ORIGINAL CONTRIBUTION

Determination of the Most Closely Related Bacillus Isolates to Bacillus anthracis by Multilocus Sequence Typing

Kijeong Kim,^{*a,b**} Eunhee Cheon,^{*a*} Katherine E. Wheeler,^{*b*} Youngchul Youn,^{*c*} Terrance J. Leighton,^{*b*} Chulmin Park,^{*b*} Wonyong Kim,^{*a*} and Sang-In Chung^{*a*}

^aDepartment of Microbiology, College of Medicine, Chung-Ang University, Seoul, Korea; ^bChildren's Hospital, Oakland Research Institute, Oakland, California; and ^cInstitute of Medical Science, Chung-Ang University, Seoul, Korea

There have been many efforts to develop *Bacillus anthracis* detection assays, but the problem of false-positive results has often been encountered. Therefore, to validate an assay for *B. anthracis* detection, it is critical to examine its specificity with the most closely related *Bacillus* isolates that are available. To define the most closely related *Bacillus* isolates to *B. anthracis* in our *Bacillus* collections, we analyzed by multilocus sequence typing (MLST) the phylogeny of 77 closely related *Bacillus* isolates selected from 264 *Bacillus* isolates. The selection includes all the *Bacillus* isolates that have been shown in our previous studies to produce false-positive results by some anthrax-detection assays. The MLST phylogenetic analyses revealed that 27 of the non-*B. anthracis* isolates clustered within the *B. anthracis* clade, and four of them (three sequence types, STs) had the highest degree of genetic relatedness with *B. anthracis*, 18 (11 STs) had the second highest, and five (five STs) had the third highest. We anticipate that the inclusion of the 19 ST isolates when analyzing *B. anthracis* detection assays will prove to be useful for screening for their specificity to detect *B. anthracis*.

INTRODUCTION

Bacillus anthracis is the etiological agent of anthrax, the acute and often fatal infectious disease of herbivores and humans and is a threatening agent used in bioterrorism. It is a member of the *B. cereus* group, which includes other spore-

forming soil bacteria commonly isolated in nature, *B. cereus*, *B. thuringiensis*, *B. mycoides*, *B. weihenstephanensis* [1] and *B. pseudomycoides* [2]. *B. cereus* causes food-borne gastroenteritis and opportunistic infections in immunocompromised patients [3-6], and other members have been reported to be potentially enteropath-

To whom all correspondence should be addressed: Kijeong Kim, Chung-Ang University College of Medicine, Department of Microbiology, 221, Heuksuk-dong, Dongjak-gu, Seoul 156-756, South Korea. Tel.: 82-(2)-820-5694; Fax: 82-(2)-812-5495; E-mail: kimkj@cau.ac.kr.

[†]Abbreviations: *glpF*, glycerol uptake facilitator protein; *gmk*, guanylate kinase; *ilvD*, dihydroxy-acid dehydratase; MLST, multilocus sequence typing; *pta*, phosphate acetyltransferase; *pur*, phosphoribosylaminoimidazolecarboxamide; *pycA*, pyruvate carboxylase; *rpoβ*, the β subunit of RNA polymerase; ST, sequence type; *tpi*, triosephosphate isomerase; UPGMA, unweighted pair group method with arithmetic means.

ogenic [7-11]. Amongst this group, B. cereus and B. thuringiensis are genetically and phenotypically closely related to B. anthracis, and the unambiguous identification of these organisms has been difficult [12]. However, the unambiguous and rapid diagnostic detection of *B. anthracis* is important for early treatment and control of anthrax due to its highly pathogenic nature to animals and humans. Many methods have been developed to detect B. anthracis, but these methods have revealed some undesirable problems. The early reported PCR-based methods [13-17], which target only virulence genes located on the plasmids of B. anthracis, can readily differentiate vaccine or fully virulent B. anthracis plasmid genotypes. But when using these methods, plasmid-cured B. anthracis [18-21], species containing the transferred plasmids or virulence genes [22-31], or near-neighbor species containing closely-related B. anthracis plasmids [32] are very difficult to distinguish from B. anthracis. Therefore, PCR-based methods targeting the B. anthracis chromosome for B. anthracis detection have been developed but suffer from lack of assay specificity; Ba813 [16, 33, 34], vrrA gene [35-37], gyrase B gene (gyrB) [38], SG-850 [39], the β subunit of RNA polymerase gene $(rpo\beta)$ [40] and the gyrase A (gyrA)gene [41].

When these assays were originally developed, the most closely related Bacillus species were not examined, and afterwards the assays were revealed not to be specific by further examination of other closely related Bacillus species. In our previous studies on developing highly specific PCR detection methods for B. anthracis (manuscript in preparation and [12]), we used 272 isolates of bacteria to verify the specificity of our detection assay. We compared the specificity of our detection assay to the specificity of previously reported B. anthracis detection assays, and the results revealed that as many as 42 isolates showed false-positive

results when using one of the previous detection assays. This result motivated us to study and define the most closely related *Bacillus* isolates to *B. anthracis*. Once we identify *Bacillus* isolates that are the most closely related to *B. anthracis* and include these isolates first when examining *B. anthracis* detection assays, we can readily screen the specificity of these assays and search for the highly specific ones.

For this purpose, we have determined the most closely related *Bacillus* isolates among 77 isolates selected from 264 *Bacillus* isolates, many of which have shown false-positive results by the previously reported assays, by analyzing their phylogenetic relatedness to *B. anthracis* using multilocus sequence typing (MLST)[†] with seven house keeping genes.

MATERIALS AND METHODS

Bacterial strains and DNA isolation

A total of 77 strains used in this study are shown in Table 1. The strains, except for B. anthracis, were acquired from the American Type Culture collection (Manassas, Virginia), Bacillus Genetic Stock Center (Department of Biochemistry, The Ohio State University, Columbus, Ohio), Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany), Korean Collection for Type Cultures (Dajeon, Korea) and Korean Culture Center of Microorganisms (Seoul, Korea), and Dr. Terrance Leighton (Children's Hospital Oakland Research Institute. Oakland. California). B. anthracis genomic DNA preparations were a gift from Chung-Ang University Medical College. Genomic DNA from other strains was isolated using the Easy-DNA kit (Invitrogen Corporation, Carlsbad, California) according to the manufacturer's protocol. DNA concentrations were determined spectrophotometrically [42].

