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Cancers arise by the gradual accumulation of mutations in multiple
genes. We now use shotgun pyrosequencing to characterize RNA
mutations and expression levels unique to malignant pleural
mesotheliomas (MPMs) and not present in control tissues. On
average, 266 Mb of cDNA were sequenced from each of four MPMs,
from a control pulmonary adenocarcinoma (ADCA), and from
normal lung tissue. Previously observed differences in MPM RNA
expression levels were confirmed. Point mutations were identified
by using criteria that require the presence of the mutation in at
least four reads and in both cDNA strands and the absence of the
mutation from sequence databases, normal adjacent tissues, and
other controls. In the four MPMs, 15 nonsynonymous mutations
were discovered: 7 were point mutations, 3 were deletions, 4 were
exclusively expressed as a consequence of imputed epigenetic
silencing, and 1 was putatively expressed as a consequence of RNA
editing. Notably, each MPM had a different mutation profile, and
no mutated gene was previously implicated in MPM. Of the seven
point mutations, three were observed in at least one tumor from
49 other MPM patients. The mutations were in genes that could be
causally related to cancer and included XRCC6, PDZK1IP1, ACTR1A,
and AVEN.

DNA sequencing � tumor mutations � lung cancer � bioinformatics � loss of
heterozygosity

Because cancer arises as a consequence of multiple mutations,
human cancer genomes are being sequenced to identify the

mechanisms of tumorigenesis. Pilot sequencing studies include
recent exon resequencing of tumors and cell lines that revealed
somatic mutations in hundreds of genes not previously impli-
cated in oncogenesis. These studies generally focused on a single
class of mutations such as point mutations in coding regions of
preselected candidate genes, and the results so far indicate that
even within similar histological classes, tumors possess unique
mutational profiles (1–3). However, there has rarely been an
analysis of whether a mutated gene is actually expressed in the
tumor cell nor has there been an attempt to use sequencing to
identify other types of mutations such as chromosomal deletions
or translocation (4, 5) or loss of heterozygosity related to
epigenetic silencing (6, 7). Moreover, no unbiased deep sequenc-
ing analysis of all expressed genes in cancer tissues has been
reported to date.

Malignant pleural mesothelioma (MPM) is an asbestos-
related, rapidly fatal cancer. Its genetic basis is unknown but
appears to involve multiple types of chromosomal abnormalities
(5, 8–14). Central mechanisms underlying MPM are unclear,
although MPM tumors evoke a strong inflammatory response
thought to contribute to tumorigenesis (15). In addition, tumor
cell survival promoted by TNF-� responsive antiapoptotic pro-
teins such as Inhibitor of Apoptosis-1 (IAP-1) facilitates the
resistance of MPM to most cytotoxic chemotherapeutic drugs

(16). Expression profiling with microarrays has supported the
general role of inflammation in MPM etiology and has provided
molecular markers for diagnosis and prognosis (17). More
extensive genomic analysis, as with deep sequencing of tumors,
could identify potential targets for new biological drugs for this
devastating cancer.

Newly developed DNA sequencing technologies (18, 19) allow
for rapid, less expensive sequencing of large and complex
genomes, but their utility in cancer mutation discovery remains
unproved. Accordingly, we used whole-transcriptome shotgun
454 pyrosequencing (18) to characterize the full complement of
individual tumor mutations and characterize mRNA expression
levels in four MPM tumors and two controls. We developed
methodology and informatic rules to reliably identify multiple
types of mutations in expressed genes and applied this approach
to discover 15 hitherto unknown mutations including somatic
mutations, deletions, and epigenetic silencing.

Results
Tumor Transcriptome Sequencing and Analyses. To discover muta-
tions in expressed genes of MPM specimens, we sequenced
cDNA from tumors of four MPM patients (Patients 1–4). For
comparison, we sequenced cDNA from an adenocarcinoma
(ADCA) tumor of the lung (Patient 5) and from normal lung of
a MPM patient (Patient 6). The process we used for mutation
discovery and validation is schematically shown in supporting
information (SI) Fig. 2. Briefly, polyadenylated RNA was pre-
pared from microaliquoted (20) tumor specimens to ensure
�85% tumor cell content. For each of the six samples, �260 Mb
of transcriptome sequence were obtained by shotgun, clonal
pyrosequencing using 454 technology (Table 1). Approximately
15 million cDNA sequence reads with lengths of �105 bp each
were informatically mapped by using BLAST to human mRNA
and DNA databases, and overall 98% of the reads matched
known human RNA, DNA, and mitochondrial DNA sequences
(see SI Table 4). Of the �39 Mb that did not map to human
databases, �720 Kb mapped to chimpanzee, suggesting the
existence of additional, previously uncharacterized expressed
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sequences, and preliminary analysis (data not shown) suggested
that they were largely noncoding sequences. No reads aligned to
SV40 sequences or to any other viral or bacterial genomes.

