated with cell proliferation (Rhodes et al.
2004, 2005). Since human cancers demonstrate large-scale and
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Figure 2. Functional analysis of motif modules. (A) Global view of specific transcription-factor motifs that are enriched in gene sets (by hypergeometric
P-value). Different types of gene sets are distinguished by color, and their intensity corresponds to the significance of the motif module enrichment.
Unsupervised clustering was applied to the resulting matrix. Several clusters are shown in detail (indicated by arrows), with the figure location in
parentheses. (B) Detailed image of motif module clusters with function-specific enrichment. Novel conserved motif modules that we experimentally
validated are highlighted in red. Notations following some transcription-factor names (ex. Q6_01) are identifiers for variants of the motifs according to
TRANSFAC. Stand-alone sequences or sequences in parentheses following a transcription-factor name represent consensus binding motifs from ref. (Xie
et al. 2005) (key for combination of nucleotides: Y = C or T; R = A or G; W = A or T; S = C or G; K = T or G; M = C or A; N = unknown). Individual motifs
of motif combinations are separated by a colon. (C) Detailed image of tissue/organelle-specific enrichments. (D) Detailed image of novel enrichments.
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systematic variations in gene expression (Segal et al. 2004), it is
clear that the associations identified thus far account for only a
small fraction of the involved motifs. To systematically identify
roles for our motifs in human cancer, we used a compendium of
1975 expression profiles representing 22 distinct human cancers
(Segal et al. 2004), and applied a gene-set-based method (Segal et
al. 2004) to identify motif modules that are coordinately induced
or repressed in each sample of the compendium. As a next step,
we asked whether the arrays in which the targets of each motif
are coexpressed are further enriched for particular clinical anno-
tations. Indeed, we found 751 motifs and motif combinations
(FDR < 0.05) whose targets had similar expression in at least one
cancer annotation, resulting in a higher-order compendium of
activated and deactivated cis-regulatory motifs in clinical out-
comes in cancer (Fig. 4A).

The association between motif modules and expression pat-
terns provided several insights into the transcriptional regulation
of cancer. First, it confirmed known roles for several regulators.
For example, consistent with a previous study (Rhodes et al.
2005), E2F and NFY motif modules, alone and in combination,
were induced in many types of cancers and solid tumors, yet
repressed in their normal tissue counterparts, supporting a role
for these factors in regulating cell proliferation of these tumors
(Fig. 4B; Supplemental Fig. S2). Consistent with a role in regulat-
ing the motif modules, E2F1 (along with additional E2F genes)
and NFYA gene expression levels were highly correlated with

expression levels of their predicted motif modules (E2F1:
R = 0.61, P < 10�37; NFYA: R = 0.33, P < 10�12) (data not shown).
E2F modules (and correspondingly multiple E2F genes) also
showed reduced expression in B-cell lymphomas, consistent with
the previous observation that E2F1 is weakly expressed in this
type of cancer (Moller et al. 2000). Second, the compendium
identified several factors that had widespread roles in cancer,
including breast, liver, lung, leukemia, lymphoma, and brain
samples (Fig. 4C; Supplemental Figs. S3–S6). For example, we
found that activity of the PAX4 motif module could distinguish
lower grade tumors of both breast and lung from higher grade:
higher grade tumors had increased expression of PAX4 target
genes, including MYC, MMP11, and several HOX genes (Fig. 4D).
Third, we predicted novel roles for 92 uncharacterized motifs,
alone or in combination with a known motif, in the regulation of
gene expression in cancer. In total, 991 significant enrichments
were identified in the overlap between targets of uncharacterized
motifs and genes coordinately induced or repressed in cancers of
distinct clinical behaviors, suggesting potentially widespread
roles of uncharacterized regulatory motifs in the biology of can-
cer. Finally, the compendium identified a property of advanced
cancers that was shared across different tumor types. We found
that primary tumors of the same histologic origin tended to have
similar patterns of activated and repressed motif modules, while
metastatic tumors are characterized by motif modules that are
often distinct from those of primary tumors of the same histo-

