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ABSTRACT An integrated understanding of molecular
and developmental biology must consider the large number of
molecular species involved and the low concentrations of many
species in vivo. Quantitative stochastic models of molecular
interaction networks can be expressed as stochastic Petri nets
(SPNs), a mathematical formalism developed in computer
science. Existing software can be used to define molecular
interaction networks as SPNs and solve such models for the
probability distributions of molecular species. This approach
allows biologists to focus on the content of models and their
interpretation, rather than their implementation. The stan-
dardized format of SPNs also facilitates the replication,
extension, and transfer of models between researchers. A
simple chemical system is presented to demonstrate the link
between stochastic models of molecular interactions and
SPNs. The approach is illustrated with examples of models of
genetic and biochemical phenomena where the ULTRASAN
package is used to present results from numerical analysis
and the outcome of simulations.

Many processes in molecular biology involve small numbers of
molecules. Recent observations of gene expression in individ-
ual cells illustrate the stochastic nature of transcription (1-5).
Multimodal probability distributions arise in a model of a
single DNA molecule amplified by using PCR at a high
amplification rate (6). Models of genetic networks are becom-
ing increasingly important; for example, the lysis/lysogeny
decision of lambda phage has been modeled both determin-
istically (7) and stochastically (8). A major difference between
the deterministic and stochastic models is that the initial
condition fixes the outcome in a deterministic model, but in a
stochastic model, qualitatively distinct outcomes, such as lysis
or lysogeny, can arise from identical initial conditions caused
by the random timing of events (8, 9). Developmental decisions
often may depend on small numbers of many different types of
molecules, and stochastic effects cannot be ignored. A system-
atic effort to reduce variation in inbred mice reveals that most
of the residual variation is attributed to events that occur at or
before fertilization (10).

A theoretical understanding of molecular and developmen-
tal biology must account for the variation caused by stochastic
interactions of molecules present in small absolute numbers
and the large number of different types of molecules and
complex feedback loops involved (11). Traditional mathemat-
ical tools are not well-suited to modeling the dynamic behavior
of distributions of tens or hundreds of different types of
interacting molecules. Such systems can, in principle, be rep-
resented by a series of coupled Kolmogorov equations (12).
However, such equations are impossible to treat analytically
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for all but the simplest cases of molecular interactions. Quan-
titative stochastic models can be used to integrate detailed
biochemical data and to help understand the behavior of
complex systems of molecular interactions.

We introduce an approach to modeling stochastic systems in
molecular biology, using stochastic Petri nets (SPNs) (no
relation to Petri dishes). SPNs are a formalism developed in
the field of computer science and have a standard graphical
representation, which is easy to interpret and to use for
defining models (13). The graphical representation of molec-
ular interactions as SPNs is similar to standard representations
in biochemistry. Computer packages are available that inte-
grate the graphical definition of SPNs with numerical analysis
or simulation.** Models of stochastic molecular interactions
can be represented as SPNs. The stochastic process that results
from this representation is equivalent to that used for mod-
eling stochastic chemical reactions (12), often referred to as
the chemical master equation (15). Thus, it is possible to define
complex models and quantitatively solve them for the proba-
bility distributions of molecular species by using SPN software
without writing specific computer code for each model. The
software makes it easy to modify or replicate models or to
transfer models in a standardized format.

Even though the use of SPN software makes the implemen-
tation of a model much easier than the use of a low-level
programming language, it is still far from being trivial. To
understand the functionality of the software, a general back-
ground in stochastic process theory, statistics, and Monte
Carlo simulation techniques is mandatory. Some understand-
ing of the numerical algorithms used to solve the models is
highly desirable to figure out the limitations of the software
and to operate it effectively. Textbooks in this field are rare,
but it might be useful to read ref. 16. The contents of this book
should be accessible to anyone who plans to make use of the
techniques described in this paper. An introduction to the
theory of stochastic processes as applied to chemical and
biological systems is given by refs. 17 and 18.