Species	Strain ID	Source ^a	Species	Strain ID	Source ^a
B. anthracis	14578 [⊤]	ATCC	B. cereus	6E1	BGSC
B. anthracis	CAU-1	Korea	B. cereus	6E2	BGSC
B. anthracis	CAU-2	Korea	B. cereus	1012	KCTC
B. anthracis	CAU-3	Korea	B. cereus	1014	KCTC
B. anthracis	CN1	Korea	B. cereus	1094	KCTC
B. anthracis	CN2	Korea	B. cereus	1661	KCTC
B. anthracis	14185	ATCC	B. cereus	3062	KCTC
B. anthracis	14186	ATCC	B. cereus	3624	KCTC
B. anthracis	Sterne 34-F2	NVRQS	B. mycoides	10206	ATCC
B. anthracis	BC	China	B. mycoides	19647	ATCC
B. anthracis	Pasteur #2	NVRQS	B. mycoides	21929	ATCC
B. thuringiensis	4AB1	BGSC	B. mycoides	23258	ATCC
B. thuringiensis	4AF1	BGSC	B. mycoides	6462 [⊤]	ATCC
B. thuringiensis	4AJ1	BGSC	B. mycoides	40260	ATCC
B. thuringiensis	4AN1	BGSC	B. mycoides	3453	ATCC
B. thuringiensis	4AQ1	BGSC	B. pseudomycoides	12442 [⊤]	DSM
B. thuringiensis	4AS1	BGSC	B. weihenstephanensis	11821⊺	DSM
B. thuringiensis	4AW1	BGSC	Bacillus sp.	IB	Rogers J.E.
B. thuringiensis	4AX1	BGSC	Bacillus sp.	2A6	Pasteur Institute
B. thuringiensis	4AY1	BGSC	Bacillus sp.	2C1	Pasteur Institute
B. thuringiensis	4BA1	BGSC	Bacillus sp.	003	Rogers J.E.
B. thuringiensis	4BD1	BGSC	Bacillus sp.	3466-8.1	Pasteur Institute
B. thuringiensis	4BG1	BGSC	Bacillus sp.	9594/3	Patra G.
B. thuringiensis	4BN1	BGSC	Bacillus sp.	DM55	EI-Helow E.
B. thuringiensis	4BY1	BGSC	Bacillus sp.	S8553/2	Pasteur Institute
B. thuringiensis	4CB1	BGSC	Bacillus sp.	12	Patra G.
B. thuringiensis	4CC1	BGSC	Bacillus sp.	IV	Rogers J.E.
B. thuringiensis	4CD1	BGSC	Bacillus sp.	III	Rogers J.E.
B. thuringiensis	4U1	BGSC	Bacillus sp.	III BL	Ramisse V.
B. thuringiensis	4Y1	BGSC	Bacillus sp.	III BS	Ramisse V.
B. thuringiensis	2046 [⊤]	DSM	Bacillus sp.	Peyr 6	Pasteur Institute
B. thuringiensis	1034	KCTC	Bacillus sp.	Peyr 8	Pasteur Institute
B. thuringiensis	1507	KCTC	Bacillus sp.	Peyr 9	Pasteur Institute
B. thuringiensis	1509	KCTC	Bacillus sp.	PT030101-01	Dean D.
B. thuringiensis	3452	KCTC	Bacillus sp.	PT030101-02	Dean D.
B. thuringiensis	97-27	Hernandez E.	Bacillus sp.	Rho	Korea
B. cereus	14579 [⊤]	ATCC	Bacillus sp.	S10A	Korea
B. cereus	6A7	BGSC	Bacillus sp.	11R-1	Korea
B. cereus	6A8	BGSC			

Table 1. Bacterial strains used in this study.

^aATCC, American Type Culture Collection, Manassas, Virginia; NVRQS, National Veterinary Research and Quarantine Service, Anyang-si, Kyeonggi-do, South Korea; BGSC, Bacillus Genetic Stock Center, Department of Biochemistry, The Ohio State University, Columbus, Ohio; DSM, Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.

Locus	Fragment length (bp)ª	Average G + C (%)	No. of alleles	Conserved nucleotide site (%)	Variable nucleotide site (%)	Average dN/dS⁵
glpF ^c gmk ilvD pta pur pycA tpi	381 (549) 504 (600) 393 (556) 414 (579) 348 (536) 363 (550) 435 (558)	38.82% 38.10% 45.20% 40.54% 38.52% 40.38% 44.01%	35 17 35 32 29 28 29	314/381 (82.4) 409/504 (81.2) 287/393 (73) 352/414 (85) 267/348 (76.7) 275/363 (75.8) 395/435 (90.8)	67/381 (17.6) 95/504 (18.8) 106/393 (27) 62/414 (23.3) 81/348 (24.2) 88/363 (24.2) 40/435 (9.2)	0.0654 0.0222 0.0152 0.0107 0.0124 0.0268 0.0791

Table 2. Genetic diversity at the seven loci examined in this study.

^aThe numbers in parentheses are total lengths of PCR products.

^bdN/dS, pairwise ratios of non-synonymous substitutions to synonymous substitutions.

^cAbberviations: *glpF*, glycerol uptake facilitator protein; *gmk*, guanylate kinase; *ilvD*, dihydroxy-acid dehydratase; *pta*, phosphate acetyltransferase; *pur*, phosphoribosylaminoimidazolecarboxamide; *pycA*, pyruvate carboxylase; *tpi*, triosephosphate isomerase.

MLST and data analysis

We amplified fragments of seven housekeeping genes (*glpF*, *gmk*, *ilvD*, *pta*, *pur*, *pycA*, and *tpi*) by PCR as described on the website for MLST of *B. cereus* (www.pubmlst.org/bcereus) using the standard primers. The PCR fragments were sequenced in both directions using the amplification primers to provide unambiguous sequence data.

The allele sequences were compared with existing allele sequences on the B. cereus MLST website using Sequence Comparator software (www.pubmlst.org/ bcereus) [43] and given new allele numbers if they differed from known alleles. The seven allele numbers define a sequence type (ST) a number of which was assigned to each new allele combination. To improve the discrimination between divergent lineages, analyses were conducted after each gene was split into three segments as described by Helgason et al [44]. Allele numbers were assigned independently for each gene region, and the allelic profiles were then combinations of 21 numbers. To assess the genetic relatedness among the isolates, a dendrogram based on the allelic profiles was constructed by using the unweighted pair group method with arithmetic means (UPGMA) applied

to a matrix of pairwise distances, defined as the percentages of allelic differences between profiles, by means of the MEGA 2.1 analysis package [45]. In addition, the concatenated sequences for the seven gene fragments were used for building neighborjoining trees using the MEGA software. The two phylogenentic dendrograms were compared to determine the most closely related isolates to *B. anthracis*.