Figure 3. Extensive coupling between mechanisms of transcriptional and post-transcriptional control. (A) Shown is the number of gene sets of
predicted microRNA targets (Krek et al. 2005; Lewis et al. 2005) that are significantly enriched for High or Low CpG promoter genes (Saxonov et al.
2006) (P < 0.05). The P-value of enrichment of the microRNAs analyzed in C is shown. (B) Concomitant change in genes expression in High vs. Low CpG
promoter genes. Average expression (� SE) is shown. (*) P = 0.001, Student’s t-test. (C) Gene repression by microRNA overexpression (Lim et al. 2005).
(Left) Coordinate repression of predicted microRNA target genes. (Right) Coordinate repression of high CpG promoter genes. Each column is a microRNA
overexpression experiment; each row is a gene set of microRNA targets or CpG promoters. The degree of coordinate gene regulation over expectation
by chance alone is quantified by the color scale. The enrichment of miR-206 targets in miR-1 overexpression is due to the 98% overlap of their predicted
targets by PicTar (Krek et al. 2005). (D) A common modularity between motif modules and microRNA targets. We compared singleton motif modules
with fewer than 1000 member genes against predicted microRNA targets (PicTar). (Left) Percentage of motif modules whose targets are enriched in the
targets of k different microRNAs, for k = 1, 2, 3, 4, >5. (Right) Percentage of microRNA target modules whose targets are enriched in the targets of k
different motif modules, for k = 1, 2, 3, 4, >5. (E) CEBPA_01 targets significantly overlap with miR-20a targets (P = 6 � 10�11), and FOXO1_01 targets
significantly overlap with miR-9 targets (P = 5 � 10�10).

Sinha et al.

482 Genome Research
www.genome.org



Figure 4. Global view of cis-regulation in cancer using motif modules. (A) Clinical annotations organized by their associated activated and deactivated
motif modules. We used the “module map” method (Segal et al. 2004) on a compendium of 1975 arrays spanning 22 different tumor types. We found
arrays in which the genes of each motif module were coordinately induced or repressed (P < 0.05). We then tested the enrichment of these coregulated
arrays of each motif module in clinical annotations of the arrays (Segal et al. 2004) (P < 0.05, corrected for multiple hypothesis testing using FDR), and
applied unsupervised hierarchical clustering to group together clinical annotations that show enrichments for the same motif modules. Intensity of each
enrichment corresponds to the percentage of microarray samples that have motif module target genes significantly induced (up) or repressed (down).
The colors of the branch arms represent specific groups of clinical annotations (the specific tissues listed correspond to the tissue origin of the cancer).
(*) Groups of metastatic/high-grade cancers. Locations of clusters analyzed in detail are shown at the top and left of the figure. (B) Clinical annotation
enrichment of the array signature of E2F and NFY-containing motif modules (E2F-NFY). (C) Motif modules enriched in the leukemia/lymphoma/breast/
liver (Lk/Lym/Bst/Lvr) cluster. (D) Shown are PAX4 motif module genes noted in C that are significantly induced or repressed in the indicated grade/stage
of breast/lung cancer, respectively. PAX4 target gene induction is enriched in the higher grade/stage tumors (P < 0.05, �2 test). (E) Motif modules
enriched in metastatic/high-grade tumors (*Met) of different histologic origins.
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logic origin (Fig. 4A,E). While it is possible that the difference in
surrounding stromal cells may contribute to the different motif
modules observed in metastatic tumor samples, histological
analysis of most of the samples used in our study confirmed the
purity of the tumor tissue, and thus the contribution of sur-
rounding tissue in these samples is likely minimal. These results
suggest that distinct transcriptional pathways are sequentially
altered during cancer progression. By examining the behavior of
motif targets in genome-wide expression profiles from human
cancer, we identify roles for many motifs and paint a rich and
mechanistically-revealing portrait of human cancers that provides
multiple research directions for hypothesis-driven experiments.