The paper is organized into three sections. The first section
introduces the terminology of SPNs and defines the interpre-
tation of SPNs we use to represent molecular interactions. The
graphical representation of SPNs is illustrated by using a
simple chemical system, model I. The second section describes
the different analysis techniques available by using SPNs. As
an example, the SPN representation of a simple genetic system,
model II, is explored by using numerical analysis and simula-
tion. The SPN approach is validated by comparing the results
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of this model to results derived symbolically for the same
system (19). The third section presents a more realistic bio-
logical example. Model III is a stochastic model of ColE1l
plasmid replication, derived from a deterministic model by
Brendel and Perelson (20). Simulation results are presented
for model III and compared with results from the deterministic
model. The discussion outlines the major advantages of using
SPNss for stochastic models of molecular interactions as well as
various issues that need to be addressed.

Representation of Molecular Interactions as SPNs

A number of variations on the definition of a SPN and its
extensions are present in the literature. We give an abbreviated
introduction to SPNs and show how to represent molecular
interactions as SPNs via a strict interpretation of a limited class
of SPNs and an additional constraint based on the kinetics of
chemical reactions. First, we define the components of an SPN,
following the terminology of ref. 13, and the molecular inter-
action interpretation of this terminology (Table 1):

An SPN comprises a set of places P, a set of transitions 7,
an input function /7, an output function O, a weight function W,
and an initial marking M.

To represent a system of molecular interactions as an SPN,
each place represents a distinct molecular species. Places
contain tokens, which represent individual molecules. The
number of tokens in a place p; is its marking. The state of the
system is given by a vector M, the global marking. The initial
marking M is the number of molecules of each species in the
system at time ¢ = 0.

Each transition represents an elementary chemical reaction.
Input and output functions link places and transitions, and
determine the stoichiometric coefficients of the molecular
species involved in the reaction. The rate of the reaction is
represented by the weight function. In the graphical represen-
tation of SPNs, places are drawn as circles, and transitions as
rectangles (13). Input and output functions are drawn as
arrows, referred to as directed arcs, linking input and output
places to transitions, where input places represent reactants
and output places products. Coefficients in the reaction equa-
tion greater than one are drawn as arcs labeled with this
coefficient. Model I is an SPN representation of the dimer-
ization reaction 2R = R, (Fig. 1). Note the similarity of this
figure with those found in textbooks in biochemistry. Also, this
is the representation of the reaction by its Vol’pert graph, used
in chemical kinetics.

A transition is said to be enabled when the markings of all
of its input places are at least as great as the coefficients of their
respective input arcs. For example, the transition ¢, in Fig. 1
is enabled if and only if #2monomer = 2. In our interpretation of
SPNs as models of molecular interactions, this is equivalent to
the statement that a reaction can occur only if sufficient
reactant molecules are present. Enabled transitions can fire,
representing a single molecular reaction event where reactant
molecules are removed and product molecules added accord-
ing to the coefficients of the reaction. Thus, when transition 7.+

Table 1. Molecular interpretation of SPN terminology

SPN term Molecular interpretation
Place Molecular species
Token Molecule
Marking Number of molecules
Transition Reaction
Input place Reactant
Output place Product

Rate of reaction
For a reaction to be possible
For a reaction to occur

Weight function
To be enabled
To fire
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t. (monomerization)

t, (dimerization)

Fic. 1. SPN representation of the dimerization reaction 2R = R5.
The transition ¢+ represents dimerization, with weight function w,+ =
€ +Mmonomer(Mmonomer — 1), where ¢ is a constant. The transition ¢
represents dissociation, with weight function w;— = c—mdimer- When no
initial marking is specified for a place, it is assumed to be zero. Thus,
the initial marking is Mo = {n,, 0}.

fires, Mmonomer 1S decreased by two and mgimer increased by one,
representing a single dimerization event. Now we must show
that the stochastic process by which transitions fire is equiva-
lent to that for chemical reactions.

