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Abstract
Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all
subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are
likely to play a conserved role in viral infection by interacting with common host cellular and viral
factors; however along with a conserved role, individual kinases may have unique functions in the
context of viral infection in such a way that they are only partially replaceable even by close
homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested
their involvement in regulation of numerous processes at various infection steps (primary infection,
nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown.
Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout
phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds
have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein
kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against
Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology
between the members of this group complicates development of compounds targeting the whole
group, and suggesting that individualized, structure-based inhibitor design will be more effective.
Determination of CHPK structures will greatly facilitate this task.
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1. INTRODUCTION
Herpesviruses are among the most persistent of all pathogens owing to the fact that they co-
evolved with their hosts for a long period of time and are relatively harmless in
immunocompetent hosts. As opportunistic agents, herpesviruses [in particular Epstein-Barr
Virus (EBV), Kaposi Sarcoma Herpesvirus (KSHV) and human cytomegalovirus (HCMV)]
cause severe diseases with significant morbidity and mortality in immunocompromised
patients. The population of such patients grows steadily due to AIDS, organ transplantation,
cancer, and aging. Since the successful 1982 introduction of the anti-herpetic agent acyclovir,
a number of anti-herpesvirus drugs have been and are currently approved [1]. However, most
of these compounds, either directly or indirectly, target viral DNA polymerase (reviewed in
[2]) and prolonged use of these antivirals is limited due to emergence of resistant (and cross-
resistant) mutants as well as severe side effects. Hence, the combination of these factors
emphasizes the need for improved therapies to treat herpesviruses-related complications,
particularly by exploring new viral targets. Conserved herpesvirus-encoded protein kinases
(CHPKs) are an attractive target for antiviral therapy due to (i) their role in viral infection, and
(ii) their uniqueness, that is, very low sequence homology with cellular counterparts, and even
among themselves, may allow development of highly selective inhibitors. In addition,
development of inhibitors of protein kinases involved in the life cycle of a virus is not only of
potential therapeutic interest, but can also furnish useful information about the pathways of
viral gene expression and replication.

2. HERPESVIRUSES
Herpesviruses are enveloped viruses with virion size over 100 nm. The linear double-stranded
DNA genomes (125 – 240 kb) encode up to 200 open reading frames, including a repertoire
of enzymes for viral DNA replication as well as protein modifications (such as
phosphorylation). DNA replication and capsid assembly occur in the nucleus. All members of
Herpesviridae have a biphasic infection cycle consisting of latent and replicative (lytic) phases.
Latency is characterized by limited gene expression, lack of virion production, and, in the case
of gammaherpesviruses, is associated with immortalization and transformation of infected
cells. In contrast, most of viral genes are expressed in a cascade manner during the lytic cycle,
including viral reactivation, and large numbers of infectious virus particles are released [3].
Primary infection results in lifelong persistence of the virus in the host. Eight herpesviruses
infect humans: alphaherpesviruses - herpes simplex virus 1 and 2 (HSV-1 and -2), and varicella-
zoster virus (VZV); betaherpesviruses - human cytomegalovirus (HCMV) and human
herpesviruses 6 and 7 (HHV-6 and -7); and gammaherpesviruses - Epstein-Barr virus (EBV)
and Kaposi Sarcoma associated herpesvirus (KSHV). The differences between different
subfamilies include host range, type of cells they are able to infect, and the length of the
replication cycle.