For variant and mutation discovery, we analyzed only tran-
script sequences that mapped to the 19,306 well curated human
reference mRNAs present in the ‘‘RefSeq mRNAs’’ database
(www.ncbi.nlm.nih.gov/RefSeq/). We excluded the 9,456 LOC
genes that have been identified informatically from the human
genome sequence. The LOC genes have uneven coverage (likely
misannotation of splice variants in RefSeq), an overabundance
of putative single-nucleotide polymorphisms (SNPs), and pre-
mature truncation of alignments. Alignment of sequence reads
to all 29,761 RefSeq mRNAs can be visually inspected
(www.impmeso.org).

Gene Coverage and Expression. In each patient sample, �15,000
Known RefSeq Genes were detected by one or more reads
(Table 1 and Fig. 1A). When all four MPM samples were pooled
informatically, �17,000 or �90% of the Known RefSeq Genes
could be observed (data not shown). Many of the 15,000 mRNAs
observed in each sample were represented by only a few reads,
likely indicative of either low-abundance cell types in the sample
or transcriptional ‘‘leakage.’’ A prior study using massively
parallel signature sequencing (MPSS) of mRNAs in human
tissues concluded that �50% of the genes in the human genome
are expressed in a tissue (21). Consistent with this, we observed
�10,000 genes at a threshold of 20 reads per gene (Table 1 and
Fig. 1 A), corresponding to a minimum of �1� coverage,
assuming an average transcript length of 2 Kb and a read length
of 105 bases. Gene expression profiling of these samples with GE
CodeLink microarrays (data not shown) supported this number
of expressed genes in each tissue.

To assess whether read counts (i.e., the number of reads that
mapped to a given mRNA) can quantify relative transcript levels,
we focused on six specific transcripts known to be differentially
expressed in MPM and ADCA, which in combination can be
used as a genomic test to distinguish the two tumor types (22, 23).
The calculated geometric combination of the three expression
ratios of these six genes obtained through real-time PCR or
microarrays can be used to distinguish MPM from ADCA. The

use of ratios of read counts of these six genes from the tran-
scriptome sequencing data correctly distinguished MPM from
ADCA specimens (Fig. 1B), supporting the use of 454 sequenc-
ing to quantitatively characterize the tumor transcriptome.
These ratio results were independently confirmed in the same
specimens by expression analysis with GE CodeLink microarrays
and real-time RT-PCR (data not shown). These observations
suggest that, at a minimum, read counts can provide a semi-
quantitative analysis of mRNA transcript levels in a tissue
sample, but further validation work will be needed.

Rules for Single Nucleotide Substitution Variant (SNV)‡‡ Discovery and
Determination of Zygosity. Software systems for DNA sequence
variant discovery based on Sanger chemistry and base-calling
algorithms are inadequate for new DNA sequencing technolo-
gies that feature short read lengths, novel base-calling, quality
score determination methods, and relatively poorly character-
ized error profiles (18). To facilitate visualization and automated
analysis of 454 sequencing data, Alpheus, an internet-accessible
software system that maps individual reads to the National
Center for Biotechnology Information (NCBI) RefSeq mRNA
database and identifies sequence level variants was created and
is accessible at www.impmeso.org. Filter parameters include
patient sample, gene name, read coverage, variant frequency,
variant type, variant location and hyperlinks to NCBI sequence
and gene function databases.

