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Muscle wasting in chronic kidney disease: the role
of the ubiquitin proteasome system and its clinical impact
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Abstract Muscle wasting in chronic kidney disease (CKD)
and other catabolic diseases (e.g. sepsis, diabetes, cancer)
can occur despite adequate nutritional intake. It is now
known that complications of these various disorders,
including acidosis, insulin resistance, inflammation, and
increased glucocorticoid and angiotensin II production, all
activate the ubiquitin–proteasome system (UPS) to degrade
muscle proteins. The initial step in this process is activation
of caspase-3 to cleave the myofibril into its components
(actin, myosin, troponin, and tropomyosin). Caspase-3 is
required because the UPS minimally degrades the myofibril
but rapidly degrades its component proteins. Caspase-3
activity is easily detected because it leaves a characteristic
14kD actin fragment in muscle samples. Preliminary
evidence from several experimental models of catabolic
diseases, as well as from studies in patients, indicates that
this fragment could be a useful biomarker because it
correlates well with the degree of muscle degradation in
dialysis patients and in other catabolic conditions.
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Maintenance of protein stores in chronic kidney disease

In uremic patients, protein stores are frequently depressed
when assessed by a low serum prealbumin and weight loss,
which includes loss of muscle mass [1, 2]. In pediatric
patients with chronic kidney disease (CKD), linear growth is
impaired and muscle mass is reduced. Although these
findings have been attributed to “malnutrition”, many uremic
patients with muscle wasting have not developed the
problems because of inadequate diet; instead, they have
complications that induce a complex series of physiological
and biochemical adaptations, resulting in protein catabolism
[3, 4]. In children and adults with CKD, these complications
include metabolic acidosis, insulin resistance, increased
glucocorticoid production, high levels of angiotensin II
(Ang II), and inflammation [5–8]. Many observational
studies and mechanistic investigations have attempted to
explain this loss of protein stores, and especially the loss of
muscle mass. There are at least three conclusions from these
studies. First, rates of protein synthesis in muscle are
generally unchanged, whereas rates of protein degradation
tend to increase [5, 9]. Second, the daily rates of protein
turnover in cells are so high (3.5–4.5 g protein/kg per day)
that even a small increase in protein degradation (and/or a
decrease in protein synthesis) will cause marked protein
depletion over time [10]. Third, the increase in muscle
protein degradation in uremia and most other catabolic
disease states is mostly due to programmed activation of the
ubiquitin–proteasome system (UPS) [5, 11]. Therefore, to
understand muscle wasting, one must understand the UPS.
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The ATP-dependent, ubiquitin–proteasome
system (UPS)

Over the past two decades, progress in understanding the
action and regulation of the UPS has been at the center of
attempts to understand the control of protein turnover. The
UPS includes concerted actions of enzymes that link
ubiquitin (Ub), a member of the heat-shock protein family,
to protein substrates that are destined for degradation
(Fig. 1). When a chain of at least four to five ubiquitins
are linked to a protein, it is marked for degradation in a
second step mediated by the proteasome [12, 13]. Specif-
ically, the tagged protein will be recognized by the 26S
proteasome, a very large multicatalytic protease complex
that not only recognizes Ub-conjugated proteins but also
removes Ub, unwinds the protein, and injects it into the
central core of the 26S proteasome. Once inside this central,
tube-like structure, the protein substrate is degraded into
small peptides [14].

Three enzymatic components are required to link Ub to
proteins that are destined for degradation. There appears to
be only one E1 (Ub-activating) enzyme and around 40 E2
(Ub-carrier or conjugating) proteins. The key enzyme,
however, is the E3 enzyme, which accounts for the
exquisite specificity of proteins to be degraded. There are
at least a thousand E3 enzymes (Ub ligase), and each can
recognize a specific protein substrate and catalyze the
transfer of an activated Ub from the E2 carrier protein to the
substrate protein [10, 15].

Since the initial reports that the UPS recognizes specific
proteins and tags them for destruction, knowledge about
proteolytic processes in the proteasome has exploded.
Thousands of proteins have been recognized as being
degraded by the UPS, and novel cellular functions are
now known to be regulated by Ub conjugation. In terms of
protein breakdown, the major functions of the pathway are:

Rapid removal of proteins Protein degradation is irrevers-
ible, and hence, destruction of a protein generally leads to a
complete termination of cellular process mediated by the
protein. Consequently, protein degradation is critical for the
regulation of metabolism and cell turnover. The rapid
degradation of specific proteins also permits cells (as well
as the organism) to rapidly adapt to a change in
physiological conditions (e.g. requiring a switch to glucose
as an energy source involves converting protein stores into
amino acids that can be used in gluconeogenesis).