3. CONSERVED HERPESVIRUS PROTEIN KINASES
All avian and mammalian herpesviruses encode protein kinases. A subset of these enzymes,
exemplified by the HSV UL13 gene product, is conserved throughout all subfamilies of
Herpesviridae [4,5] and will be referred to as conserved herpesvirus protein kinases (CHPKs).
HSV UL13 homologues encoded by other human herpesviruses include: VZV ORF47 [6],
EBV BGLF4 [7,8], HCMV UL97 [9-11], HHV-6 U69 [12], and KSHV ORF36 [13]. Putative
substrates of CHPKs identified to date are summarized in Table 1, and characteristics of the
individual CHPKs, as well as their common features, are discussed below.
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3.1. Herpes simplex virus UL13
Studies of HSV mutants, in which UL13 is deleted, yielded conflicting data. While earlier
studies demonstrated dispensability of UL13 for viral replication (at least in cell culture) [14,
15], later studies claimed that such mutants exhibit impaired replication in a cell type-dependent
manner [16], with reduced expression levels of immediate-early ICP0 protein and a subset of
late proteins, including UL26, UL26.5, UL38, UL41 and US11 [17]. A number of viral and
cellular UL13 putative targets have been identified (Table 1); however, the biological
significance of UL13-mediated phosphorylation remains unclear. Kato et al. [18] recently
suggested UL13 may be involved in regulation of nuclear egress, based on the fact that another
HSV protein kinase, US3, which regulates nuclear egress of alphaherpesviruses [19,20], is a
physiological substrate for UL13, and that UL13 deletion resulted in aberrant localization of
HSV egress factors UL31 and UL34 [18]. The UL13 protein has also been implicated in
promoting tegument dissociation [21].

Daikoku et al. [22] purified HSV-2 UL13 from infected cells. The kinase activity of the purified
protein was optimal at pH-9.0 and in the absence of NaCl. Casein, phosvitin, and, to some
extent, histone, but not protamine, were efficiently phosphorylated. Phosphoamino acid
analysis of phosphorylated casein revealed that UL13 phosphorylates serine and threonine
residues, but not tyrosine. The UL13 kinase activity was resistant to treatment with heparin
and CK I-7, inhibitors of protein kinases CK2 and CK1 respectively, but sensitive to the
bioflavonoid quercetin.

3.2. Varicella-Zoster virus ORF47
VZV ORF47 protein is related to HSV UL13 [5]. The ORF47 protein autophosphorylates and
phosphorylates the major immediate-early transactivator, IE62 [23-25], as well as IE63 [23],
gE [26], ORF9 [27], and ORF32 proteins [28]. VZV gE is essential for replication [29] and
requires ORF47 phosphorylation to mediate cell fusion and TGN trafficking for virion
assembly [26]. The ORF47 protein is dispensable for VZV replication in vitro, as shown in
studies of ROka47S, a recombinant virus described by Heineman and Cohen [30], in which
ORF47 transcription was blocked by a stop codon mutation. In contrast, the ORF47 protein is
essential for VZV infection of differentiated human T-cells, skin xenografts in the SCID-hu
model of VZV infection in vivo [31], and immature dendritic cells [32]. Rahaus et al. [33]
suggested that both VZV ORF47 and ORF66 protein kinases play key roles in activating the
PI3/Akt/GSK-3α/β pathway, which plays an essential role in viral infection.

In vitro activity of ORF47 has been studied with the protein immunoprecipitated from VZV-
infected cells [6], or recombinant protein expressed in mammalian cells [23]. It preferentially
phosphorylates serine residues, utilizing both ATP and GTP as phosphate donors, and its
activity is optimal in the presence of Mn2+ (rather than Mg2+) and 50 – 250 mM KCl [6].
Kenyon et al. [23] reported up to an 18-fold increase in autophosphorylation of ORF47 in the
presence of polyamines. Conflicting data are reported as to whether ORF47 contributes to
nucleoside analogue metabolism: Koyano et al. [34] studied growth inhibition by nucleoside
analogues of COS cells expressing VZV-TK or ORF47, and their results suggested that ACV
and BV-araU were phosphorylated by TK only, whereas GCV, OXT-G and cOXT-G were
phosphorylated by both TK and ORF47 (or by cellular factors activated by ORF47). In contrast,
Suzutani et al. [35], studying sensitivity of viruses deficient in TK or ORF47 genes (or
combination of both) to anti-herpesvirus nucleoside analogues, showed no changes in
sensitivity in the absence of ORF47 and suggested that this kinase is not involved in
phosphorylation of the tested compounds.
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3.3. Human cytomegalovirus UL97
HCMV UL97 is probably the most widely studied CHPK, both in the biochemical sense and
in the context of viral infection. UL97 is the only protein in the CHPK group for which the
nuclear localization signal has been identified [36], and it is also a component of the tegument
in mature virions [37,38]. Studies of HCMV mutants lacking most of the UL97 gene
demonstrated their severe replication deficiency in fibroblast infection, and thus confirmed the
importance of the UL97 gene product for viral replication [39]. Replication of these mutants
could be partially restored by expression of rat cytomegalovirus (RCMV) UL97 protein or
EBV BGLF4, but not by HSV UL13 [40]. The involvement of UL97 was implicated in
regulation of viral DNA synthesis [41-43], modification of cellular transcriptional and
translational factors [44,45], and viral nuclear egress [43,46,47]. The connection between
UL97 and viral DNA synthesis is thought to occur through its interaction with, and
phosphorylation of, the HCMV DNA polymerase processivity factor UL44 [41,42], and the
region responsible for this interaction has been mapped between aa 366 and aa 459 [42]. Both
proteins co-localized in the viral replication centers, and treatment with inhibitors of viral DNA
synthesis (cidofovir, CDV) or UL97 activity (NGIC-I and Gö6976) prevented this co-
localization. However, as in the case of EBV BGLF4 and EA-D [8,48], no direct evidence has
been obtained yet to connect the phosphorylation status of UL44 with its functions in viral
DNA replication. UL97 has also been reported to phosphorylate elongation factor 1 delta
[45] and RNA polymerase II carboxyl-terminal domain [44], but again, the physiological
relevance of these modifications remains unclear. The best-substantiated claim connects UL97
with viral nuclear egress. Three research groups have independently presented evidence for
accumulation of viral capsids in the nucleus in the absence of UL97 protein [43,46] and started
to uncover the mechanism by which UL97, through interaction with cellular p32 protein,
destabilizes nuclear lamina [47]. Recently, UL97 has been implicated in regulation of
tegumentation, since its deletion resulted in aberrant aggregation of tegument proteins such as
pp65 and ppUL25 [49], and changed subcellular distribution of the viral structural protein
assembly sites [50].