Assessment of putative sequence variants identified by
analysis of unfiltered 454 sequencing data revealed an unac-
ceptably high number of false-positive SNVs. To minimize this
problem, an empiric rule set was developed as a tool for true
mutation discovery in human tumors. These rules require that
the variant must have at least four reads covering the base
position; be present in at least 30% of the total number of reads
covering the variant; be of GS20 quality score �20 (18) for the

‡‡SNVs are defined as single base substitutions that differ from the human mRNA reference
sequence obtained from the NCBI RefSeq mRNA database. SNPs refer to those SNVs either
present in the NCBI dbSNP database or observed in the patient’s nontumor DNA or cDNA
from blood.

Table 1. Global sequence, gene, and variant analysis

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Average

Total no. of DNA sequence reads* 2,516,790 2,494,009 2,507,617 2,847,854 2,515,787 2,907,917 —
Average read length 104.72 105.69 108.44 106.99 101.40 105.53 —
Total bases sequenced† 263,551,310 263,588,845 271,921,933 304,684,153 255,096,283 306,867,278 —
Number of Known RefSeq Genes observed

Total reads mapped to 19,306 Known
RefSeq Genes

1,757,631 1,588,315 1,627,354 2,365,665 1,719,634 1,751,853 1,801,742

No. of genes observed with �1 read 15,354 15,455 15,512 15,503 15,577 16,082 15,581
No. of genes observed with �10 reads 11,530 11,962 11,910 11,942 11,914 12,718 11,996
No. of genes observed with � 20 reads 9,771 10,216 10,114 10,208 10,180 10,922 10,235
No. of genes with � 100 reads
(�4–5� coverage)

3,728 3,853 3,650 3,765 4,094 4,180 3,878

Number of Known RefSeq Genes with known or previously uncharacterized SNVs compared with RefSeq RNA and dbSNP databases
Coding Region SNVs

With � 1 SNV 800 734 659 831 1,155 882 844
With � 1 sSNV 514 476 436 539 751 574 548
With � 1 nsSNV 392 363 314 417 569 437 415
With a stop codon 2 6 5 3 6 4 4

Noncoding region SNVs
With � 1 SNV 2,855 3,124 2,995 2,866 2,564 2,923 2,888

Patients 1–4, MPM; Patient 5, ADCA; Patient 6, normal lung from MPM patient. The term “Known RefSeq Genes” refers to 19,306 well annotated known
mRNAs available within the RefSeq mRNA database at NCBI.
*Grand total of DNA sequence reads, 15,789,974.
†Grand total of bases sequenced, 1,665,709,802.
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relevant nucleotide; be observed in reads obtained from both
orientations; and be located within a read that is �90%
identical along its entire length to the target RefSeq mRNA
sequence. These rules exhibited 96% sensitivity in identifica-
tion of 2,465 well annotated SNPs found in dbSNP

(www.ncbi.nlm.nih.gov/projects/SNP/) among 1,415 genes with
�4� coverage in the normal lung control sample (SI Table 5),
and 100% specificity by confirmation of 94 SNVs that were
independently confirmed by using conventional Sanger meth-
ods. Less stringent rules identified additional putative variants
but with diminished likelihood of being true positives.

By focusing on SNVs, clonal sequencing technology has the
potential to observe and quantify allelic differences in genes.
Analysis of transcript-based allele frequencies of 350 well an-
notated coding region SNPs in abundant transcripts (�16 reads
covering the SNP in each specimen, with the SNP present in
dbSNP (www.ncbi.nlm.nih.gov/projects/SNP/) detected homozy-
gosity and heterozygosity (Fig. 1C and SI Table 6). In most cases
of heterozygosity, the wild-type and variant alleles were ex-
pressed at similar levels—note peak at 50% (Fig. 1C). For a
subset of alleles, one variant was expressed over the other (i.e.,
�80%). This may variously reflect the homozygous presence of
a SNP, preferential transcription/stability of one allele (24), or
copy number variation (25). Although the small number of
tumors evaluated precludes generalization, it appears that tran-
scriptome analysis with 454 sequencing technology is suitable for
gross analysis of allele copy number, particularly loss of het-
erozygosity (LOH) or duplication for heterozygous alleles.