Standard MLST statistics such as number of polymorphic sites and allele frequencies were computed by using the START v1.0.5 (www.pubmlst.org/ bcereus) [43].

RESULTS

Allelic profiles and sequence types

The lengths of the fragments analyzed ranged from 348 bp (*pur*) to 504 bp (*gmk*). The sequences of the seven gene fragments amplified from the isolates had variable sites from 9.2 percent (*tpi*) to 27 percent (*ilvD*), which resulted in 17 to 35 distinct alleles for the different loci (Table 2). The average number of alleles per locus was 29.3. No insertions or deletions were observed in any of the sequences. The average dN/dS values ranged from 0.0107 (*pta*) to 0.0791 (*tpi*), indicating that most

of the sequence variability identified is selectively neutral.

Altogether, 48 unique STs were observed in the 77 isolates (Table 3), and 32 of the STs (67 percent) were identified only once. Three STs were observed in B. anthracis isolates, and ST 1 was the most frequent type of В. anthracis. Interestingly, even though B. anthracis isolates did not have the same ST as any other B. cereus group isolates, some B. cereus group strains shared one or more alleles with B. anthracis. B. thuringiensis BGSC 4AJ1 had four alleles (gmk, pta, pur, and tpi) that were the same as B. anthracis; B. thuringiensis BGSC 4AB1 and 4BA1 had three same alleles (gmk, pta, and pur); B. thuringiensis strains BGSC 4AY1, 4CC1, Bacillus species 1B, III, 003, III BL, III BS, IV, DM55, and PT030101-01 had two same alleles (gmk and *pta*); and *B. thuringiensis* strains BGSC 4BY1, 4CB1, 4AS1, 97-27, B. cereus strains BGSC 6E1, 6E2, and KCTC 1661 had the same *gmk* allele.

Phylogenetic relatedness

To estimate the degree of genetic relatedness of the closely related Bacillus isolates to B. anthracis, we constructed two dendrograms using the improved MLST methods: one of them was built in the similar way to the standard MLST but instead used split profiles of the gene fragments (Table 4) and the other one was done by the neighbor-joining method using the concatenated sequences for the seven gene fragments. Clustering of the Bacillus isolates in both dendrograms revealed three major clades (Figures 1 and 2); within clade I, B. anthracis clustered with many of the B. cereus and B. thuringiensis isolates; within clade II, B. cereus and B. thuringiensis, unidentified Bacillus isolates, and one isolate of B. mycoides clustered together; and within clade III, the former dendrogram (Figure 1) showed that many of the B. mycoides isolates clustered with B. thuringiensis and

B. cereus isolates but the latter one showed with more reliability that all the B. mycoides isolates except one clustered within clade III, separately from the B. cereus and B. thuringiensis isolates (Figure 2). However, the Bacillus isolates clustering with Bacillus anthracis within the clade I were grouped in a very similar way in both dendrograms, but in the latter dendrogram, clade I had six more isolates than the clade I of the former one: these isolates clustered within clade II separately from the clade I of the former one. Twenty-seven non-B. anthracis isolates clustered with B. anthracis in clade I of both dendrograms: B. thuringiensis BGSC strains 4AJ1, 4AB1, 4BA1, 4CC1, 4AS1, 4AY1, 4BY1, 4CB1, 4CD1, 4Y1, 4BG1, B. thuringiensis 97-27, B. thuringiensis KCTC 1014, B. cereus BGSC strains 6E1 and 6E2, B. cereus KCTC 1661, Bacillus isolates DM55, III, III BL, III BS, IV, 003, 1B, S8553/2, PT030101-01, PT030101-02, 9594/3. All of these B. cereus group isolates showed false-positive results in one or more of the previously reported assays used for B. anthracis detection in our previous studies (manuscript in preparation and [12]). Among these, 4AJ1, 4AB1, 4BA1, and 4CC1 were proximate to B. anthracis in both dendrograms. 4AJ1 and 4CC1 showed false-positives in two to three assays used for B. anthracis detection in our previous studies. The six isolates additionally clustered in clade I of the second dendrogram include three Bacillus isolates Rho, S10A, and 11R-1, which were isolated from the patients and soils of an unidentified epidemic disease in Korea and were once the isolates of controversy due to their connection with anthrax.

DISCUSSION

Of the species in the genus *Bacillus*, *B. anthracis*, *B. cereus*, and *B. thuringiensis* are in the group referred as the *B. cereus* group. These species are genetically very closely related to one another and have con-