Experimental validation of regulatory roles for four
uncharacterized motifs in cell cycle progression

As an example of novel hypotheses suggested by our analysis, we
found four evolutionarily conserved but uncharacterized motifs
(Xie et al. 2005) whose targets were enriched in cell cycle genes
(Fig. 2B, highlighted in red) and induced in at least four types
of human cancers (Fig. 5A), suggesting a role for these motifs in
cell proliferation. The target genes associated with each of these
four motifs had little overlap with each other (Fig. 5B), further
suggesting that these motifs regulate distinct sets of genes during
cell cycle progression. Indeed, these motif modules were periodi-
cally induced at distinct stages of the cell cycle (Whitfield et al.
2002): the KTGGYRSAGAA motif module, whose consensus se-
quence is similar to that of the canonical cell cycle motif E2F,
is induced during the G1/S phase (similar to E2F), while the
ACTWSNACTNY motif module is induced during the G2 phase,
and the CCAATNNSNNNGCG motif module is induced during
the G2/M phase (Fig. 5C). The motif module of TGCGCANK
showed weak association with the G2/M phase.

Given this multitude of evidence, we set out to experimen-
tally validate this hypothesis. We transfected double-stranded
oligonucleotide decoys corresponding to each of the four un-
characterized motifs into HeLa cells. As previously illustrated for
many motif decoys (Cutroneo and Ehrlich 2006), decoy oligode-
oxynucleotides can bind and sequester cognate TFs, thereby re-
vealing the physiologic functions of the endogenous motifs. We
performed microarray experiments following decoy addition to
globally characterize the response at the molecular level. Nota-
bly, by analyzing these genome-wide expression profiles, we
found that genes predicted to contain each motif, as determined
by our motif module map, are significantly repressed as com-
pared with genes that are predicted to lack the motif (Fig. 5D),
suggesting that these motifs act as transcriptional activators of
our predicted targets. Moreover, we measured DNA synthesis fol-
lowing decoy addition and found that each of these four decoys
inhibited cell cycle progression (Fig. 5E,F), with efficacies ap-
proaching that of the E2F motif (Morishita et al. 1995). In con-
trast, scrambled oligonucleotides preserving the nucleotide con-
tent of each of the four tested motifs had no effect. We also
performed FACS analysis, and found that for all four uncharac-
terized motifs, cell cycle arrest occurred in the same phase as
predicted above by target gene induction during cell cycle pro-
gression (Fig. 5F). One exception was with the E2F motif decoy,
where cells arrested in G2/M phase of the cell cycle despite the
induction of E2F target genes during the G1/S phase. However,
E2F has also been shown to regulate the expression of its targets
during G2/M phase in addition to G1/S (Polager et al. 2002; Ren
et al. 2002; Zhu et al. 2005), suggesting that these G2/M target

genes may be more sensitive to E2F function in our motif decoy
experiments. Together, these results thus provide strong experi-
mental evidence that supports our prediction of a regulatory role
in cell cycle progression for these four uncharacterized motifs
and further confirms the ability of the motif module map to
predict novel motif targets.

Discussion

We presented a gene-set-based approach for characterizing the
biological function of cis-regulatory motifs and their condition of
activation consisting of two main steps. In the first step, we take
a set of motifs as input and use a probabilistic approach to iden-
tify their target promoters, and in the second step, we use gene-
set statistical tools to compare the targets of each motif and motif
combination with biologically meaningful gene sets and large
compendiums of gene expression data to characterize their func-
tion and condition of activation. A key advantage of our ap-
proach is the robustness gained by considering the entire set of
targets of each motif when characterizing its biological function,
rather than considering its targets individually. This robustness is
evident in the large number of significant overlaps between our
sets of motif targets and functional gene sets, an overlap that is
not seen when predicting motif targets from permuted promoter
sequences.