SNVs and Mutations in MPM Tumors. Each of the six tissue speci-
mens contained, 659–1,155 Known RefSeq Genes with at least
one coding domain SNV (cSNV), many of which are known
human polymorphisms based on their presence in dbSNP (ww-
w.ncbi.nlm.nih.gov/projects/SNP/). Interestingly, each of the
four MPM tumors had 153–220 genes that contained at least one
previously uncharacterized cSNV (Table 2). Previously undis-
covered SNVs are of greatest interest, because they represent
candidate mutations. In toto, the four MPM tumors contained
619 nonredundant, previously uncharacterized cSNVs (SI Table
7) and 2,369 known SNPs. Interestingly, the ratio of nonsynony-
mous (ns) SNVs to synonymous (s) SNVs in the four MPM
tumor samples was 1.5 for previously unidentified variants and
only 0.75 for known SNVs, suggesting that the pool of previously
unidentified variants contained somatic mutations not subjected
to site-specific purifying selection pressure (Table 2). Both
known and previously uncharacterized SNVs were detected in
UTRs at a substantially higher prevalence than in coding regions.

nsSNVs not present in dbSNP were explored further because
they are considered more likely to be functionally relevant,
tumor-related mutations (3). Twelve nsSNVs were common to
all five tumor samples, but absent from the normal lung, and four
were common to the four MPM tumors only. Upon sequencing
the normal genomic DNA (gDNA) from these patients, all
proved to be germ-line variants and not mutations, supporting
observations that most somatic mutations are specific to indi-
vidual tumors.

Next, we focused on nsSNVs unique to each MPM specimen.
Of �100–150 genes per MPM specimen with at least one
previously uncharacterized nsSNV, 67 genes (12–20 per sam-
ple) had a total of 69 patient-specific previously uncharacter-
ized nsSNVs after exclusion of highly polymorphic HLA and
ABO loci (Table 2 and SI Table 8). Only one gene
(GOLGA8B) had a potential mutation in two MPM patients,
but the nsSNVs were present in different regions of the
transcript, underscoring the unique mutational profile of each
tumor. Sanger sequencing after PCR amplification was used to
determine whether the 69 previously uncharacterized nsSNVs
represented somatic tumor mutations in MPM. In other words,
by sequencing the variant in the tumor cDNA, gDNA, normal
adjacent cDNA, and/or gDNA from host peripheral blood
lymphocytes (PBL), we differentiated between somatic muta-
tions and germ-line variants, which enabled us to distinguish
different types of mutations.

Fig. 1. Transcriptome characteristics. (A) Number of Known RefSeq Genes
detected by at least 1 read (solid lines) and 20 reads (dashed lines) as a function
of increasing depth of transcriptome sequencing (i.e., Number of Reads) for
the six patient specimens. The horizontal asymptote represents �17,000 of the
Known RefSeq Genes detected by at least one read in any of the four MPM
samples, which encompassed a total of 7 million reads. (B) Classification of
tumor specimens using read counts to calculate gene expression ratios for six
known diagnostic genes and their geometric mean (23). Ratios correctly
identified each tumor type (i.e., �1, MPM; �1, ADCA). (C) Analysis of percent-
age of reads containing known coding region SNVs in the six tissue samples.
Known variants were selected based on �16 reads of coverage in the region
of interest (see SI Table 6 for data). The distribution of reads �50% showing
heterozygous expression of the variant is consistent with a binomial
distribution.
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All four MPM tumors contained mutations, but each had a
unique mutational profile (Table 3). Of 69 nsSNVs, 54 were
present in the paired normal gDNA, indicating they were
polymorphisms and not mutations. Although these 54 germ-
line nsSNPs may predispose patients to MPM, they were not
further explored. The remaining 15 nsSNVs (22%) were found
to be tumor-specific variants representing multiple types of
mutations including somatic mutations (n � 7), RNA editing
(n � 1), and LOH due to chromosomal deletions (n � 3) and
epigenetic silencing (n � 3), including X chromosome inacti-
vation (n � 1, likely due to clonality). The seven nsSNVs that
represented LOH mutations were heterozygous in the
normal gDNA. LOH variant allele frequencies in the tumor

gDNA differentiated silencing (heterozygous) and deletion
(homozygous).