Biochemical studies have been reported with UL97 protein expressed in heterologous systems,
followed by affinity purification or immunoprecipitation. These studies demonstrated the
ability of UL97 to autophosphorylate [11] and to phosphorylate certain exogenous protein
substrates [51,52] as well as two nucleoside homologues, GCV and ACV [53], although UL97
does not show homology with known nucleoside kinases [36]. Phosphorylation occurred in
the presence of either Mg2+ or Mn2+, and both ATP and GTP could be used as phosphate
donors in protein phosphorylation. Unusually, the optimal activity of pUL97 was observed at
1.5M NaCl and pH-9.5 [11]. Baek et al., mapped the autophosphorylation sites within the UL97
N-terminal region and demonstrated the importance of specific amino acids (arginine or lysine)
in the P+5 position from the phosphorylated residue for the efficiency of histone 2B
phosphorylation. The authors speculated that HCMV UL97 might regulate gene expression by
histone phosphorylation and chromatin condensation [52]. The relation between UL97
autophosphorylation and efficient phosphorylation of exogenous substrates (both protein and
GCV) remains unclear, with a number of conflicting reports that either support the necessity
of autophosphorylation for allophosphorylation activity [42,54] or describe
autophosphorylation mutants that retain high levels of allophosphorylation activity [51].

3.4. Human herpesvirus 6 U69
HHV-6-encoded U69 is a homologue of HCMV UL97 [55]. The purified protein
autophosphorylates and phosphorylates casein and histone (substrates that typically
phosphorylated by serine/threonine protein kinases), but not endolase (a typical substrate for
tyrosine protein kinases). Phosphorylation occurs predominantly on serine residues, with both
ATP and GTP utilized as phosphate donors. The reaction requires both Mg2+ and Mn2+, and
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reaches optimal kinetics at physiological pH and low NaCl concentration. In the same study,
U69-expressing baculoviruses exhibited higher susceptibility to GCV in plaque reduction
experiments [12] suggesting that its product is involved in GCV phosphorylation. These data
were further confirmed by GCV metabolic studies in a recombinant vaccinia virus system in
which both U69 and UL97 were expressed. Analyses of metabolites showed increased GCV
phosphorylation in the presence of both proteins, but the level of this phosphorylation was
approximately 10-fold lower in cells expressing U69 [56]. Nevertheless, U69 seemed to play
a role in GCV phosphorylation, since GCV-resistant HHV-6 strains carry an M318V
substitution in U69 [57,58], which corresponds to M460I and M460V substitutions in UL97,
one of the most frequently observed mutations conferring GCV resistance in clinical HCMV
isolates.