		Allele no. at the following loci							
No.	Strain	ST ^a	glpF	gmk	ilvD	pta	pur	русА	tpi
1	B anthracis ATCC 14578	1	1	1	1	1	1	1	1
2	B anthracis CAU-1	1	1	1	1	1	1	1	1
3	B anthracis CAU-2	1	1	1	1	1	1	1	1
4	B anthracis CAU-3	1	1	1	1	1	1	1	1
5	B. anthracis Sterne 34-F2	1	1	1	1	1	1	1	1
6	B. anthracis BC	1	1	1	1	1	1	1	1
7	B. anthracis Bo	1	1	1	1	1	1	1	1
8	B. anthracis CN1	2	2	1	1	1	1	1	1
a	B anthracis CN2	2	2	1	1	1	1	1	1
10	B anthracis ATCC 1/185	2	1	1	2	1	1	2	1
11	B. anthracis ATCC 1/186	3	1	1	2	1	1	2	1
12	B. thuringiansis BGSC 14 10	1	57	1	52	1	1	52	1
12	B thuringiensis BGSC 4AB1	5	57	1	56	1	1	54	12
1/	B thuringiensis BGSC 4RD1	5	57	1	56	1	1	54	42
14	B. thuringionsis BCSC 4CC1	6	61	38	55	1	1	53	42
16	Bacillus on 18	7	34	1	30	1	51	37	24
17	Bacillus sp. 11	7	34	1	32	1	51	37	24
10	Bacillus sp. 111 Bacillus ap. 002	7	24	1	32	1	51	27	24
10	Bacillus sp. 003	7	24	1	32	1	51	37	24
19		7	24	1	32	1	51	37	24
20	Bacillus sp. III BS	7	24	1	32	1	51	37	24
21	Bacilius sp. IV	<i>'</i>	54	1	52	1	51	57	24
22	B. muningensis BGSC 4ATT Bacillus on DMEE	0	30	1	20	1	10	22	24
23	Bacillus sp. DIVISS	9	44	1	32	1	10	55	24
24	Bacillus sp. P1030101-01	10	70	1	20	16	10	52	24
20	B. cereus BGSC 6E1	11	30 20	1	3Z 22	10	10	33	24
20	B. Cereus BGSC 6E2	10	30	1	32	10	10	33 27	24
27	B. thuringiensis BGSC 4BY1	12	70	1	00	60	55	37	51
28	B. thuringiensis BGSC 4CB1	12	70	1	66	60	55	37	51
29	B. thuringiensis 97-27	13	62	1	57	52	55	37	43
30	B. thuringiensis BGSC 4AS1	14	56	1	64	58	18	53	48
31	B. cereus KCTC 1661	15	34	1	68	10	18	33	53
32	B. cereus BGSC 6A/	10	43	20	35	42	39	41	30
33	Bacilius sp. PEYR 9	10	43	20	35	42	39	41	30
34	B. cereus BGSC 6A8	10	43	20	35	42	39	41	30
35	Bacilius sp. 3466-8.1	10	43	20	35	42	39	41	30
30	B. mycoldes ATCC 21929	17	73	42	71	64	66	64	55
37	B. mycoldes ATCC 23258	17	73	42	71	64	66	64	55
38	B. mycoldes KCCM 40260	17	73	42	71	64	55	64	55
39	Bacilius sp. 11R-1	18	78	45	74	67	70	67	58
40	Bacillus sp. Rho	18	78	45	74	67	70	67	58
41	Bacilius sp. STUA	18	/8	45	74	67	70	67	58
42	B. cereus ATCC 14579	19	13	8	8	11	11	12	7
43	B. cereus KCTC 3624	19	13	8	8	11	11	12	
44	B. thuringiensis DSM 2046	20	15	6	10	8	3	7	14
45	B. thuringiensis KCTC 3452	20	15	6	10	8	3	(14
46	B. mycoldes ATCC 6462	21	25	10	22	53	57	23	44
47	B. mycoides KCTC 3453	21	25	10	22	53	57	23	44
48	B. thuringiensis BGSC 4AW1	22	69	40	65	59	62	60	49
49	B. thuringiensis BGSC 4AX1	22	69	40	65	59	62	60	49
50	B. thuringiensis KCTC 1034	23	33	8	13	19	2	17	17
51	B. cereus KCTC 1012	23	33	8	13	19	2	17	17
52	Bacillus sp. 2A6	24	43	26	35	42	39	41	50
53	Bacillus sp. 2C1	24	43	26	35	42	39	41	50
54	B. thuringiensis BGSC 4BG1	25	24	12	50	21	23	31	40
55	B. thuringiensis BGSC 4Y1	26	24	12	33	37	48	31	19
56	Bacillus sp. 9594/3	27	55	12	33	47	49	31	41
57	B. pseudomycoides DSM 12442	28	63	13	58	23	25	44	35
58	B. weihenstephanensis DSM 11821	29	64	10	9	36	56	22	11
59	B. thuringiensis BGSC 4AF1	30	66	39	62	56	60	41	30
60	B. thuringiensis BGSC 4AN1	31	67	26	63	57	61	59	30

Table 3. Allele numbers at the seven loci assigned for entire gene fragments.

		Allele no. at the following loci							
No.	Strain	ST ^a	glpF	gmk	ilvD	pta	pur	русА	tpi
61	B. thuringiensis BGSC 4AQ1	32	68	39	62	42	60	41	30
62	B. thuringiensis BGSC 4BD1	33	14	8	48	45	58	61	7
63	B. thuringiensis BGSC 4BN1	34	67	26	35	42	39	41	50
64	B. thuringiensis BGSC 4CD1	35	71	22	67	61	63	62	52
65	B. thuringiensis BGSC 4U1	36	67	39	62	42	64	41	30
66	B. thuringiensis KCTC 1507	37	8	8	16	13	2	16	7
67	B. thuringiensis KCTC 1509	38	15	6	7	2	6	8	13
68	B. cereus KCTC 1014	39	3	2	31	5	16	3	4
69	B. cereus KCTC 1094	40	8	41	14	12	2	25	7
70	B. cereus KCTC 3062	41	12	8	9	14	11	12	10
71	B. mycoides ATCC 10206	42	72	13	69	62	65	63	54
72	B. mycoides ATCC 19647	43	67	26	70	63	39	41	30
73	Bacillus sp. S8553/2	44	44	26	32	16	18	33	24
74	Bacillus sp. 12	45	74	43	72	65	67	65	32
75	Bacillus sp. PEYR 6	46	75	26	35	40	68	41	30
76	Bacillus sp. PEYR 8	47	43	26	35	42	39	41	56
77	Bacillus sp. PT030101-02	48	77	44	73	66	69	66	57

Table 3. Allele numbers at the seven loci assigned for entire gene fragments (contd).

^aAbbreviations: ST, sequence type; *glpF*, glycerol uptake facilitator protein; *gmk*, guanylate kinase; *ilvD*, dihydroxy-acid dehydratase; *pta*, phosphate acetyltransferase; *pur*, phosphoribosylaminoimidazolecarboxamide; *pycA*, pyruvate carboxylase; *tpi*, triosephosphate isomerase; Sp., species

stantly provoked a nomenclatural controversy. In fact, a high level of genetic relatedness amongst these species has been demonstrated by whole-genome DNA hybridization [46, 47], 16S and 23S gene rRNA sequence analysis [48, 49], sequence analysis of 16S-23S operons [50, 51], sequence analysis of the gvrB-gvrA intergenic spacer region [50], pulsed-field gel electrophoresis [52, 53], and restriction fragmentation pattern analysis of the genome [54]. All of these methods failed to completely discriminate the species of the *B. cereus* group. There is so little difference amongst these species that some investigators have suggested that all these organisms should be classified as a single species [12, 53]. However, the clinical aspects of the diseases caused by these species are distinctively different. B. anthracis causes the highly fatal disease in humans and animals, B. cereus causes food-poisoning and opportunistic infections, and *B. thuringiensis* is an insect pathogen. Therefore, despite the nomenclatural controversy that is encountered due to the high level of genetic relatedness amongst these species, a specific

diagnostic assay to identify *B. anthracis* is clearly required.