Regulation of gene transcription Ub conjugation affects
gene transcription because many transcription factors
become conjugated to Ub, and transcription activators are
degraded by the proteasome [16]. This process regulates
transcriptional activity by removing “spent” activators and
resetting a promoter for additional rounds of transcription
[17]. Second, the ability of transcription factors to function
varies with their location within the cell. For example,
nuclear factor (NF)-κB, a proinflammatory transcriptional
factor, is kept outside the nucleus because movement into
the nucleus is blocked by its association with an inhibitory
protein, IκB. Destruction of IκB, initiated by the IKK
kinase and carried out by the UPS, frees NF-κB, which then
translocates to the nucleus to stimulate gene transcription
[18]. A clinical application of this function of the UPS has
developed in oncology. Bortezomib (Velcade, PS-341), a
proteasome inhibitor, has proven to be beneficial in patients
with multiple myeloma and is currently in clinical trials for
the treatment of other cancers [19, 20]. The proposed
mechanism of action involves the ability of bortezomib to
prevent the UPS-induced destruction of IκB, thereby
blocking the activation of NF-κB (an antiapoptosis tran-
scription factor), leading to an increase in apoptosis [21].
Inhibition of the proteasome, therefore, will induce apopto-
sis of the neoplastic cells [22]. In addition, myeloma cells
are also particularly dependent upon NF-κB to produce
essential growth factors [especially inerleukin 6 (Il-6)];
when NF-κB is inactive, the growth of myeloma cells is
depressed.

Quality-control mechanism The UPS selectively eliminates
abnormally folded or damaged proteins that have arisen
because of missense or nonsense mutations, biosynthetic
errors, proteins damaged by oxygen radicals, or by

Fig. 1 The ubiquitin–proteasome pathway of protein degradation.
Ubiquitin (Ub) is conjugated to proteins destined for degradation by
an ATP-dependent process that involves three enzymes (E1–E3). A
chain of five Ub molecules attached to the protein substrate is
recognized by the 26S proteasome, which removes Ub and digests the
protein into peptides. The peptides are degraded to amino acids by
peptidases in the cytoplasm or used in antigen presentation.
(Reproduced with permission from [15])
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denaturation. For example, in cystic fibrosis, the mutant
form of the transmembrane conductance regulator protein
(CFTR) is selectively degraded before it reaches the cell
surface [23]. The UPS catalyzes destruction of this mutant
CFTR because its tertiary structure is abnormal. Another
example is the degradation of misfolded proteins within the
endoplasmic reticulum. Endoplasmic-reticulum-associated
degradation (ERAD) of proteins removes misfolded pro-
teins by targeting them for destruction by proteasomes in
the cytoplasm [24].

Influencing the function of the immune system The UPS is
responsible for creating antigens from the degradation of
foreign proteins (e.g. viral particles). The antigens are
presented on the major histocompatibility complex as class
I molecules. In this way, the 26S proteasome exerts dual
roles of removing foreign proteins and creating a stimulus
of the immune system [15, 25].

As a source of amino acids When carbohydrate calories are
rapidly needed or when cells must respond to catabolic
diseases/conditions, there is breakdown of cell proteins,
especially skeletal muscle proteins. The UPS degrades
muscle proteins to provide amino acids that can be
converted to glucose (i.e. gluconeogenesis). An undesired
consequence of this activity could be an inappropriate loss
of muscle protein.

Functions of Ub not associated with proteolysis Ub can
also be conjugated to proteins as a monomer (rather than as
the typical Ub chain). When this occurs on cell-surface
proteins, the protein is internalized into the endocytic
pathway to be degraded in lysosomes [26, 27].