Our approach compliments recent work (Pennacchio et al.
2007) that combined gene expression data and transcription-
factor binding site analysis for the purpose of identifying tissue-
specific enhancers in human. However, there are key differences
between the two approaches. First, the goal of Pennacchio and
colleagues was to predict tissue-specific enhancers, whereas our
goal was to provide functional analysis of motif modules, includ-
ing characterizing their biological functions, overlap with
miRNA regulation, and relation to human disease states such as
cancer. Second, they predict TF targets at the single binding-site
level and use sequence conservation as one of the filters. In con-
trast, our method computes the overall score of a promoter and
does not restrict itself only to promoters that can be aligned in
multiple genomes.

We applied our approach to characterize the function of
motifs in human core promoters and identified candidate bio-
logical functions for a large number of motifs, including putative
functions for over 50 uncharacterized motifs. Our approach gen-
erated novel regulatory hypotheses for directed experimentation,
and we experimentally validated roles for four uncharacterized
regulatory motifs in cell cycle progression. When comparing our
motif targets with predicted targets of microRNAs (Krek et al.
2005; Lewis et al. 2005), we found a strong correspondence be-
tween the transcriptional and post-transcriptional regulatory
networks, whereby many sets of genes share both their transcrip-
tion factor and microRNA regulators. While each of these net-
works is known to exhibit a modular organization, the higher
level of organization that we find between these networks has
not, to our knowledge, been reported previously. This finding
suggests that modularity is an important design principle of bio-
logical interactions: sets of genes that are coregulated at one level
remain as indivisible regulatory units in other levels of regula-
tion. Moreover, we find that genes with high CpG promoters are
generally targeted by microRNA genes. Since genes with high
CpG promoters tend to be broadly expressed (Saxonov et al.
2006), it may be that their targeting by microRNAs allows fine-
tuning their expression levels in specific tissues.
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Despite its successes, our approach has several limitations
that need to be addressed. First, additional experiments are
needed to derive more accurate transcription-factor binding-site
descriptions, as some motifs are derived from a small number of
experimentally determined sites. Second, we only examined 700
bp surrounding the annotated transcription start sites, as these
regions are highly enriched in conserved motifs (Xie et al. 2005).
Clearly, other more distal enhancer regions are known to have
important regulatory roles, but including them will require more
sensitivity in the detection due to the additional noise they

bring. Finally, for microRNA targets we relied on computation-
ally derived databases, only a fraction of which have been ex-
perimentally verified. However, the concordance of our findings
using two different microRNA prediction algorithms and our use
of gene set level statistical analysis, suggests that the robust over-
lap between the transcriptional and post-transcriptional net-
works will still hold in improved future versions of microRNA
target predictions.

Overall, our approach provides a functional characterization
of cis-regulatory motifs in human core promoters, identifying

Figure 5. Uncharacterized motifs regulate cell cycle progression. (A) Clinical annotation enrichment of the array signature of E2F_Q6_01 and the four
uncharacterized motif modules. (B) Significance of enrichment of the indicated motif module target genes with all other motif targets is shown. (C)
Shown is the average expression of the indicated motif module genes found in a set of periodically expressed cell cycle genes in HeLa cells (Whitfield
et al. 2002). The stage of cell cycle that the pattern of expression most resembles is indicated on the left. Orange bars signify S phase; arrows signify
mitoses. (D) Decoy oligos corresponding to the uncharacterized motif sequences inhibit target gene expression in HeLa cells. Shown is the average log2
gene expression (� SE) of genes predicted to have the indicated motif (orange) or those that lack the motif (gray). (*) P < 0.05 compared with genes
without motif, Student’s t-test. (E,F) Decoy oligos inhibit cell cycle progression in HeLa cells. (E) Example of BrdU immunofluorescence staining and DAPI
counterstain after introduction of scrambled oligos or decoy oligos for the ACTWSNACTNY motif. (F) Average percentage (� SE) of BrdU-positive cells
after transfection of the indicated scrambled or decoy oligos. The cell cycle phase in which the cells arrested (as determined by FACS) is indicated on
the left. (*) P < 0.01 compared with the respective scrambled oligo, Student’s t-test.
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both the biological process targeted by the motifs and the
conditions in which this regulation occurs. The results of our
analysis as well as our probabilistic method are publicly available
on a data-mining website, which researchers can use to identify
transcription factors that are likely to bind to their own se-
quences of interest or predict specific motifs that drive observed
patterns of gene expression. Thus, our method and tools pro-
vide valuable resources for guiding the identification of cis-
regulatory mechanisms that control a wide range of biological
processes.