Similar to other CHPKs, HHV-6 U69 localized in nucleus [56], its importance for the viral
infection as well as physiologically relevant targets have never been studied. Based on
homology with UL97, one can predict that U69 will be crucial for viral infection, but this needs
to be verified experimentally.

3.5. Epstein-Barr Virus BGLF4
EBV BGLF4 protein exhibits early expression kinetics with high levels throughout the EBV
lytic phase [59]. It is detected mainly in the nuclei of EBV-infected cells [59,60]. The NLS,
although not clearly defined, is localized on the C-terminus of the protein [59]. We have
recently reported [61] that the EBV mutant phenotype, in which BGLF4 protein level was
knocked down by RNAi, exhibited properties similar to a HCMV UL97 knockout mutant
[39], in particular by retention of nucleocapsids in the nucleus. Moreover, we have shown that
the knockdown of BGLF4 abolished the expression of BFLF2 (a homologue of HSV UL31),
a viral factor that is directly involved in nuclear egress [62] thus demonstrating that BGLF4 is
involved in regulation of nuclear egress. Lee et al. [63] reported that transient expression of
EBV BGLF4 protein induces unscheduled chromosome condensation, nuclear lamina
disassembly, and stress fiber rearrangements, independently of cellular DNA replication and
cyclin-dependent protein kinase 2 activity. BGLF4 interacts with condensin complexes, the
major components in mitotic chromosome assembly, and induces condensin phosphorylation
at CDK1 consensus motifs. BGLF4 also stimulates the decatenation activity of topoisomerase
II, suggesting that it may induce chromosome condensation through condensin and
topoisomerase II activation. The authors speculate that gammaherpesvirus kinases may induce
multiple premature mitotic events to provide more extrachromosomal space for viral DNA
replication and successful egress of nucleocapsid from the nucleus. Finally, BGLF4 has been
reported to phosphorylate components of the cellular replication origin binding MCM4-
MCM6-MCM7 complex [64], and, since such a phosphorylation inhibits helicase activity of
MCM4, Kudoh et al. hypothesize that BGLF4 may play a role in blocking cellular DNA
replication during EBV lytic infection. The EBV BGLF4 protein is a part of the tegument
[60,65] and has been shown to dissociate from it in a phosphorylation-dependent manner
[65]. Although it phosphorylates a number of viral and cellular targets (Table 1), the biological
relevance of EBV-BGLF4-mediated phosphorylation (except for its part in viral nuclear egress)
remains hypothetical, and even when this phosphorylation has been linked to reduction of
transcriptional activity for EBNA2 and EBNA-LP [66,67], its consequences in the context of
viral infection have not been explored.

Recombinant EBV BGLF4 has been expressed in insect cells [68,69]. The purified protein
autophosphorylates and phosphorylates histone and myelin basic protein [68,69], utilizes both
ATP and GTP as phosphate donors, and requires both Mn2+ and Mg2+, pH-7.4 and 300 mM
KCl for optimal activity [7].
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In contrast to betaherpesviruses, gammaherpesviruses encode functional thymidine kinase
(TK) [70-72]. When expressed in EBV-negative cells, EBV TK conferred moderate sensitivity
to GCV, BVDU, ACV and PCV; in contrast, BGLF4 conferred sensitivity to GCV only [73].
Neither has been shown to directly phosphorylate GCV in vitro ([74] and Gershburg and
Pagano, unpublished data).