Uremia-activated mechanisms that accelerate loss
of muscle protein

Results from rodent models of CKD have established that
accelerated muscle protein catabolism involves many of the
same cellular mechanisms that cause muscle wasting in
other catabolic conditions, such as cancer, starvation,
insulin deficiency/resistance, or sepsis [10, 28]. The
principal mechanism causing muscle atrophy in CKD
involves activation of the UPS. Evidence for this includes
the presence of higher levels of mRNAs encoding certain
components of the UPS, as well as a similar pattern of
increases and decreases in the expression of about 100
atrophy-related genes (also called atrogenes) [5, 28].
Changes in atrogenes include decreased expression of
various growth-related genes and increased expression of
components of the UPS. Patients with different clinical

conditions associated with muscle atrophy exhibit similar
increases in mRNAs encoding components of the UPS
(e.g. an increase in mRNAs encoding Ub and proteasome
subunits) [11, 29–31]. In these cases, changes in gene
expression are most likely due to transcriptional regulation
because we have shown that uremia or abnormal insulin
responses increase the transcription of Ub and subunits of
the proteasome [5, 6, 32]. Additional evidence linking the
UPS to protein degradation in catabolism is the finding that
the increase in protein degradation in the muscle of rats
with CKD (and other muscle-wasting conditions) can be
blocked by inhibitors of the proteasome [5, 6, 33].
Considered together, these results indicate that muscle
wasting is a specific and carefully orchestrated program.

Other questions are why are proteins degraded, and how
is the complex program triggered in widely varied
pathological conditions (e.g. acidosis in renal failure, low
insulin levels in fasting and diabetes, inactivity, or
glucocorticoids and cytokines in sepsis and other inflam-
matory conditions)? In fasting and in other disease states,
acceleration of muscle-protein breakdown mobilizes amino
acids, which are used for protein synthesis in tissues and for
conversion to glucose in the liver [10]. However, if
excessive protein degradation persists, the protein loss will
have deleterious effects. In CKD, the breakdown of tissue
protein produces nitrogenous waste products, which must
be excreted to prevent the accumulation of uremic toxins
[3, 10]. Finally, in muscle wasting conditions, contractile
proteins are lost differentially, whereas in conditions
causing atrophy (e.g. aging), all components of muscle
cells seem to be affected.

What accounts for muscle-specific response? The answer
to this question lies in the involvement of the UPS. The UPS
degrades a specific protein depending on which E3 ubiquitin
ligase is activated. For example, two Ub ligases, atrogin-1
(also known as MAFbx) and MuRF-1, are found specifically
in muscle, and their expression increases dramatically (8- to
20-fold) in catabolic states, causing loss of muscle protein
[28, 34, 35]. In mice lacking the genes for either atrogin-1 or
MuRF-1, muscles grow normally, but in response to muscle
denervation, the ensuing atrophy is 30–50% slower [34]. In
addition, the muscle’s content of atrogin-1 mRNA can be
considered a biomarker for the rate of proteolysis in muscles
responding to a catabolic condition [36–38].

In uremia, the initial cleavage of myofibrillar proteins
is mediated by caspase-3

Myofibrillar proteins (including actomyosin) comprise
about two thirds of the protein in muscle, the major store
of amino acids for new protein synthesis and for gluconeo-
genesis. The UPS readily degrades the main proteins in
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myofibrils (i.e. actin, myosin, troponin, or tropomyosin),
but it does not readily break up the myofibril into its main
component proteins [39]. This means that another proteo-
lytic system must initially digest myofibrils to create
substrates that can be degraded by the UPS [40].

Many catabolic conditions are associated with inflam-
mation and/or cell injury, and these conditions activate a
cysteine protease called caspase-3. We tested caspase-3 in
an in vitro system using purified actomyosin and found that
caspase-3 cleaves actomyosin and leaves a characteristic
14kD actin fragment [40]. When we activated caspase-3 in
cultured muscle cells, we found that UPS rapidly degraded
myofibrillar component proteins, and again, the 14kD
C-terminal fragment of actin was left in the muscle cells
[40]. The protein-cleaving action of caspase-3 is important
because blocking caspase-3 will reduce overall protein
degradation in muscle [40]. In addition, we have found the
same cleavage processes are present in muscles of rodent
models of uremia, type-1 or type-2 diabetes, or in Ang-II-
induced hypertension [7, 35, 40, 41]. Moreover, we found
that the 14kD actin fragment also accumulates in muscles
of patients with loss of muscle mass due to painful
osteodystrophy, uremia, or burn injury [42]. In the latter
study, we found that the rate of protein degradation in
muscle (measured from the turnover of labeled amino
acids) directly correlated (r=0.78) with the level of the
14kD actin fragment in the same muscle. In addition, there

was a lower level of the 14kD actin fragment in muscle of
hemodialysis patients who participated in 18 weeks of an
endurance exercise training program. In summary, the level
of the 14kD actin fragment is directly associated with
measured protein degradation in muscle, and the accumu-
lation of the fragment responds to a beneficial therapeutic
intervention. If these properties hold up in other trials, the
level of the 14kD actin fragment could be used as a
“biomarker” of increased muscle protein degradation [42].