In SPNs, enabled transitions fire with an exponentially
distributed time delay. The rate parameter for each transition
is given by the weight function W, and may, in general, be a
function of the global marking M (13). Thus, SPNs are a class
of Markov jump processes with discrete state space. Chemical
reactions at low concentration also are modeled by Markov
jump processes (15) where the rate of each chemical reaction
usually is constructed from the stoichiometry of the reaction.
The stochastic reaction rate of a chemical reaction is a function
of only those molecular species involved as reactants or
catalysts, and a stochastic rate constant ¢, which takes into
account volume, temperature, pH, and other environmental
factors. The stochastic rate constant is related to the deter-
ministic kinetic constant k (15). In the limit as the number of
molecules tends to infinity, the stochastic rate of a reaction is
equal to the deterministic rate (12). For SPNs to represent
molecular interactions exactly, the rate constant w; for a
transition # must be the stochastic rate of the reaction the
transition represents.

For monomolecular reactions, the stochastic and determin-
istic rate constants are equal. Thus the stochastic rate of the
reaction R, — 2R, represented by transition 7— in Fig. 1, is w_
= k_Mgimer, Where mgimer is the number of R, dimers in the
system and k_ is the dissociation rate constant. When the order
of the chemical reaction is greater than one, the relationship
of the stochastic reaction rate to the deterministic reaction rate
depends on the volume of the system and the numbers of each
reactant required for the reaction (12, 15). The rate of
transition ¢ in Fig. 1 is given by wyy = ¢+ Mmonomer(Mmonomer
— 1), where Mmonomer is the number of R monomers in the
system, ¢+ = k. /VNy, k. is the deterministic dimerization rate
constant, V' is the volume of the reaction system and N, is
Avogadro’s number.

The representation of molecular interactions as SPNs pro-
vides a well-defined formalism. Any chemically reacting system
can be represented as an SPN in this way. The stochastic
process arising from the SPN representation is equivalent to
that arising from the chemical equations written to describe the
system. Put in another way; if we were to write down the
Kolmogorov equations for the SPN, the result would be the
chemical master equation for the system of molecular inter-
actions represented.

There are a number of extensions to SPNs that will simplify
modeling of complex systems of molecular interactions. For
example, generalized SPNs may have instantaneous transi-
tions, which fire as soon as they are enabled. Some extensions
of SPNs allow the possibility of generalized distributions of
time delays, including delays of fixed length called determin-
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istic transitions (13). It is also possible to put additional
restrictions on transitions. For example, the software we use in
this paper, ULTRASAN, uses an extension of SPNs called
stochastic activity networks (SANs). SANs include input gates
to control the conditions under which transitions are enabled
and output gates to control the effect of transitions (21).

Analysis of SPN Models of Molecular Interactions

Three broad approaches to the analysis of SPNs may be
differentiated. The first approach uses structural analysis of
the Petri net underlying the SPN (13), where the transitions of
the SPN are converted into instantaneous transitions to form
a Petri net. This approach to analysis is similar to the problem
of classifying states in a Markov chain into transient, fixed, or
recurring states. Some of the possible uses of structural
analysis of Petri net models of molecular interactions have
been described (22, 23).

Second, numerical analysis can be used to derive both
steady-state and transient behavior. Numerical analysis algo-
rithms explicitly generate the Markov chain associated with the
SPN (13), but require that the state space of the Markov chain
be less than several hundred thousand states (24, 25). For many
models of molecular interactions, however, the size of the state
space increases very rapidly with the number of different types
of molecules, and numerical analysis is impractical.

Third, algorithms are available for simulating both steady-
state and transient behavior and estimating the distributions of
results (21). Relative confidence intervals can be estimated
and used interactively to determine how many runs of the
simulation are required to produce a given level of precision.

Following Sanders (26), results may be associated with
places, called reward measures, or with transitions, called
impulse measures. In molecular terms, reward measures might
be used to estimate the distribution of the number of molecules
of some species at a particular time, or of the average number
of molecules over some period of time. Impulse measures
might be used to determine the number of times a reaction
occurs in a particular time interval.

