Skip to main content
. Author manuscript; available in PMC: 2009 Feb 7.
Published in final edited form as: J Theor Biol. 2007 Oct 30;250(3):569–579. doi: 10.1016/j.jtbi.2007.10.029

Table 1.

Summary of predictions.3

ξ-dependence Context Parameter Prediction
υ ~ ξ−σ γ = 0, β > 0 σ > 0 Persistence ↑ virulence ↑

υ ~ ξ−σ γ > 0, β = 0 0 < σ < 1 Persistence ↑ virulence ↑
σ > 1 Persistence ↔ virulence ↔

υ ~ ξ−σ γ,β > 0 σ small Persistence ↑ virulence ↑
σ large ESS varies with parameters

α ~ ξσ   0< σ < 1 Persistence ↑ infectiousness ↓
σ > 1 Persistence ↓ infectiousness ↑

γ ~ ξσ β = 0 0 < σ < 1 Persistence ↑ shed rate ↓
σ > 1 Persistence ↓ shed rate ↑

β ~ ξσ γ = 0 0 < σ < 1 Persistence ↑ burst size ↓
σ > 1 Persistence ↓ burst size ↑

ln[γ + β] ~ ξ−1 FLP mass ~ ξ−1   Persistence, FLP mass, FLP number ↔
  Number greater in harsh environment

  0 < σα + συ < 1 σα, συ > 0 Infectiousness ↓ persistence ↑ virulence ↑
α ~ ξσα; υ ~ ξ−συ σα + συ > 1 0 < σα < 1 Infectiousness ↔ persistence ↔ virulence ↔
  σα + συ > 1 σα > 1 Infectiousness ↑ persistence ↓ virulence ↓
3

First column shows trait’s functional dependence via its scaling with FLP decay rate ξ. υ is virulence, α is infectiousness, γ is shed rate, and β is burst size; σ-values shape trait interactions. ↑ indicates that strain competition favors increase in a trait, ↔ indicates that strain competition favors an intermediate optimal trait value, and ↓ indicates that strain competition favors reduction in a trait.