Signals triggering muscle atrophy in kidney disease
and other catabolic states

Complications of CKD, as well as the complex syndrome
of uremia, can trigger muscle protein breakdown. The
triggering complications include metabolic acidosis, de-
creased insulin action (including insulin resistance), in-
creased glucocorticoid production, high levels of Ang II,
and inflammation [5–8]. Metabolic acidosis is known to
cause accelerated protein degradation in infants, children,
adults, the elderly, and patients with CKD (Table 1). The
mechanism by which metabolic acidosis causes muscle
wasting involves activation of the UPS and caspase-3 [40,
43]. In addition, acidosis changes hormone actions, such as
insulin resistance and increased glucocorticoid production,
which are involved in activating protein degradation [32,

Table 1 Evidence that metabolic acidosis induces catabolism of protein and amino acids in normal infants, children, and adults, as well as in
patients with chronic kidney disease (CKD)

Subjects
investigated

Outcome measurements Trial outcome

Infants [68] Low-birth-weight, acidotic infants were given NaHCO3

or NaCl
NaHCO3 supplement improved growth

Children with
CKD [69]

Measured rates of protein degradation in children
with CKD

Protein loss was ∼ 2-fold higher when HCO3 was < 16
mM compared with > 22.6 mM

Normal adults
[70]

Acidosis induced and then measured amino acid and protein
metabolism

Acidosis increased amino acid and protein degradation

Normal adults
[71]

Induced acidosis and then measured nitrogen balance
and albumin synthesis

Acidosis induced negative nitrogen balance and
suppressed albumin synthesis

Chronic renal
failure [72]

Nitrogen balance before and after treatment of acidosis NaHCO3 improved nitrogen balance

Chronic renal
failure [73]

Essential amino acid and protein degradation before and after
treatment of acidosis

NaHCO3 suppressed amino acid and protein degradation

Chronic renal
failure [74]

Muscle protein degradation and degree of acidosis Proteolysis was proportional to acidosis and
blood cortisol

Chronic renal
failure [75]

Nitrogen balance before and after treatment of acidosis NaHCO3 reduced urea production and improved nitrogen
balance

Hemodialysis [76] Protein degradation before and after treatment of acidosis NaHCO3 decreased protein degradation
Hemodialysis [77] Serum albumin before and after treatment of acidosis NaHCO3 increased serum albumin
CAPD [78] Protein degradation before and after treatment of acidosis NaHCO3 decreased protein degradation
CAPD [79] Weight and muscle gain before and after treatment

of acidosis
Raising dialysis buffer increased weight and
muscle mass

CAPD continuous ambulatory peritoneal dialysis
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41, 43–45] (Table 2). It is important to emphasize that the
correction of metabolic acidosis has been shown to
decrease protein breakdown in various clinical trials,
indicating why maintaining normal serum bicarbonate
levels should be part of standard clinical care (Table 1).

The finding that various diseases with muscle wasting
are caused by activation of the UPS, plus the fact that
coordinated changes in the expression of genes in muscle
occur in different catabolic states, suggest that catabolic
states activate a common cellular signaling pathway [28].
One signaling pathway is a decrease in phosphatidylinositol
3-kinase (PI3K) activity (Fig. 2). The involvement of this
signaling pathway follows from the finding that several
catabolic illnesses, including sepsis, acidosis, uremia, and
diabetes, are characterized by insulin resistance [41, 44, 46,
47]. In normal muscle, binding of insulin or insulin-like
growth factor (IGF)-1 to their receptors increases the
activities of PI3K and its downstream target, Akt. In
insulin-resistant conditions or with deficiency of IGF-1,
the activity of this signaling pathway is depressed [35, 48,
49]. When PI3K activity falls, there is decreased production
of phosphatidylinositol-3,4,5 phosphate (PIP3), leading to
decreased phosphorylation and activity of the downstream
serine/threonine kinase, Akt. This is a key step, because
activated Akt is a major stimulator of growth-related
processes via phosphorylation of the downstream kinases,
GSK1 and mTOR/S6kinase, stimulating protein synthesis.
On the other hand, reduced PI3K-Akt signaling (as occurs
in insulin resistance) enhances protein breakdown in muscle
[41]. The rise in muscle protein losses is associated with
two catalytic processes: first, caspase-3 is activated to break
down the complex structure of muscle; second, there is
increased expression of the E3 ubiquitin ligases, atrogin-1
and MuRF-1, to degrade the proteins made available by
caspase-3 [35–37] (Fig. 2). The result is muscle wasting.