3.6. Kaposi Sarcoma-associated herpesvirus (KSHV) ORF36
KSHV ORF36 protein is a serine protein kinase that is localized in the nucleus [13]. In vitro
protein kinase assays indicated that this viral protein is autophosphorylated and that the lysine
residue in the catalytic kinase subdomain II was essential for enzymatic activity [13]. ORF36
is transcribed as two polycistronic transcripts that are initiated from promoters that are active
in the early stage of the viral life cycle and inducible by hypoxic conditions [75]. Their kinetics
have been reported both as late [76,77] or early/early-late as verified by the treatment with
CDV, an inhibitor of viral DNA synthesis [78]. ORF36 was found in replication/transcription
complexes in infected cells and packaged in mature virions [79]. The ORF36 protein has been
shown to phosphorylate components of the c-Jun N-terminal protein kinase signal transduction
pathway, which in turn activated c-Jun in the activating protein 1 transcription complex [80].
Recently, Izumiya et al. [79] showed that ORF36 interacts with and phosphorylates the
transcriptional regulator K-bZIP at Thr111, and both proteins are recruited to selected viral
promoters as well as the Ori-Lyt region. This threonine residue of K-bZIP is also the target of
the cyclin-dependent kinase CDK1. K-bZIP activity is also modified by sumoylation [81], and
phosphorylation at Thr111 seem to change levels of sumoylation. The authors of the study
propose a model whereby ORF36 switches K-bZIP from being a strong repressor of K-Rta,
which targets immediate-early genes, to a transactivator that synergizes with K-Rta to activate
early and late viral gene expression [79]. Coincidently, EBV BZLF1 gene product, the
homologue of K-bZIP, is also modified by sumoylation [82] and phosphorylation [83-85];
however, the significance of sumoylation of Zta on EBV transcription or of an interplay
between the sumoylation and phosphorylation remain to be studied.

In vitro kinase activity of the KSHV ORF36 has been studied on partially purified GST-fused
protein expressed in mammalian cells. The kinase autophosphorylates on serine residues and
prefers Mn2+ over Mg2+ at pH-7.5 and no salt [13].

Similar to EBV, KSHV encodes a thymidine kinase, ORF21 [74], and both ORF21 and ORF36
have been shown to confer sensitivity to GCV [86] with ORF36 being more efficient. In
contrast to EBV [73], both proteins did not confer significant sensitivity to PCV and BVDU
[86].

3.7. Common features and biological role(s) of CHPKs
CHPKs were identified based on the motifs diagnostic of conserved regions within the catalytic
domains of protein kinases [4,5]. Noteworthy are that the sequences of CHPKs encoded by
beta- and gammaherpesviruses diverge from those of cellular counterparts sufficiently to raise
the question of whether they are in fact protein kinases [4]. Nevertheless, despite low sequence
homology within the group [40], CHPKs represent a group of protein kinases with some distinct
common features and potentially conserved biological role(s) in viral infection. First, the
CHPKs are commonly packaged into virions as component of the tegument [21,37,38,65]
implying their involvement in the formation, maintenance, and/or disassembly of virion
structures through the phosphorylation of tegument components [21,27,65,79]. Second, the
CHPKs localize in the nuclei of infected cells [36,56,59,60], which, along with shown
interaction with the viral DNA Pol processivity factor [7,8,13,36,41,42,48,79], indicates their
involvement in viral DNA replication. Third, all CHPKs autophosphorylate and phosphorylate
a common substrate - cellular translation factor EF-1δ [45,69,87,88]. An interesting feature of
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the interaction between UL13 homologues and EF-1δ is that both cellular protein kinase cdc2
and UL13 homologues phosphorylate the same EF-1δ amino acid residue [45]. These
observations suggest that UL13 homologues may share a function that mimics the cellular cdc2
protein kinase [89]. Fourth, in at least two studies CHPKs were able to complement each other
functionally: HCMV UL97 partly substituted for HSV UL13 [90], and EBV BGLF4
complemented the replication of delta-UL97 HCMV [40]. Importantly, this complementation
is not always reciprocal - HSV UL13 was unable to complement HCMV UL97 [40]. This
phenomenon could be explained by the fact that alphaherpesviruses encode an additional
protein kinase (US3 gene product homologues) and therefore the two protein kinases carry out
different biological functions, whereas beta- and gammaherpesviruses encode only one
multifunctional protein kinase. In fact, beta- and gammaherpesviruses-encoded protein kinases
may represent dual-specificity kinases, which are able to phosphorylate both protein and certain
nucleoside targets. The latter assertion has only been verified for purified UL97, which
phosphorylated both GCV and ACV in vitro [53], although other CHPKs conferred sensitivity
to GCV when expressed recombinantly [9,10,12,56-58,73,86,91,92] or when their expression
is induced in infected cells [93]. Otherwise, the ability of CHPKs to confer sensitivity to certain
nucleotides could be explained by induction of cellular enzymes that metabolize nucleosides;
however this hypothesis has never been tested. Fifth, CHPKs can utilize both ATP and GTP
as a phosphate donor and prefer Mn2+ to Mg2+ for optimal activity; salt concentration and pH
vary.