The frequency of the seven nsSNV somatic mutations was
evaluated in 49 additional MPM tumors by genotyping cDNA
and gDNA in the specific exons affected by the individual
mutations. The COL5A2 mutation (c2773t, NM�000393.3) in
Patient 3 was found in two additional patients, both of whom
had MPM tumors with nonepithelial histology (i.e., total
frequency 3 of 53, or �6%). The UQCRC1 mutation (g851a,
NM�003365.2) was also found in two additional patients
(�6%), and the MXRA5 mutation (c7862a, NM�015419.1) was
found in one additional patient (�4%). Thus, despite being
relatively uncommon in MPM tumors, at least three of these

Table 2. Number of genes with candidate mutations in MPM tumors

Known SNPs Candidate mutations–previously uncharacterized SNVs

Patient 1 Patient 2 Patient 3 Patient 4 Patient 1 Patient 2 Patient 3 Patient 4

All variants
No. of genes with �1 SNP No. of genes with �1 SNV

Total 643 580 544 675 209 208 153 220
sSNP or sSNVs 432 391 384 463 101 108 69 102
nsSNPs or nsSNVs 286 264 229 300 130 122 105 142

No. of coding region SNPs No. of coding region SNVs
Total SNVs 1,040 920 906 1,073 296 303 242 322
sSNP or sSNVs 584 523 522 623 120 133 95 126
nsSNPs or nsSNVs 456 397 384 450 176 170 147 196
Ratio ns/s 0.78 0.76 0.74 0.72 1.47 1.28 1.55 1.56

Patient-specific variants (excluding HLA and ABO genes)
No. of genes with �1 SNP No. of genes with �1 SNV

Total 58 49 47 84 36 32 15 36
sSNP or sSNVs 35 27 31 59 21 13 4 17
nsSNPs or nsSNVs 23 24 16 27 16 20 12 19

No. of coding region SNPs No. of coding region SNVs
Total 63 53 50 91 38 34 16 36
sSNP or sSNVs 39 28 33 64 21 13 4 17
nsSNPs or nsSNVs 24 25 17 27 17 21 12 19

Table 3. Cancer-associated genetic lesions in MPM patients

MPM
patient Gene symbol Accession no. Chromosome Variant

Amino acid
change

BLOSUM
score Entrez gene name

Somatic mutation
1 ACTR1A NM�005736.2 10q24.32 a413 g K3 R 2 ARP1 actin-related protein 1 homolog
1 MXRA5 NM�015419.1 Xp22.33 C7862a A3 V 0 Matrix-remodelling associated 5
1 PDZK1IP1 NM�005764.3 1p33 c403t T3 I �1 PDZK1-interacting protein 1
1 PSMD13 NM�175932.1 11p15.5 C1254a L3M 2 Proteasome 26S subunit 13
1 UQCRC1 NM�003365.2 3p21.3 g851a R3 H 0 Ubiquinol-cyto c reductase core protein I
3 COL5A2 NM�000393.3 2q14-q32 c2773t P3 L �3 Collagen, type V, �2
3 XRCC6 NM�001469.3 22q13.2–13.31 g956a V3M 1 X-ray repair (Ku autoantigen, 70 kDa)

LOH due to deletion
1 LRP10 NM�014045.3 14q11.2 G1998a R3 Q 1 LDL receptor-related protein 10
2 C14orf159 NM�024952.4 14q32.12 T1727 g V3 G �3 Chromosome 14 ORF 159
2 TM9SF1 NM�006405.5 14q11.2 c2014t R3W �3 Transmembrane 9 superfamily member 1

LOH due to epigenetic silencing
4 C9orf86 NM�024718.2 9q34.3 C2110 g P3 R �2 Chromosome 9 ORF 86
4 AVEN NM�020371.2 15q13.1 a784c E3 A �1 Apoptosis, caspase activation inhibitor
4 PSMD8BP1/NOB1 NM�014062.1 16q22.3 A1074 g Q3 R 1 NIN1/RPN12-binding protein 1 homolog

LOH due to X inactivation
2 CXorf34 NM�024917.4 Xq22.1 G1780a G3 R �2 Chromosome X ORF 34

RNA editing
4 FLJ00312/CTGLF6 XM�374801.3* 10q11.22 T1721a D3 E 2 Centaurin, � -like family, member 6

*Replaced by accession no. XR�015233.
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genetic mutations were present in 4–6% of a larger cohort of
MPM tumors.