How are the two mechanisms activated? In studies of
muscles from insulin-deficient rats or db/db mice (a model
of insulin resistance), we found that accelerated muscle
protein degradation increases the level of the proapoptotic
factor, Bax [35, 41]. This is relevant because activated Bax
causes the release of cytochrome C from mitochondria.
Cytochrome C release, in turn, activates caspase-3 to trigger
actomyosin/myofibril cleavage, leaving behind the 14kD
actin fragment marker [35]. The activation of atrogin-1, and
hence the UPS, involves another mechanism: changes in
activity of the fork-head transcription factors (FoxO 1, 3
and 4). When these transcription factors are phosphorylated
by Akt, they cannot enter the nucleus to stimulate
transcription of atrogin-1. However, when PI3K/Akt activ-
ities are low, the FoxOs are not phosphorylated, so they can
enter the nucleus to increase the transcription of atrogin-1,
resulting in an increase in muscle protein degradation
[35–37].

Table 2 Metabolic acidosis in otherwise normal humans changed
hormonal levels or responses to hormones

Hormone Acidosis-induced response

Growth hormone (GH)
[80–84]

Suppressed GH secretion
Lower IGF-1 response

Insulin [44, 85, 86] Suppressed insulin-stimulated glucose
metabolism

Insulin-like growth factor
(IGF)-1 [81, 84, 87]

Decreased IGF-1 in plasma, and kidney
and liver (but not in muscle)

Thyroid hormone [82, 88] Decreased plasma T3 and T4 levels plus
a higher plasma thyroid-stimulating
hormone

Glucocorticoids [89] Increased glucocorticoid production
Parathyroid hormone
(PTH) [90, 91]

Decreased sensitivity of PTH secretion
to changes in plasma calcium

Vitamin D [91] Suppressed activation to 1,25 (OH)2
cholecalciferol

Fig. 2 The balance between muscle hypertrophy and atrophy depends
on whether protein synthesis is more active than degradation or vice
versa. In protein synthesis, insulin-like growth factor (IGF)-1 and
insulin signaling leads to increased phosphatidylinositol 3-kinase
(PI3K), which promotes Akt phosphorylation (Akt-P). Akt-P pro-
motes phosphorylation of GSK1 and mTOR/S6 kinases, leading to
increased protein synthesis. Akt-P also phosphorylates the forkhead
(FoxO) transcription factor, preventing it from entering the nucleus to
promote expression of atrogin-1, MuRF-1, and other atrogenes,
thereby blocking protein degradation. In protein degradation, the
opposite pathway happens, but additionally, decreased Akt-P leads to
increased caspase-3 activity, further promoting degradation. In
inflammation, it is thought that tumor necrosis factor (TNF)-α and
other inflammatory cytokines phosphorylate the inhibitor of nuclear
factor (NF)-κB (IκB), to free NF-B to enter the nucleus and promote
MuRF-1 expression, and ultimately, muscle protein degradation.
(Reproduced with permission from [15])
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The influence of Akt on the other E3 ubiquitin ligase
involved in muscle proteolysis, MuRF-1, is not as clearly
established, and it may be linked to inflammation, as
activation of NF-κB will cause overproduction of MuRF1
and muscle atrophy [37].