There have been many efforts to develop a simple, rapid, and accurate detection assay for *B. anthracis* using advanced molecular biology tools. All the previously developed methods are good at detecting B. anthracis, but, however, many of the developed methods have the problem of lack of specificity, which can often lead to false-positive results. If these detection assays are used for the detection of B. anthracis in society, the possible occurrence of false-positives can bring about a false alarm of anthrax to the community. The potential consequences resulting from the shock and anxiety of a falsepositive result on a community should never be underestimated, particularly under the current threat of increased bioterrorism. Thus, when an assay for *B*. anthracis detection is developed or is being developed, the validation of its specificity is important.

For the specificity analysis, a number of similar, but not *B. anthracis* isolates are required for the test. The more isolates that

Allele no. at the following loci									
ST ^a	glpF	gmk	ilvD	pta	pur	pucA	tpi		
1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1		
2	1, 2, 1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1	1, 1, 1		
3	1, 1, 1	1, 1, 1	1, 1, 2	1, 1, 1	1, 1, 1	2, 1, 1	1, 1, 1		
4	36, 23, 1	1, 1, 1	1, 29, 1	1, 1, 1	1, 1, 1	20, 28, 27	1, 1, 1		
5	36, 23, 1	1, 1, 1	33, 28, 23	1, 1, 1	1, 1, 1	35, 29, 29	1, 1, 1		
6	39, 9, 1	1, 1, 21	1, 31, 15	1, 1, 1	1, 1, 1	35, 29, 28	3, 4, 6		
7	24, 16, 1	1, 1, 1	20, 19, 15	1, 1, 1	32, 26, 1	20, 1, 1	1, 15, 6		
8	36, 8, 1	1, 1, 1	31, 28, 23	1, 1, 1	9, 32, 1	20, 28, 27	1, 15, 6		
9	31, 16, 1	1, 1, 1	20, 19, 15	1, 1, 1	9, 13, 1	24, 1, 1	1, 15, 6		
10	46, 8, 1	1, 1, 1	20, 36, 15	1, 1, 1	9, 13, 1	20, 28, 27	1, 15, 6		
11	27, 1, 1	1, 1, 1	20, 19, 15	8, 8, 11	9, 13, 1	24, 1, 1,	1, 15, 6		
12	40, 8, 1	1, 1, 1	20, 36, 15	31, 17, 32	9, 26, 1	20, 1, 1	1, 23, 6		
13	40, 8, 14	1, 1, 1	34, 32, 23	27, 1, 1	9, 26, 1	20, 1, 1	1, 4, 6		
14	36, 8, 1	1, 1, 1	34, 28, 23	1, 1, 31	9, 13, 1	35, 29, 28	2, 4, 14		
15	24, 16, 1	1, 1, 1	14, 38, 38	8, 8, 11	9, 13, 1	24, 1, 1	21, 15, 6		
16	30, 19, 11	18, 3, 14	23, 21, 21	20, 22, 22	25, 27, 22	27, 24, 21	6, 18, 5		
17	44, 30, 2	24, 19, 23	43, 39, 40	33, 28, 36	25, 37, 34	43, 33, 34	22, 8, 5		
18	48, 1, 4	26, 21, 25	46, 42, 43	34, 31, 37	42, 40, 26	46, 35, 35	2, 25, 6		
19	10, 1, 2	7, 3, 3	7, 6, 8	5, 1, 8	1, 7, 6	8, 10, 6	2, 4, 3		
20	12, 1, 2	5, 4, 3	8, 8, 9	5, 4, 7	1, 3, 3	5, 5, 3	8, 10, 3		
21	18, 10, 4	8, 6, 6	4, 3, 17	28, 7, 10	12, 25, 13	15, 7, 13	5, 21, 5		
22	43, 1, 4	23, 3, 18	39, 35, 36	11, 9, 15	27, 36, 32	13, 32, 11	20, 4, 15		
23	11, 1, 9	7, 3, 3	11, 8, 11	9, 1, 7	1, 2, 2	11, 13, 8	9, 4, 4		
24	30, 19, 11	18, 3, 14	23, 21, 21	20, 22, 22	25, 27, 22	27, 24, 21	6, 22, 5		
25	4, 9, 7	2, 7, 7	21, 27, 31	5, 1, 14	14, 17, 12	22, 18, 16	3, 17, 6		
26	4, 9, 7	2, 7, 7	21, 20, 20	5, 19, 20	30, 17, 12	22, 18, 16	3, 4, 6		
27	4, 9, 1	2, 7, 7	21, 20, 20	24, 19, 20	31, 14, 12	22, 18, 16	19, 4, 1		
28	41, 24, 15	10, 8, 8	35, 33, 33	12, 11, 16	15, 18, 15	30, 17, 15	16, 20, 10		
29	18, 7, 4	8, 6, 6	7, 7, 8	17, 10, 10	35, 12, 29	14, 15, 13	5, 7, 5		
30	30, 25, 11	18, 18, 14	23, 21, 35	30, 1, 29	38, 27, 30	27, 24, 21	6, 18, 5		
31	30, 26, 11	18, 3, 14	38, 21, 21	20, 22, 30	25, 27, 31	27, 24, 33	6, 18, 5		
32	42, 27, 11	18, 18, 14	23, 21, 35	20, 22, 22	38, 27, 30	27, 24, 21	6, 18, 5		
33	11, 1, 2	7, 3, 3	30, 26, 29	5, 24, 25	36, 14, 3	40, 27, 26	2, 4, 3		
34	30, 26, 11	18, 3, 14	23, 21, 21	20, 22, 22	25, 27, 22	27, 24, 21	6, 22, 5		
35	4, 28, 2	2, 7, 1	40, 37, 37	5, 1, 33	7, 6, 33	41, 21, 20	3, 24, 5		
36	30, 26, 11	18, 18, 14	23, 21, 35	20, 22, 22	25, 27, 30	27, 24, 21	6, 18, 5		
37	6, 1, 2	7, 3, 3	12, 12, 13	6, 6, 8	1, 2, 2	8, 9, 9	2, 4, 3		
38	12, 1, 2	5, 4, 3	6, 5, 7	2, 2, 2	3, 5, 5	5, 6, 3	7, 9, 5		
39	2, 1, 1	2, 2, 1	19, 14, 15	4, 2, 5	7, 11, 10	3, 2, 2	2, 2, 1		
40	6, 1, 2	7. 3. 22	12. 8. 12	5, 5, 8	1, 2, 2	17. 9. 8	2.4.3		
41	912	733	778	416	176	8 10 6	244		
42	41 29 16	10 8 8	41 33 39	32 27 34	39 18 15	42 17 15	11 20 10		
43	30 26 11	18 3 14	42 21 21	20 1 35	25 27 22	27 24 21	6 18 5		
44	31 16 1	18 3 14	20 19 15	8 8 11	9 13 1	24 1 1	1 15 6		
15	15 31 17	25 20 19	11 10 11	20 20 27	10 38 35	<u>-</u> , -, - ΛΛ 32 11	13 / 5		
46	20 22 44	10 2 14		20, 23, 21	41 07 26	רד, ט∠, וו סד סע סע	10, 1 , 0 6 10 5		
40	30, 32, 11	10, 3, 14	23, 21, 21	20, 21, 22	41,21,30	21, 24, 21	0, 10, 0		
47	30, 19, 11	18, 3, 14	23, 21, 21	20, 22, 22	25, 27, 22	27, 24, 21	23, 18, 5		
48	47, 9, 1	1, 1, 24	45, 41, 42	19, 30, 32	9, 39, 1	45, 34, 1	2, 4, 6		