As an example of numerical analysis and simulation of an
SPN, model IT is a simple model of protein synthesis. Peccoud
and Ycart (19) symbolically solved the Kolmogorov equations
arising from this system, and we compare the results of
numerical analysis and simulation using ULTRASAN (21) to
those results.

Inactive gene

v é

=—O0—

Protein

Active gene ?

FiG.2. SPN representation of a simple model of protein synthesis.
The SPN contains three places: p; = inactive gene, p> = active gene,
and p3 = protein. The four transitions and their respective rate
parameters are activation (A), inactivation (w), synthesis (v), and
degradation (8). The dot inside place inactive gene represents a single
token (a single copy of the gene). Thus, the initial marking of the SPN
is Mo = {1, 0, 0}. Other molecules in this system, such as RNA
polymerase, are assumed to be in constant concentration and are not
explicitly represented.

Proc. Natl. Acad. Sci. USA 95 (1998)

Model II contains a single copy of a gene, which is initially
inactive, but which subsequently may be active or inactive.
Protein may be produced when the gene is active and may be
degraded at any time. The SPN representation of this model
is given in Fig. 2. The place active gene is simultaneously an
input and an output of the transition synthesis (v), because it
is required for synthesis but not consumed, acting effectively
as a catalyst. Protein degradation is drawn as a transition with
no output arc, representing a reaction with no products.

We define two output measures for this model. The first one
is the probability distribution of the number of protein mol-
ecules. To render the state space of the SPN finite for
numerical analysis, it is necessary to limit the number of
protein molecules allowed in the system, by setting a reflecting
boundary on the state space; if this boundary is set sufficiently
high, the error in the approximation is negligible. In ULTRA-
SAN, this constraint can easily be implemented by using an
input gate. A second output measure estimates the probability
that the number of proteins is at this limit. With the parameter
values used in Table 2, this probability is of the order of 1073°.

Table 2 presents results on the mean and variance of the
number of proteins from both numerical analysis and simula-
tion using ULTRASAN, for both transient and steady-state
behavior. The results are consistent with the symbolic solution
of Peccoud and Ycart (19), which validates the SPN approach.
Peccoud and Ycart did not derive the analytic distribution of
protein number for this model. Fig. 3 shows the distribution of
protein number in steady state by using numerical analysis in
ULTRASAN.

Stochastic Model of ColE1 Plasmid Replication

The biomolecular mechanisms underlying plasmid copy num-
ber control have been studied extensively (27). The sponta-
neous loss of plasmids is experimentally important, because
bacteria without plasmids often replicate more quickly and can
outcompete bacteria with plasmids (27). Therefore, it is im-
portant to be able to estimate not only the mean number of
plasmids per bacterium, but also the variance in plasmid
number and the probability of spontaneous loss of plasmids
from a bacterial lineage.

Model III is an SPN model of plasmid ColEl1 replication. It
is the stochastic equivalent of a differential equation model
based on deterministic kinetics (20). Fig. 4 shows the reaction

Table 2. Mean and variance of protein number from model II

Protein number

Mean, Variance,
+SE* +SE*
Transient analysis (time ¢ = 10)
Symbolic solution 1.488 1.858
Numerical analysis 1.488 1.858
Simulation 1.481 = 0.004  1.852 = 0.011
Transient analysis (time ¢ = 100)
Symbolic solution 7.202 8.334
Numberical analysis 7.202 8.334
Simulationf 7.171 £ 0.009  8.315 = 0.039
Steady-state analysis
Symbolic solution 8.333 9.487
Numerical analysis 8.333 9.487
Simulation* 8.333 = 0.031  9.551 = 0.100

Results of symbolic solution are from ref. 19. Numerical analysis and
simulation results are from an SPN model defined and solved by using
ULTRASAN. Parameter values: activation rate, A = 1; inactivation rate,
w = 5; synthesis rate, v = 1; and degradation rate, § = 0.02. Maximum
number of protein molecules = 100.