Besides acidosis and depressed insulin/IGF-1 action,
another complication of CKD that participates in muscle
wasting is increased glucocorticoid production. The com-
plexity of these interactions is great because increased
glucocorticoids can cause insulin insensitivity [32, 41, 50],
and both insulin deficiency and insulin resistance increase
glucocorticoid production. Glucocorticoids exert a permis-
sive effect on protein degradation in muscle caused by
several catabolic conditions. For example, activation of
muscle protein breakdown does not occur in adrenalecto-
mized animals with metabolic acidosis or with acute
diabetes unless the animals are also given a physiological
dose of glucocorticoids [32, 51–53]. Similarly, the increase
in muscle proteolysis induced by Ang II or sepsis is largely
eliminated by inhibiting the glucocorticoid receptor [7, 54].
This response to glucocorticoids is “permissive” because
the same physiological level of glucocorticoids does not
stimulate muscle protein degradation unless the animals are
either acidotic or insulin deficient. These complex inter-
actions actually make “physiological sense” because glu-
cocorticoids evolved to integrate stress responses in
different tissues. When glucose is needed, glucocorticoids
mobilize amino acids from muscle protein. At the same
time, glucocorticoids induce gluconeogenic enzymes in
liver to catalyze the conversion of the amino acids to
glucose and urea.

In children, accelerated loss of protein stores associated
with glucocorticoid therapy frequently results in impaired
linear growth. One glucocorticoid-dependent mechanism
causing these defects is impaired response to insulin
(insulin insensitivity). An allied mechanism is impaired
response to IGF-1 arising from decreased or impaired
action of growth hormone. Indeed, administration of
growth hormone has been shown to improve linear growth
of children being treated chronically with glucocorticoids
[55]. Moreover, growth hormone has been shown to
improve growth of children with chronic catabolic diseases
such as CKD; whereas growth hormone improves growth,
it does not improve growth in children to (or close to) a
normal height for age [56–58]. The impaired response is
likely due to the multiple complications of CKD, resulting
in retarded growth. Interestingly, there is a small uncon-
trolled study of five children who were being treated
with chronic intermittent hemodialysis and growth hor-
mone. The children were then placed on an intensified
daily hemodialysis regimen (3 h/day, five to six times a
week) for a median time of 1.5 years [59]. The new
regimen led to significant catchup growth into the range of

a normal height for age. Intensified dialysis plus growth
hormone could correct acidosis, improve insulin and IGF-1
signaling and responses to other hormones, and remove
unidentified uremic toxins. These responses emphasize the
complexity of sorting out mechanisms for muscle wasting
in CKD.

Another catabolic factor associated with CKD is Ang II.
Infusion of Ang II into rodents causes both anorexia and
muscle protein loss by mechanisms that depend on
glucocorticoids [7]. Also, there is the knotty problem of
understanding the influence of inflammation. In this case,
the mechanism(s) causing muscle wasting in inflammation
is not clear. Suggested responses include the ability of
certain inflammatory mediators to cause insulin resistance,
as well as a more direct influence of inflammatory
mediators on muscle protein metabolism (Fig. 2). The
problem is difficult because the link between an increase in
inflammatory markers in uremic patients (e.g. C-reactive
protein) to loss of muscle mass has not been established
[60, 61].

Finally, there is an intriguing protein—myostatin—a
member of the transforming growth factor (TGF)-β
family of cytokines. It is produced in skeletal and cardiac
muscle and regulates muscle growth by limiting it [62].
Overexpression of myostatin in muscle leads to loss of
protein mass via inhibition of Akt phosphorylation with an
increase in active FoxO1; this increases the expression of
atrophy-related genes [63, 64]. Underexpression of myo-
statin results in skeletal muscle hypertrophy [65]. An
increase in myostatin expression is found in several
cachexia-associated disease states. However, there is limited
information about the influence of kidney disease on
myostatin expression and function beyond changes in
myostatin mRNA [66, 67].

Conclusion

In this brief review of mechanisms causing muscle protein
losses, we discussed how a complex series of biochemical
reactions are coordinated to create a genetic program that
degrades muscle proteins. We also identified an initial step
in muscle proteolysis that leaves behind a biomarker in
muscle, the 14kD actin fragment, resulting from caspase-3.
We emphasized how the UPS causes muscle wasting in
uremia, as well as the role UPS plays in the regulation of
cellular functions, ranging from the control of the cell cycle
to activities that promote cancer. Indeed, inhibitors of
proteasome activity have emerged as novel chemothera-
peutic agents. Involvement of the UPS in such a wide range
of functions explains why the 2004 Nobel Prize in
Chemistry was awarded to Avram Hershko, Aaron
Ciechanover, and Irwin Rose for their discovery of Ub
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and its role in orchestrating cellular protein turnover (http://
nobelprize.org/chemistry/laureates/2004/).
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