Table 4. Allele numbers at the seven loci assigned after gene fragments were split into three equal-length parts.

^aAbbreviations: ST, sequence type; *glpF*, glycerol uptake facilitator protein; *gmk*, guanylate kinase; *ilvD*, dihydroxy-acid dehydratase; *pta*, phosphate acetyltransferase; *pur*, phosphorribosylaminoimidazolecarboxamide; *pycA*, pyruvate carboxylase; *tpi*, triosephosphate isomerase; Sp, species. are tested, the more reliable the test will be. However, the test isolates should be closely related to *B. anthracis* because false-positive results often occur in tests with bacteria that are similar to *B. anthracis*. The selection of a limited number of the most closely related isolates to *B. anthracis* will be useful and economical, especially when time, labor and materials are limited. In addition, the assays showing low specificity will be detected early and discarded, avoiding the possible wasting of time and resources.

To select these isolates among a number of Bacillus isolates, their genetic relatedness to B. anthracis is usually investigated by analysis of the genetic diversity amongst them. For this purpose, various methods including multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, and amplified fragment length polymorphism have been used. However, these methods are difficult to standardize between laboratories, and it is difficult to compare the results for large strain collections. MLST has been developed and has been used successfully when exploring the population structure of many important bacterial pathogens [53, 55-66]. This method is based on sequencing a number of essential or housekeeping genes spread around the bacterial chromosome and is a method that is unambiguous and truly portable among laboratories [67]. However, the standard MLST method, which is based on the allelic profiles of seven gene fragments, was known to have low resolving power when constructing a dendrogram [53]. To improve the resolution, MLST based on split allele profiles or the concatenated sequences for the seven gene fragments was attempted, and the resulting dendrograms are highly resolved [53, 68].

In this study, we applied the standard MLST as well as two other improved MLST methods to construct phylogenetic dendrograms. The dendrogram constructed by the standard MLST was lowly resolved

(data not presented). The other two improved MLST methods provided dendrograms that were highly resolved to the similar degree, but the MLST using the concatenated sequences appeared better and phylogenetically more reliable than the gene split MLST because it showed good clustering of *B. mycoides* isolates out of the B. thuringiensis and B. cereus cluster. The dendrograms constructed by these two methods revealed three major clades among the Bacillus isolates tested. The composition of the Bacillus isolates clustering in clade I of both dendrograms, within which all the *B. anthracis* isolates clustered, were almost similar except for the fact that the dendrogram of the second method showed that clade I had six more isolates than the clade I of the first dendrogram. Clade I appeared as a B. anthracis clade, and within this clade many Bacillus isolates were proximate to *B. anthracis*. This clade was composed of the isolates that gave falsepositive results by previously reported assays for B. anthracis detection, and the degree of proximity to B. anthracis and the frequency of false-positive results appeared correlated. For instance, B. thuringiensis BGSC 4AJ1, which was shown to give false-positive results by three of the reported assays in our previous studies was the most proximate to *B. anthracis*.

In conclusion, we determined 27 *Bacillus* isolates that are the most closely related to *B. anthracis* amongst 77 *Bacillus* isolates as shown in the dendrograms. We believe that considering these strains when testing the specificity of newly developing or already developed assays for the detection of *B. anthracis* will prove to be very useful and will help to lead to the development of more highly specific detection assays.

ACKNOWLEDGEMENTS: This research was supported by the Chung-Ang University research grants in 2003.

Figure. 1. Phylogenetic dendrogram of 77 isolates of the *B. cereus* group constructed by UPGMA MLST based on the differences between allelic profiles. Alleles were identified after gene fragments were split into three equal-length parts (Table 3). The population comprised three major clades. The clades are indicated by Roman numerals and lineages by names. Clade I encompassed all the *B. anthracis* isolates and 27 isolates of other *B. cereus* group species. *B. thuringiensis* BGSC 4AJ1, 4CC1, 4AS1, 4AB1 and 4BA1 (asterisks) were the most proximate to *B. anthracis*. The scale bars indicate the percentages of mismatches between allelic profiles.

Figure 2. Phylogenetic dendrogram of 77 isolates of the *B. cereus* group constructed by MLST neighbor-joining method based on the concatenated sequences of the seven gene fragments. The population comprised three major clades. The clades are indicated by Roman numerals and lineages by names. Clade I encompassed all the *B. anthracis* isolates and 33 isolates of other *B. cereus* group species. *B. thuringiensis* BGSC 4AJ1, 4CC1, 4AB1 and 4BA1 (asterisks) were the most proximate to *B. anthracis*. Bar is substitutions/site.