*Standard error of variables estimated using simulation.
TBased on 10° runs (computation time on a Pentium 166 = 386 sec).
#Based on 103 runs (computation time on a Pentium 166 = 686 sec).
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FiG. 3. Distribution of protein number in simple model of gene
product synthesis. The distribution was generated from steady-state
numerical analysis using the same parameter values as Table 2.

network of ColE1 replication, modified from fig. 1 of Brendel
and Perelson (20) with permission. Full details of the ULTRA-
SAN implementation of this model are available on request.

The ColE1 replication system contains 18 molecular reac-
tions between 10 different molecular species, including seven
different plasmid complexes and RNA I, RNA II, and Rom
protein. The deterministic model representing this system
consists of 10 coupled differential equations with 19 rate
constants (20). The concentrations of plasmid, RNA I, RNA
II, and Rom protein were derived numerically for steady state
(20).

F1G. 4. SPN representation of plasmid ColE1 replication system.
The reactions represented and the notation used are from fig. 1 of
Brendel and Perelson (20). Plasmid DNA occurs in free form (D), or
in complexes with RNA II (D, D'y, and Dp), with RNA II and RNA
I (D and D.), or with RNA II, RNA I, and Rom protein (Day).
Replication occurs when primed plasmid DNA (D)) is converted to
free DNA (D). Free RNA I and Rom protein are represented by places
R and M, respectively. Initial marking of free plasmid is 1. (Modified
with permission from ref. 20.)

Proc. Natl. Acad. Sci. USA 95 (1998) 6753

Using ULTRASAN we model the number of each molecular
species in each bacterial lineage. During each generation the
volume of a bacterium grows exponentially from V; to 2V, in
doubling time 7p = 80 min. Continuous volume growth is
approximated by dividing the bacterial generation into small
deterministic time steps; increasing the number of time steps
does not affect the results of the model (data not shown). Most
simulations start with a single plasmid, to simulate the behav-
ior of a newly invading plasmid.

Fig. 5 shows the changing distribution of plasmid copy
number at 10-min intervals through the first generation. Not
only does the mean number of plasmids per bacterium in-
crease, but also the variance. At the end of the first generation,
mean plasmid number is 18.6 and the SD of plasmid number
is 5.4. Of biological interest is the probability of no replication
during the first generation, or, equivalently, the frequency of
exactly one plasmid being present immediately before bacterial
division, estimated at 4.0%10~* [95% confidence interval
(1.3*107* — 1.1*1073)]. If there is only one copy of the plasmid
at the end of the first generation, one of the daughter cells
cannot inherit a plasmid. Thus, this probability is related to the
probability of the plasmid establishing itself in a bacterial
population.

We also simulated the change in plasmid copy number over
several generations. At the end of each generation, the number
of molecules of each species was divided in two to form the
next generation. Thus, each generation begins with a distri-
bution of plasmids based on the distribution from the previous
generation. Segregation of plasmids during bacterial replica-
tion often may be random in practice (27-30).

Fig. 6 shows plasmid number per bacterium for the first 10
generations, starting with one or 100 plasmids. Because the
volume of bacteria changes with time, the number of plasmids
per bacterium is cyclic. Plasmid number was sampled every 20
min during the 80-min bacterial doubling time. Table 3 shows
the number of plasmids, as well as the number of molecules of
RNA I and Rom, at the midpoint of generations 8, 9, and 10
starting from a single plasmid. The means for each species
from the stochastic model are very similar to the steady-state
values of the deterministic model.

After 6—8 generations, plasmid number appears to approach
an asymptotic periodic distribution, irrespective of whether the
simulations were initiated with one or 100 plasmids per
bacterium. The distributions of plasmid number starting with
one or 100 plasmids are indistinguishable by the end of
generation 8 (x> = 34.3, 25 degrees of freedom, P > 0.1),

0.4
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02 Frequency
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0.50
Normalized
0.75  Doubling Time

20
Plasmid
Number 30

40 1.00

F1G. 5. Distribution of plasmid copy number in a single bacterium
during first generation with 80-min doubling time.