Methods

Sequences and motifs
We downloaded the genome sequence and locations of transcrip-
tion start sites from the UCSC genome browser (Karolchik et al.
2003), and used these to define each promoter as 500 bp up-
stream and 200 bp downstream from each transcription start site.
We downloaded DNA-binding sites from TRANSFAC (Wingender
et al. 2001) and Xie et al. (2005) and represented each binding
site as a position-specific scoring matrix (PSSM).

Identifying motif targets
For all input motifs, we identified the set of genes whose pro-
moters significantly contain the particular motif. To this end, for
each motif and a particular gene promoter, we used our proba-
bilistic model (Sinha et al. 2003) to assign a likelihood score that
represents the probability that the promoter sequence contains
the motif, normalized against the background probability in-
ferred from the local nucleotide composition of the same se-
quence. (We use the “HMM0” model described in Sinha et al.
2003.) The probabilistic model treats the PSSMs as prescribing
binding free energies and takes frequency and affinities of sites,
as well as competition among PSSMs into account when com-
puting the score of a particular promoter. Each promoter was
scored for every motif separately, and considered as being a “tar-
get” of the motif if the score had an empirical P-value < 0.01,
estimated from 100 mononucleotide-preserving permutations of
that promoter sequence.

Identifying motif combinations
Each combination Mk of k motifs was combined with each single
motif M1 to form a candidate k+1-motif combination Mk+1 that
was accepted only if three conditions were met: (1) The target set
size for Mk+1 was significantly large compared with that expected
at random from intersecting the target sets of Mk and M1 (hyper-
geometric test, FDR [Benjamini and Hochberg 1995] < 0.05). (2)
Mk+1 had a higher statistical significance, as per the above test,
than that of Mk. (3) The likelihood score of Mk+1 on a promoter
(using our probabilistic model; Sinha et al. 2003) improved (on
average, across all promoters) upon the likelihood scores of Mk

and M1. To enforce this, we computed the (log) likelihood score
Fk, F1, and Fk+1, for Mk, M1, and Mk+1, respectively, on each pro-
moter, and took the ratio of the observed increase in score
(min[Fk+1 � Fk, Fk+1 � F1]) to the approximate increase in score
expected if the two motifs are nonredundant (min[Fk, F1]). We
required the average of this ratio to be >0.8, to ensure that M1 is
not redundant with Mk. This step thus allows us to identify the
coordinately acting motif combinations and exclude the combi-
nations of redundant motifs that may result simply from the
high similarity between the input motifs.

Comparison with alternative methods of scoring promoters
We implemented an alternative strategy for computing the target
set of genes for any motif. It relies on the log likelihood ratio
(LLR) score of a substring s, defined as LLR(s) = log[Pr(s | W)/
Pr(s | Wb)], where Pr(s | W) is the probability of sampling s from
PSSM W, and Pr(s | Wb) is the background sampling probability
of s (local background, as used in our score). The highest LLR
score over all substrings in a promoter is assigned as the score of
the gene. Genes are sorted by their score, and a threshold is
applied to choose the top N genes, where N is the size of the
target set that our HMM model obtained for that motif. To com-
pare our probabilistic scoring scheme with this alternative strat-
egy, we considered each Gene Ontology (GO) (Ashburner et al.
2000) category with 10–1000 genes (the upper bound on the
gene sets was done to remove nonspecific GO categories) and
formed a “GO gene set” corresponding to each category. We
tested each motif’s target set for enrichment for each of the re-
sulting 999 GO gene sets (hypergeometric test), and counted the
number of significant associations.