REFERENCES

- 1. Lechner S, Mayr R, Francis KP, et al. *Bacillus weihenstephanensis* sp. nov. is a new psychrotolerant species of the *Bacillus cereus* group. Int J Syst Bacteriol 1998;48:1373-82.
- Nakamura LK. Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 1998;48:1031-5.
- Jaruratanasirikul S, Kalnauwakul S, and Lekhakula A. Traumatic wound infection due to *Bacillus cereus* in an immunocompromised patient: a case report. Southeast Asian J Trop Med Public Health 1987;18:112-4.
- 4. Van Der Zwet WC, Parlevliet GA, Savelkoul PH, et al. Outbreak of *Bacillus cereus* infections in a neonatal intensive care unit traced to balloons used in manual ventilation. J Clin Microbiol 2000;38:4131-6.
- 5. Ueda K, Konishi M, Maeda K, et al. *Bacillus cereus* septicemia in a patient with severe aplastic anemia. Kansenshogaku Zasshi 1998;72:1325-9.
- 6. Carretto E, Barbarini D, Poletti F, Marzani FC, Emmi V, and Marone P. *Bacillus cereus* fatal bacteremia and apparent association with nosocomial transmission in an intensive care unit. Scand J Infect Dis 2000;32:98-100.
- Hansen BM and Hendriksen NB. Detection of enterotoxic *Bacillus cereus* and *Bacillus thuringiensis* strains by PCR analysis. Appl Environ Microbiol 2001;67:185-9.
- Gaviria Rivera AM, Granum PE, and Priest FG. Common occurrence of enterotoxin genes and enterotoxicity in *Bacillus thuringiensis*. FEMS Microbiol Lett 2000;190:151-5.
- 9. Stenfors LP, Mayr R, Scherer S, and Granum PE. Pathogenic potential of fifty *Bacillus weihenstephanensis* strains. FEMS Microbiol Lett 2002;215:47-51.
- Hsieh YM, Sheu SJ, Chen YL, and Tsen HY. Enterotoxigenic profiles and polymerase chain reaction detection of *Bacillus cereus* group cells and *B. cereus* strains from foods and food-borne outbreaks. J Appl Microbiol 1999;87:481-90.
- Pruss BM, Dietrich R, Nibler B, Martlbauer E, and Scherer S. The hemolytic enterotoxin HBL is broadly distributed among species of the *Bacillus cereus* group. Appl Environ Microbiol 1999;65:5436-42.
- 12. Kim K, Seo J, Wheeler K, et al. Rapid genotypic detection of *Bacillus anthracis* and the *Bacillus cereus* group by multiplex real-time PCR melting curve analysis. FEMS Immunol Med Microbiol 2005;43:301-10.

- Makino SI, Iinuma-Okada Y, Maruyama T, Ezaki T, Sasakawa C, and Yoshikawa M. Direct detection of *Bacillus anthracis* DNA in animals by polymerase chain reaction. J Clin Microbiol 1993;31:547-51.
- 14. Reif TC, Johns M, Pillai SD, and Carl M. Identification of capsule-forming *Bacillus anthracis* spores with the PCR and a novel dual-probe hybridization format. Appl Environ Microbiol 1994;60:1622-5.
- 15. Beyer W, Glockner P, Otto J, and Bohm R. A nested PCR method for the detection of *Bacillus anthracis* in environmental samples collected from former tannery sites. Microbiol Res 1995;150:179-86.
- Brightwell G, Pearce M, and Leslie D. Development of internal controls for PCR detection of *Bacillus anthracis*. Mol Cell Probes 1998;12:367-77.
- Bell CA, Uhl JR, Hadfield TL, et al. Detection of *Bacillus anthracis* DNA by LightCycler PCR. J Clin Microbiol 2002;40:2897-902.
- Mikesell P, Ivins BE, Ristroph JD, and Dreier TM. Evidence for plasmid-mediated toxin production in *Bacillus anthracis*. Infect Immun 1983;39:371-6.
- Green BD, Battisti L, Koehler TM, Thorne CB, and Ivins BE. Demonstration of a capsule plasmid in *Bacillus anthracis*. Infect Immun 1985;49:291-7.
- Turnbull PC, Hutson RA, Ward MJ, et al. Bacillus anthracis but not always anthrax. J Appl Bacteriol 1992;72:21-8.
- Turnbull PC. Definitive identification of Bacillus anthracis — a review. J Appl Microbiol 1999;87:237-40.
- 22. Ruhfel RE, Robillard NJ, and Thorne CB. Interspecies transduction of plasmids among *Bacillus anthracis*, *B. cereus*, and *B. thuringiensis*. J Bacteriol 1984;157:708-11.
- 23. Green BD, Battisti L, and Thorne CB. Involvement of Tn4430 in transfer of *Bacillus anthracis* plasmids mediated by *Bacillus thuringiensis* plasmid pXO12. J Bacteriol 1989;171:104-13.
- 24. Pannucci J, Okinaka RT, Sabin R, and Kuske CR. *Bacillus anthracis* pXO1 plasmid sequence conservation among closely related bacterial species. J Bacteriol 2002;184:134-41.
- 25. Vodkin MH and Leppla SH. Cloning of the protective antigen gene of *Bacillus anthracis*. Cell 1983;34:693-7.
- Ivins BE and Welkos SL. Cloning and expression of the *Bacillus anthracis* protective antigen gene in *Bacillus subtilis*. Infect Immun 1986;54:537-42.
- 27. Robertson DL and Leppla SH. Molecular cloning and expression in *Escherichia coli* of the lethal factor gene of *Bacillus anthracis*. Gene 1986;44:71-8.

12

- Mock M, Labruyere E, Glaser P, Danchin A, and Ullmann A. Cloning and expression of the calmodulin-sensitive *Bacillus anthracis* adenylate cyclase in Escherichia coli. Gene 1988;64:277-84.
- 29. Tippetts MT and Robertson DL. Molecular cloning and expression of the *Bacillus anthracis* edema factor toxin gene: a calmodulin-dependent adenylate cyclase. J Bacteriol 1988;170:2263-6.
- Cataldi A, Labruyere E, and Mock M. Construction and characterization of a protective antigen-deficient *Bacillus anthracis* strain. Mol Microbiol 1990;4:1111-7.
- Tedikov VM and Dobritsa AP. Cloning and expression of determinants of *Bacillus* anthracis protective antigen in *Escherichia* coli, *Bacillus subtilis*, and *Bacillus* anthracis cells. Mol Gen Mikrobiol Virusol 1993;2:13-6.
- 32. Hoffmaster AR, Ravel J, Rasko DA, et al. Identification of anthrax toxin genes in a *Bacillus cereus* associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 2004; 101:8449-54.
- 33. Patra G, Sylvestre P, Ramisse V, Therasse J, and Guesdon JL. Isolation of a specific chromosomic DNA sequence of *Bacillus anthracis* and its possible use in diagnosis. FEMS Immunol Med Microbiol 1996;15:223-31.
- 34. Ramisse V, Patra G, Garrigue H, Guesdon JL, and Mock M. Identification and characterization of *Bacillus anthracis* by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiol Lett 1996;145:9-16.
- 35. Patra G, Vaissaire J, Weber-Levy M, Le Doujet C, and Mock M. Molecular characterization of *Bacillus* strains involved in outbreaks of anthrax in France in 1997. J Clin Microbiol 1998;36:3412-4.
- 36. Andersen GL, Simchock JM, and Wilson KH. Identification of a region of genetic variability among *Bacillus anthracis* strains and related species. J Bacteriol 1996;178:377-84.
- 37. Jackson PJ, Walthers EA, Kalif AS, et al. Characterization of the variable-number tandem repeats in *vrrA* from different *Bacillus anthracis* isolates. Appl Environ Microbiol 1997;63:1400-5.
- 38. Yamada S, Ohashi E, Agata N, and Venkateswaran K. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl Environ Microbiol 1999;65:1483-90.
- 39. Daffonchio D, Borin S, Frova G, et al. A randomly amplified polymorphic DNA