Romacker et al. [40] recently reported structural studies of several CHPKs using a molecular
modeling approach with cellular Cdk2 as a template. The modeling was possible for HCMV
UL97 and RCMV R97, but not for HSV UL13 and EBV BGLF4. Moreover, the authors
acknowledged that the accuracy of the resulting models is limited by low sequence homology
between target and template and indicate that the modeling was rather intended to confirm
overall fold than to address structural details [40]. Hence, the conclusions of this report reiterate
the need for experimental determination of CHPKs structure.

4. CHPK inhibitors and their antiviral activities
With recognizing CHPKs as potential targets for antiviral drug development [94], a number
of compounds that exhibit both anti-CHPK and antiviral activity have been identified.

4.1. Maribavir
5,6-dichloro-2-(isopropylamino)-1,ß-L-ribofuranosyl-1-H-benzimidazole (1263W94 or
maribavir, MBV) [95,96] (Fig. 1) is a potent and selective inhibitor of HCMV and EBV
replication [97-99], but is inactive against HSV-1 and -2, VZV, HHV-6 and -7, and KSHV
[98]. MBV showed significant antiviral potency in vitro against different HCMV strains,
including strains resistant to GCV (mutations at 460, 520, 594 in pUL97), foscarnet (Thr700Ala
in the viral polymerase) and BDCRB (Asp344Glu and Ala355Val in pUL89) [97,100,101].
MBV inhibited viral DNA synthesis, however this effect was not mediated by inhibition of the
viral DNA polymerase, but rather by a novel mechanism. Several lines of evidence imply that
UL97 protein kinase is a target for MBV. First, MBV-resistance of HCMV has been mapped
in UL97 at amino acid positions L397R [97], V353A and T409M [102]; all three mutations
located upstream of UL97 mutations linked to GCV resistance, closer to kinase domains that
are associated with ATP-binding and phosphotransfer. Second, MBV treatment exhibited a
phenotype similar to the UL97-knockout [46]. Third, MBV inhibited UL97 kinase activity in
vitro [52]. However, several MBV-resistant HCMV strains were isolated recently [103,104]
that carry mutations in pUL27, whereas the UL97 gene remained intact. Since EBV is also
inhibited by MBV, we have tested the effects of the compound on EBV BGLF4 and found that
the kinase was absolutely insensitive to MBV treatment both in vitro [68] and in cell culture
[8]. Therefore, the mechanism of action of MBV remains elusive. Despite that, MBV is the
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only compound with potential connections to CHPKs that is currently in clinical development
by ViroPharma for the prevention of cytomegalovirus (CMV) infections in transplant patients.
It has been tested in several phase I/II studies by both GlaxoSmithKline and ViroPharma, in
which the drug demonstrated antiviral activity, oral bioavailability and an acceptable safety
and tolerability profile [105-109]. A phase III study with MBV as a prophylactic agent in CMV
seropositive patients undergoing allogeneic stem cell transplants has been initiated, and another
phase III trial in solid organ transplant patients is planned. MBV was granted fast-track status
by the US FDA in February 2006 for the prevention of CMV infection in allogeneic bone
marrow and solid organ transplant patients, and received orphan drug status in the US for the
prevention of CMV viraemia and disease in at-risk populations. The patents covering MBV
are held by GlaxoSmithKline and expire in 2015.

4.2. Indolocarbazoles
Slater et al. [110] showed the inhibitory effect of Arcyriaflavin A as well as its synthetic
analogues (symmetrical indolocarbazoles) on HCMV infection in cultured cells. In follow-up
studies Zimmermann et al. [111] and Marschall et al. [91,112] attributed this inhibitory effect
to direct targeting and inhibition of the pUL97 kinase activity. The compounds were effective
against GCV-sensitive and -resistant HCMV strains, and selected compounds in nanomolar
concentrations could reduce virus yield by three orders of magnitude [111]. Marschall et al.
[112] also showed that the indolocarbazoles Gö6976 and NGIC-I (Fig. 1) do block the kinase
activity in vitro. Reasoning that UL97 inhibitors may be efficient on EBV BGLF4, we have
studied inhibitory effects of selected indolocarbazoles in vitro and in cell culture [68]. To our
surprise, only one compound, K252a (Fig. 1), inhibited BGLF4 autophosphorylation in vitro;
importantly both MBV and NGIC-I, which failed to inhibit BGLF4 activity, efficiently
inhibited viral DNA replication at non-toxic concentrations [68]. These results illustrate a
potential problem with development of inhibitors targeting CHPKs as a group. Low sequence
homology, which likely translates into marked differences in structure, and makes the
development of such inhibitors difficult if not impossible.