Controls for motif target map
In the first control, the sequence of each promoter was randomly
permuted. In the second control, each input motif (PSSM) was
permuted—columns first, followed by entries in each column—
so as to obtain a random PSSM with the same Information Con-
tent (specificity) as the original. This was repeated 10 times for
each input PSSM, and the random motif most distinct from input
PSSMs was chosen, resulting in a compendium of 432 random
motifs.

Identifying gene sets enriched in motif modules
Motif modules were analyzed for their enrichment in the follow-
ing gene sets: Gene Ontology terms (Ashburner et al. 2000) (1665
categories; several broad GO terms were manually removed and
then a nonredundant set of categories was obtained by removing
categories with a correlation of �0.9 between their membership
vector and that of another category); gene modules coregulated
in cancer (Segal et al. 2004) (456 modules); predicted microRNA
targets (Krek et al. 2005) (178 modules); BioCarta pathways
(http://www.biocarta.com) (289 modules); cytobands (Karolchik
et al. 2003) (624 modules); KEGG pathways (Kanehisa et al. 2002)
(104 modules); GenMAPP (Dahlquist et al. 2002) (52 modules);
Whitehead pathways (123 modules); and cancer prognostic gene
expression signatures (Adler et al. 2006) (28 modules). Significant
enrichment of motif modules (P < 0.05; corrected for multiple
hypotheses using FDR) (Benjamini and Hochberg 1995) was de-
termined using the “gene module map method” implemented in
Genomica (Segal et al. 2004).

MicroRNA analyses
Global gene expression of DICER1 knockdown in 293 cells
(Schmitter et al. 2006) was downloaded from GEO, converted to
log2 space, and median centered by gene. Data from shDICER1
clone 2b2 had consistent DICER1 knockdown after 2 d, which
was used for subsequent analysis. Replicates of control cells were
averaged and subtracted from all samples (zero-transformation).
Paired Student’s t-tests were used to identify genes that were sig-
nificantly induced or repressed upon DICER1 knockdown
(P < 0.05). These genes were split into Low CpG or High CpG
groups and averaged: Low CpG genes have normalized CpG
score < 0.35 as defined by Saxonov et al. (2006); High CpG genes
have normalized CpG score > 0.35. Genes that were repressed
following miR-1 or miR-124 overexpression are as defined (Lim et
al. 2005). Gene module map was used to determine the signifi-
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cance of enrichment of the repressed genes with microRNA tar-
gets (Krek et al. 2005; Lewis et al. 2005) and High and Low CpG
groups as defined above (P < 0.01, FDR = 0.01) (Benjamini and
Hochberg 1995). To identify microRNA target modules that are
enriched for TF target modules independent of CpG content, we
isolated single motif modules that had <1000 targets (346 mod-
ules) and used gene module map to identify significant enrich-
ments (P < 0.05, FDR = 0.05) (Benjamini and Hochberg 1995)
with microRNA targets.

Identifying expression patterns of motif modules in cancer
The cancer compendium of 1975 microarrays and assortment
into clinical annotations is as described (Segal et al. 2004). En-
richment of motif modules was first calculated for each microar-
ray experiment (P < 0.05) using the “motif module map method”
implemented in Genomica (Segal et al. 2004). The resulting ex-
pression signatures of each motif module, consisting of the set of
arrays in which it is significantly up- or down-regulated, was
subsequently tested for its enrichment in clinical annotations
(P < 0.05, FDR = 0.05) (Benjamini and Hochberg 1995). For the
detailed clusters in Figure 4, C and E, and Supplemental Figures
S3–S6, all motif modules represented in one or more of the listed
clinical annotations were isolated and reclustered; since the same
cluster algorithm was used, the associated cluster trees are the
same as in Figure 4A, but without any gaps in the clustergram.