Discussion
This study demonstrates that transcriptome sequencing of pa-
tient tumors can result in discovery of previously uncharacter-
ized human cancer mutations. By using an integrated approach
that includes specimen enrichment for tumor cells, pyrosequenc-
ing, and rule-driven informatics, rare mutations were discovered
among thousands of expressed genes. In addition to the advan-
tages of speed and cost, this approach enriches for mutations in
expressed genes and identifies multiple classes of mutations. The
use of tumor tissue avoids artifactual mutations generated in cell
culture. In addition, transcriptome sequencing provides infor-
mation about mRNA expression levels not available with exon
resequencing (1–3).

The identification of multiple types of genetic variants con-
tributes to an expanded understanding of MPM and demon-
strates that such an approach is essential to discovering the full
complement of genomic changes associated with tumorigenesis.
The four MPM patients had unique mutational profiles. Patient
1 had five somatic mutations and one LOH mutation, whereas
Patient 2 had LOH mutations due to deletions in chromosome
14 and an X inactivation mutation that may have been a clonal
event. Patient 3 had two somatic mutations only, one of which
was present in two other patients’ tumors. Patient 4 had three
LOH mutations due to silencing and one due to RNA editing.
This diversity of mutations emphasizes that defining correlations
between tumor genotypes, histology, and various risk factors
such as asbestos exposure will require sequencing a much larger
cohort of MPM patients.

Of 15 mutations, seven were somatic point mutations, repre-
senting �1.75 ns somatic mutations per �3,800 Known RefSeq
Genes sequenced with 4–5� coverage. By extrapolation to the
�10,000 expressed Known RefSeq Genes detected in MPM
transcriptomes (Table 1), it is estimated that individual MPM
tumors harbor, on average, 6 transcribed genes with somatic
mutations, or �10–14 genes with a nsSNV in the entire genome,
in accord with a recent exon-resequencing survey of cancers (3).
At this depth of sequencing, �38% of the expressed genes could
be exhaustively analyzed for mutations. Additional sequencing
and better characterization of the LOC transcripts will be
necessary to characterize the full mutational spectrum of each
tumor.

For the 15 mutated genes observed in MPM, this study
provides the evidence that they can be mutated in cancer, in
keeping with recent mutational surveys that also uncovered
many previously uncharacterized mutated genes in other tumor
types (1–3, 28). However, is there evidence that these mutations
could be functionally meaningful? Mutated genes often exhibit
abnormal levels of expression, and a retrospective analysis of
published MPM profiling data revealed that most of these 15
mutated genes are over-expressed in a majority of MPM tumors
[(23) data not shown]. A literature survey of gene function and
expression in tumor cells reveals that the seven genes affected by
somatic mutations (Table 3) are plausibly related to oncogenesis,
although additional functional studies are needed to examine the
physiological relevance of the observed mutations.

Of particular note, the protein product of XRCC6 (Ku70)
forms a heterodimer with that of XRCC5 (Ku80) and mediates
the repair of DNA double-strand breaks via nonhomologous
end-joining. In non-small-cell lung cancer XRCC5 is often
hypermethylated and underexpressed at the mRNA and protein
levels and is generally correlated with p53 changes (5). The g956a
mutation that was observed in the XRCC6 gene results in a
V296M amino acid substitution in a protein region that directly
contacts Ku80 (27). This specific amino acid substitution could

be a cancer-driver mutation based on computational analysis of
protein domain structure (28).

ACTR1A encodes the most abundant subunit of dynactin,
which is associated with transport of p53 to the nucleus (29).
Disruption of this complex via mutations in ACTR1A could
potentially result in p53 inactivation, which is intriguing, given
the absence of known inactivating mutations in p53 in MPM
tumors. PDZK1IP1 is overexpressed in human carcinomas of
diverse origin and exhibits a tumor-suppressor phenotype in
cultured colon cancer cells by negatively affecting proliferation
and tumor growth (30–32).

COL5A2 encodes the �-chain for a low-abundance fibrillar
collagen that is up-regulated in colon cancer (33) and normally
has antitumor effects in breast cancer, including the induction of
apoptosis (34). UQCRC1 is a component of the mitochondrial
ubiquinol–cytochrome-c reductase complex that was mutated in
three MPM patients. It is known to be overexpressed in breast
and ovarian cancer and has been suggested to play a role in
tumorigenesis (35). The PSMD13 gene encodes subunit 11 of the
26S proteasome (36), which is the target of a new class of
anticancer drugs (37). Although functionally uncharacterized,
MXRA5 is overexpressed in colon cancer (38).