6754 Biochemistry: Goss and Peccoud

Generations
1 2 3 4 5 6 7 8 9 10

o
N
o o

[0
o

'S
o

N
o

Plasmid Number per Bacterium
(2]
o

0 200 400 600 800
Time (minutes)

F1G. 6. Plasmid copy number during 10 generations starting from
1 or 100 plasmids with 80-min doubling time. Mean and SD of plasmid
number is measured every 20 min and at the beginning and end of each
generation.

indicating that the asymptotic distribution has been ap-
proached (data not shown).

Discussion

The stochastic representation of molecular interactions has a
stronger theoretical basis than deterministic kinetics when the
number of molecules is small (15, 31). Both the quantitative
and the qualitative results of a stochastic model may differ
from the deterministic equivalent (15). Stochastic effects may
be crucial when dealing with gene expression, and the sto-
chastic nature of transcription has been experimentally ob-
served in a number of cases (3-5). Stochastic effects also may
be important at the level of signal transduction (32-34), cell
replication (35), or cellular differentiation (1, 2). Quantitative
information is essential for understanding these phenomena
(36, 37). Detailed stochastic models may be used to integrate
information from molecular biology and genetics, to test
hypotheses about underlying mechanisms, to guide experimen-
tation, or to estimate the rates of processes that are difficult to
observe directly.

The importance of the underlying stochastic nature of
molecular interactions has been recognized in chemistry for
many years (12, 38). There is a large body of literature
describing how to derive stochastic processes for chemical
reactions at low concentration (15, 17, 18), as well as for simple
biochemical processes (39-45). The Kolmogorov equation
resulting from these stochastic processes, often called the
chemical master equation, is analytically intractable for all but
the simplest cases (15, 18). Most of the complex interactions
encountered in biological systems fall well beyond the scope of
exact analysis. An exact algorithm is available for simulation of

Table 3. Asymptotic plasmid, RNA I, and Rom copy number
Plasmid RNA I Rom

Mean SD Mean SD Mean SD
Deterministic model 28 N/A 450 N/A 750 N/A

Stochastic model*

Generation 8 27.7 34 446 55 745 92
Generation 9 28.0 34 450 55 753 91
Generation 10 27.8 34 448 54 748 91

Results of deterministic model are from ref. 20, table 1, WT Rom™.
Results of stochastic SPN model are measured at the midpoint of
generations 8, 9, and 10. N/A, not applicable.

*Based on 103 runs of transient simulation starting with one plasmid.

Proc. Natl. Acad. Sci. USA 95 (1998)

coupled chemical reactions (46). However, efficient imple-
mentation of this algorithm for complex biological models
requires considerable skill, as does the estimation of confi-
dence intervals for the mean and the variance of desired
quantities. Programs written to perform such simulations
efficiently often are limited to specific models and can be hard
to understand and thus difficult to replicate or to modify.

Nevertheless, there have been a number of papers present-
ing models of stochastic effects caused by low molecular
concentration at the level of the metabolic effect of dioxygen
free radicals (47), the lysis/lysogeny decision of phage lambda
(8), signal transduction (32-34), gene induction (9, 19, 48, 49),
bacterial chemotaxis (50-52), and cellular selection (53-57).
Stochastic modeling of complex molecular interactions is being
driven by advances in molecular biology and facilitated by the
increasing availability of powerful computers to analyze such
models. However, research in this field is being greatly ham-
pered by the lack of a consistent formalism and the difficulties
of case-by-case simulation.