4.3. Quinazolines
In a recent report, Herget et al. [113] described a class of quinazolines as novel pUL97 inhibitors
and provided evidence that selected quinazolines qualify for use in the development of anti-
HCMV drugs: (i) the quinazolines selected for this study (Ax 7376, Ax 7396, Ax 7543) (Fig.
1) were highly potent and selective inhibitors of UL97 protein kinase activity in vitro (of 17
protein kinases tested, only the UL97 and EGFR protein kinases were efficiently inhibited);
(ii) they significantly reduced sensitivity of UL97-expressing cells to GCV; (iii) the kinetics
of HCMV inhibition and failure to inhibit replication of an HCMV mutant from which UL97
was deleted argue that pUL97 is the target responsible for the anti-HCMV activities of the
quinazolines; (iv) clinical isolates of HCMV possess a quinazoline-sensitive phenotype even
after they have acquired GCV and CDV resistance-conferring mutations in the UL97 gene; (v)
the emergence of viral resistance to quinazolines was not observed at the frequency of
resistance to GCV, as analyzed in long-term treatment experiments. It is noteworthy that the
quinazolines selected for this study are structurally related to the drug gefitinib (Iressa;
ZD1839), a well-characterized inhibitor of EGFR kinase approved for therapy of non-small
cell lung cancer [114].

4.4. Anti-UL97/anti-HCMV high-throughput screening
Mett et al. [115] screened a library of 5000 compounds deduced from known protein kinase
inhibitors and covering 60 different scaffolds. The compounds were tested for their ability to
inhibit protein kinase activity of the purified GST-UL97 in vitro, whereas their cytotoxicity
and capability to reduce UL97-mediated GCV toxicity were measured by the in-cell activity
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assays [112]. The study identified 93 compounds that were nontoxic, GCV-protective UL97
inhibitors, and antiviral effects of 26 compounds from this group were quantified in HCMV/
GFP-based infection and plaque reduction assays. Seventeen compounds out of 26 tested
demonstrated pronounced antiviral effects; some of them, such as benzimidazole Ax 6438 (Fig.
1) or quinazolines (described above), may serve as promising leads for further drug
development.