Analysis of uncharacterized motif modules
Gene module map was used to identify the P-value of signifi-
cance for the enrichment of targets of E2F_Q6_01 and the four
uncharacterized motifs (Fig. 2B, highlighted in red) with each
other (Fig. 3A). Gene expression time course following release
from double thymidine block in HeLa cells was as described
(Whitfield et al. 2002); genes defined as being periodically ex-
pressed were isolated, and the average expression of all repre-
sented motif module genes is shown. These expression patterns
were clustered with “ideal expression profiles” (Whitfield et al.
2002) of well-characterized genes from each phase of the cell
cycle to determine the stage in which the uncharacterized motif
target genes are periodically expressed.

Oligo sequences and cell cycle analyses
Single-stranded oligos listed below (and the corresponding re-
verse compliment) were synthesized and annealed; underlined
regions correspond to the consensus motif sequence. E2F decoy
sequence was as described (Morishita et al. 1995). Motif module
map scores for all target genes for each of the uncharacterized
motifs were ranked, and the highest scoring sequence was used
for the decoy oligos:

E2F: CTAGATTTCCCGCGGATC (decoy); CTAGACTCTGCTCG
GATC (scrambled)

KTGGYRSGAA: CTAGATTCCCGCCAAGGATC (decoy); CTAGA
CAGCTACTCCGGATC (scrambled)

TGCGCANK: CTAGACATGCGCAGGATC (decoy); CTAGATCA
CAGGCGGATC (scrambled)

CCAATNNSNNNGCG: CTAGACGCCCTCCGATTGGGGATC
(decoy); CTAGATGCACGCTCGGTCCGGATC (scrambled)

ACTWSNACTNY: CTAGAGGAGTTGTAGTGGATC (decoy); CTA
GAGATAGTGTGTGGGATC (scrambled)

HeLa cells were propagated in DMEM (Invitrogen) plus 10%
FBS and transfected with 0.5 µM of double-stranded DNA. Cell
proliferation was monitored by measuring the incorporation of
the thymidine nucleotide analog 5-bromo-2�-deoxyuridine
(BrdU) (Sigma) into DNA as described (Sage et al. 2003). Briefly,

10 µM BrdU was added to the medium for 1.5 h prior to immu-
nofluorescent staining with anti-BrdU antibody (Becton Dickin-
son) and Alexa Fluor-conjugated secondary antibody (Molecular
Probes). The percentage of BrdU-positive cells among >250 DAPI-
positive cells in multiple high-power fields was determined. Fluo-
rescence activated cell sorting (FACS) combined with propidium
iodide staining to determine the specific stage of cell cycle arrest
was analyzed as described (Whitfield et al. 2002).

Microarray profile of uncharacterized motif modules
Total RNA was extracted with TRIzol (Invitrogen) from HeLa cells
2 d after transfection of the indicated decoy oligo or scrambled
oligo in duplicate. RNA was amplified using the Ambion Amino
Allyl MessageAmp II aRNA kit. For each motif, decoy oligo trans-
fected samples (labeled with Cy5) and the corresponding
scrambled oligo transfected samples (labeled with Cy3) were
competitively hybridized to HEEBO microarrays as described
(http://www.microarray.org/sfgf/heebo.do). Genes selected for
analysis had a fluorescent hybridization signal at least 1.5-fold
over local background in either Cy5 or Cy3 channel and had
technically adequate data in at least 70% of experiments. For
each array, genes that were induced or repressed >1 standard
deviation from the mean were isolated, and then motif module
map was used to identify genes predicted to contain the given
motif in the promoter. Log2 expression values from duplicate
arrays were averaged, and then values for all genes with or with-
out the predicted motif were averaged.

Additional methods and URLs
For our data, model, genome-wide motif predictions, full enrich-
ment analyses, and tools for predicting motifs in your own se-
quences, see http://genie.weizmann.ac.il/pubs/motifs07. Our re-
sults can be viewed in Genomica (http://Genomica.weizman-
n.ac.il). Full microarray data are available for download at
Stanford Microarray Database (http://smd.stanford.edu/).
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