marker specific for the *Bacillus cereus* group is diagnostic for *Bacillus anthracis*. Appl Environ Microbiol 1999;65:1298-1303.

- 40. Qi Y, Patra G, Liang X, et al. Utilization of the rpoβ gene as a specific chromosomal marker for real-time PCR detection of *Bacillus anthracis*. Appl Environ Microbiol 2001;67:3720-7.
- 41. Hurtle W, Bode E, Kulesh DA, et al. Detection of the *Bacillus anthracis* gyrA gene by using a minor groove binder probe. J Clin Microbiol 2004;42:179-85.
- 42. Sambrook J and Russell DW. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001:E.5
- Jolley KA, Feil EJ, Chan MS, and Maiden MC. Sequence type analysis and recombinational tests (START). Bioinformatics 2001;17:1230-1.
- 44. Helgason E, Tourasse NJ, Meisal R, Caugant DA, and Kolsto AB. Multilocus sequence typing scheme for bacteria of the *Bacillus cereus* group. Appl Environ Microbiol 2004;70:191-201.
- 45. Kumar S, Tamura K, Jakobsen IB, and Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 2001;17:1244-5
- 46. Kaneko T, Nozaki R, and Aizawa K. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Microbiol Immunol 1978;22:639-41.
- Seki T, Chung C, Mikami H, and Oshima Y. Deoxyribonucleic acid homology and taxonomy of the genus *Bacillus*. Int J Syst Bacteriol 1978;28:182-9.
- 48. Ash C, Farrow JA, Dorsch M, Stackebrandt E, and Collins MD. Comparative analysis of *Bacillus anthracis*, *Bacillus cereus*, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol 1991;41:343-6.
- 49. Ash C and Collins MD. Comparative analysis of 23S ribosomal RNA gene sequences of *Bacillus anthracis* and emetic *Bacillus cereus* determined by PCR-direct sequencing. FEMS Microbiol Lett 1992;73:75-80.
- Harrell LJ, Andersen GL, and Wilson KH. Genetic variability of *Bacillus anthracis* and related species. J Clin Microbiol 1995;33:1847-50.
- 51. Bourque SN, Valero JR, Lavoie MC, and Levesque RC. Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of *Bacillus thuringiensis* strains and subspecies and of closely related species. Appl Environ Microbiol 1995;61:1623-6.

- 52. Carlson CR, Caugant D, and Kolstø A. Genotypic diversity among *Bacillus cereus* and *Bacillus thuringiensis* strains. Appl Environ Microbiol 1994;60:1719-25.
- 53. Helgason E, Okstad OA, Caugant DA, et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis — one species on the basis of genetic evidence. Appl Environ Microbiol 2000;66:2627-30.
- Henderson I, Duggleby CJ, and Turnbull PC. Differentiation of *Bacillus anthracis* from other *Bacillus cereus* group bacteria with the PCR. Int J Syst Bacteriol 1994;44:99-105.
- 55. Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998;95:3140-5.
- 56. Enright MC and Spratt BG. A multilocus sequence typing scheme for *Streptococcus pneumoniae*: identification of clones associated with serious invasive disease. Microbiology 1998;144:3049-60.
- 57. Enright MC, Spratt BG, Kalia A, Cross JH, and Bessen DE. Multilocus sequence typing of *Streptococcus pyogenes* and the relationships between emm type and clone. Infect Immun 2001;69:2416-27.
- 58. Meats E, Feil EJ, Stringer S, et al. Characterization of encapsulated and noncapsulated *Haemophilus influenzae* and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 2003;41:1623-1636.
- 59. Enright, MC, Day NP, Davies CE, Peacock SJ, and Spratt BG. Multilocus sequence typing for characterization of methicillinresistant and methicillin-susceptible clones of *Staphylococcus aureus*. J Clin Microbiol 2000;38:1008-15.
- 60. Dingle KE, Colles FM, Wareing DR, et al. Multilocus sequence typing system for

Campylobacter jejuni. J Clin Microbiol 2001;39:14-23.

- Homan WL, Tribe D, Poznanski S, et al. Multilocus sequence typing scheme for *Enterococcus faecium*. J Clin Microbiol 2002;40:1963-1971.
- 62. van Loo IH, Heuvelman KJ, King AJ, and Mooi FR. Multilocus sequence typing of *Bordetella pertussis* based on surface protein genes. J Clin Microbiol 2002;40:1994-2001.
- 63. Adiri RS, Gophna U, and Ron EZ. Multilocus sequence typing (MLST) of *Escherichia coli* O78 strains. FEMS Microbiol Lett 2003;222:199-203.
- 64. Noller AC, McEllistrem MC, Stine OC, et al. Multilocus sequence typing reveals a lack of diversity among *Escherichia coli* O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol 2003;41:675-9.
- 65. Kotetishvili M, Stine OC, Kreger A, Morris JG Jr, and Sulakvelidze A. Multilocus sequence typing for characterization of clinical and environmental *Salmonella* strains. J Clin Microbiol 2002;40:1626-35.
- 66. Priest FG, Barker M, Baillie LWJ, Holmes EC, and Maiden MCJ. Population structure and evolution of the *Bacillus cereus* group. J Bacteriol 2004;186:7959-70.
- 67. Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 1998;95:3140-5.
- 68. Barker M, Thakker B, and Priest FG. Multilocus sequence typing reveals that *Bacillus cereus* strains isolated from clinical infections have distinct phylogenetic origins. FEMS Microbiol Lett 2005;245:179-84.