5. CONCLUSIONS AND PERSPECTIVES
Conserved herpesvirus-encoded protein kinases are crucial for viral infection and represent
attractive and novel targets for antiviral therapy. Although the biological significance of
CHPKs is unquestioned, and a considerable number of putative substrates of CHPKs have been
identified (Table 1), the biological relevance of their phosphorylation remains obscure. Studies
of alphaherpesvirus protein kinases are complicated by the fact that these viruses encode at
least one more protein kinase [116] and another protein with potential kinase activity [117].
Therefore early studies with mutant viruses lacking CHPK corresponding genes suggested their
dispensability for viral infection [14,15]. In contrast, studies of both beta- and
gammaherpesviruses demonstrated the severe deficiency of such mutants [39,61] and
involvement of CHPKs in various steps of viral infection. The analyses are even more
complicated due to the high efficiency of viral genomes, that is, their overlapping and bi-
directional genes and transcriptional elements. Therefore, deletion of large fragments may
unintendedly result in disruption of more than one viral function. One can envision two ways
to address this issue: design of finer, point mutants that will affect kinase activity only - for
instance, substitution of an invariable lysine in CHPKs subdomain II abolishes kinase activity
and can be used to study the roles of CHPK-mediated phosphorylation in viral infection (such
as in [16]); alternatively, development of CHPK-selective inhibitors, which, in addition to their
therapeutic potential, will serve as tools in future studies of these protein kinases. The latter
approach however requires extensive knowledge of enzyme structure and will greatly benefit
from additional studies aimed to determine experimentally structures of CHPKs. Therefore
future studies are warranted (i) to verify biologically relevant CHPK targets, (ii) to determine
the structure of CHPKs, and (iii) to develop selective CHPK inhibitors, which may lead to
effective antiviral drugs.
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ABBREVIATIONS
CHPK, conserved herpesviral protein kinase
HSV, herpes simplex virus
VZV, varicellazoster virus
HCMV, human cytomegalovirus
EBV, Epstein-Barr virus
KSHV, Kaposi sarcoma associated virus
HHV, human herpesvirus
AIDS, acquired immunodeficiency syndrom
ICP0, infected-cell protein 0
SCID, Severe Combined Immunodeficiency
GCV, ganciclovir (2-amino-9-(1,3-dihydroxypropan-2-yloxymethyl)-3H-purin-6-one)
OXT-G, oxetanocin G (2-amino-9-[(2R,3R,4R)-3,4-bis(hydroxymethyl)oxetan-2-yl]-3H-
purin-6-one)
ACV, acyclovir (2-amino-9-(2-hydroxyethoxymethyl)-3H-purin-6-one)
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BV-araU, bravavir (5-[(E)-2-bromoethenyl]-1-[(2R,3S,4S,5R)-3,4-dihydroxy-5-
(hydroxymethyl)oxolan-2-yl] pyrimidine-2,4-dione)
CDV, cidofovir ([(2S)-1-(4-amino-2-oxo-pyrimidin-1-yl)-3-hydroxypropan-2-yl]
oxymethylphosphonic acid)
BVDU, brivudin (5-[(E)-2-bromoethenyl]-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)
oxolan-2-yl]pyrimidine-2,4-dione)
PCV, penciclovir (2-amino-9-[4-hydroxy-3-(hydroxymethyl)butyl]-3H-purin-6-one)
MBV, maribavir ((2S)-2-[5,6-dichloro-2-(propan-2-ylamino)benzoimidazol-1-yl]-5-
(hydroxymethyl)oxolane-3,4-diol)
NLS, nuclear localization signal
RNAi, RNA interference
EBNA2, Epstein-Barr nuclear antigen 2
EBNA-LP, Epstein-Barr nuclear antigen leader peptide
GST, Glutathione-S-transferase
BDCRB, (2R,3R,4S,5R)-2-(2-bromo-5,6-dichlorobenzoimidazol-1-yl)-5-(hydroxymethyl)
oxolane-3,4-diol
CDK1, cyclin-dependent kinase 1
JNK, c-Jun N-terminal kinase
MCM, minichromosome maintenance proteins
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Figure 1.
Anti-CHPK inhibitors: benzimidazoles – Ax6438 and MBV; indolocarbazoles - Gö6976,
NGIC-I, K252C and K252A; quinozolines – Ax7376, Ax7396 and Ax7543. All listed
compounds inhibited HCMV UL97 protein kinase both in vitro and in cell culture [91,
111-113,115]; K252A also inhibited EBV BGLF4 protein kinase in vitro [68].
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Table 1
Viral and cellular targets of herpesvirus-encoded protein kinases

CHPK§ Substrates
Viral Cellular

HSV-1
UL13

gE/gI [118], ICP0 [119], ICP22/Us1.5
[120], VP22 [15], US3 [18]

CKIIß [45], EF-1δ [88], p60 [121],
RNA Pol II [122]

VZV ORF47 gE [26], ORF32 [28], ORF62 [25], ORF63
[23], ORF9 [27]

HCMV
UL97*/**

UL44 [41,42] EF-1δ [87], p32 and lamin A/C
[47]

HHV-6 U69* U69 [12]
EBV
BGLF4*

EA-D [7,8], EBNA-LP [66], Z [65], EBNA2
[67], BZLF1 [65]

CKIIß [45], EF-1δ [69],
condensin [63], MCM4 [64]

KSHV
ORF36*

K-bZIP [79] JNK [80]

§
-all CHPKs autophosphorylate.

*
-These protein kinases have been reported to confer ganciclovir (GCV) sensitivity [9,10,12,56-58,73,86,91,92].

**
-HCMV UL97 has the ability to phosphorylate GCV and ACV in vitro [53].
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