Ideally, when a new modeling approach is introduced, it
should contain a formalism that justifies the theoretical basis
for the approach, and facilitates the representation of models.
Petri nets, and their stochastic extensions, are well-defined
formalisms. The graphical representation of stochastic molec-
ular interactions as Petri nets or SPNs is readily applicable to
complex metabolic and genetic networks. The ability of Petri
nets to represent complex systems of interactions has suggested
their use for qualitative analysis of metabolic processes and
networks (22, 23). However, without their stochastic exten-
sions, Petri nets cannot represent time as a continuous vari-
able, and, therefore, are unable to model chemical kinetics
(23). Qualitative analysis of biochemical and genetic networks
may still be useful, for example, for identifying steady states in
the absence of reliable kinetic data (58), for lumping of large
systems (22), or for the identification of metabolic bottlenecks
(23).

The representation of molecular interactions as SPNs we
have described is justified by the equivalence of the underlying
stochastic process to that of the Kolmogorov equations of the
chemical system. The formalism of SPNs is well defined and
the use of SPNs is validated by an extensive body of work in
computer science. The graphical representation of molecular
interactions as SPNs is similar to representations commonly
used in molecular biology. Complex systems are much easier
to represent graphically using SPNs than with the chemical
master equation. Where numerical analysis is not feasible,
simulation algorithms have been designed and optimized.
Computer packages are available that integrate the graphical
representation of SPN models with their analysis, giving
biologists ready access to a wide range of tools for modeling
molecular interactions as SPNs. The package we use, ULTRA-
SAN, is designed to cope with numerical analysis or simulation
of stiff systems, where the relative range of time constants is
large (14). Further details of the techniques used by UltraSAN
for numerical analysis and simulation are provided with the
software (14).

An important benefit of the formalism of SPNs is that
models can more easily be replicated or extended than if they
were implemented by using case-by-case simulation. All of the
SPN models described in this paper are available (http://www-
timc.imag.fr/spns) and may be used by anyone who has access
to the ULTRASAN package. If realistic models of networks of
molecular reactions are to become widely used in molecular
biology, a systematic framework within which to build and
extend models is vital.

Two important questions need to be addressed in any
stochastic model of molecular interactions. How should we
model the interaction between deterministic kinetics, associ-
ated with continuous variables such as the concentration of
small molecules, and stochastic kinetics, associated with dis-
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crete variables such as plasmid copy number? Theoretically,
this type of interaction may be represented as a Markov jump
process with drift (18). However, more work is required to
learn how to model such processes in practice.

Second, how do we cope with unknown parameter values?
Kinetic models, whether stochastic or deterministic, require
kinetic parameters, but these are often difficult to measure.
Detailed and realistic stochastic models may be able to help.
Molecular biology is excellent at observing qualitative behav-
ior. The resultant behavior of models provides constraints on
the range of parameter values. Optimization techniques for
estimating such parameter values in conjunction with SPNs
would be extremely useful in this regard, although this is a
difficult problem.

One limitation of using SPNs for modeling biochemical
systems is the lack of a spatial dimension. Compartmentalized
systems present no difficulty, because they can be represented
as separate, but interacting, systems, with the movement of
molecules between compartments represented by transitions.
However, in the current definition of SPNs it is difficult to see
how a true reaction-diffusion model could be implemented.

In this paper we have considered models of stochastic
molecular interactions. However, random phenomena at many
levels of biology share similarities with molecular interactions.
With an interpretation of the basic components of SPNs
appropriate for these different levels, SPNs have potential
applications for stochastic modeling in many areas of biology,
including embryology, developmental biology, population bi-
ology, and ecology.

For the purpose of illustration, modeling in biology may be
divided into four overlapping processes: model design, repre-
sentation, analysis, and interpretation. Detailed biological
understanding, along with an understanding of the underlying
stochastic process, is required to design a realistic model and
interpret it appropriately. The approach presented in this
paper deals with the representation and analysis of stochastic
models as SPNs. By using this approach, complex molecular or
genetic networks may be modeled using currently available
software packages, allowing biologists to concentrate on the
design and interpretation of detailed models rather than their
implementation.
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