In addition to somatic mutations, gene deletions, gene silenc-
ing, and RNA editing were identified as common lesions in the
MPM tumors. Among these, LOH mutations were observed in
three genes situated on chromosome 14 in Patient 2. This
genomic region was previously implicated in MPM tumors (11),
and a notable gene within this region is AVEN. The genetic lesion
identified in AVEN is of potential interest because this gene
impairs Apaf-1-mediated activation of caspases, and thus apo-
ptosis (39). We and others (9, 15–17, 40) have previously
identified other (non-Bcl-2) antiapoptotic survival pathways as
being particularly important in MPM tumorigenesis and drug
resistance, and AVEN was recently implicated in acute leukemias
(41). Elucidating the functional relevance of the previously
uncharacterized variant alleles rendered homozygous by LOH in
MPM (Table 3) is a promising avenue for further exploration.

Although less well studied than somatic mutations and LOH,
both X chromosome inactivation (42, 43) and RNA editing (44)
(i.e., a posttranscriptional process that alters the information
encoded in gene transcripts, in this case a nsSNV present in the
mRNA but not the gDNA) have been previously linked to cancer
but not MPM (45). The actual editing is site-specific and occurs
through specific mechanisms that are thought to be altered in
cancers (44). Interestingly, RNA editing has also been postulated
to be responsible for at least some proportion of the SNPs
deposited into dbSNP at NCBI (45).

Transcriptome pyrosequencing permits comprehensive, unbi-
ased, mutational analysis of expressed genes. This technique can
also provide additional genetic information, such as insertion
and deletion (indel) variant identification, read-count-based
gene expression profiling, SNP allele frequencies, haplotype
frequencies, novel isoform identification, and relative isoform
abundance. In addition, transcriptome sequencing yields a more
comprehensive set of gene-tagging SNPs that will be of consid-
erable utility in disease-association studies. Nonetheless, cancer
mutations can arise in ways that are not evident from transcrip-
tome sequencing, and uncovering these will require supplemen-
tary approaches, such as karyotyping or whole-genome sequenc-
ing, to provide a more comprehensive understanding of the
mechanisms that underlie tumorigenesis.

This study confirmed the accuracy of pyrosequencing for 94 of
94 previously uncharacterized variants when the empirically
derived filtering rules for SNV discovery were used and sug-
gested that this overall approach could become a standard for
discovery and validation of genetic variants and tumor muta-
tions. Solid tumors represent a major cause of morbidity and
mortality in developed nations. Therapies for advanced cancer
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are limited because of the genetic complexity and variability
among tumors. Large-scale pyrosequencing of the tumor tran-
scriptome may be useful for determination of patient-specific
mutational profiles enabling discoveries that have the potential
to impact individual patient care. We envision that this approach
may ultimately form the basis of molecular subtyping of patients
with cancer, allowing combinational multitherapy designed in-
dividually for each patient based on mutational profile.

Materials and Methods
Detailed methods are presented in SI Text. Tumors were harvested in the
operating room from consenting patients, four representing the clinical spec-
trum of MPM and two controls, and immediately dissected to generate
high-quality fresh-frozen specimens. To examine the prevalence of specific
mutations discovered in these six tumors, 49 additional MPM specimens were
selectively analyzed.

The selected tumor specimens were processed by using a microaliquoting
technique (20) to identify and subselect, using cryosections, samples with high
tumor cell content (�85%) and little necrosis. High-quality mRNA (Agilent
Bioanalyzer RNA integrity number �7.8 for total RNA) was used (2 �g of
polyadenylated RNA from each tumor were used to make cDNA; see SI Text)
for 12 runs of shotgun 454 sequencing with 454 Life Sciences GS20 technology
(18). An internet-based information resource was developed to perform
MegaBLAST alignments against RefSeq mRNA and to permit the selection and

display of all sequence variants and relevant metadata (www.impmeso.org).
We also conducted stringent MegaBLAST searches of reads that did not map
to the 19,306 Known RefSeq Genes against the 52,935 ‘‘Main Genes’’ in
AceView (www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html), the hu-
man genome, and the Pan troglodytes (chimpanzee) genome. We developed
and applied rules to identify candidate mutations among the Known RefSeq
Genes that were unique to each of the four MPM patients. All candidate
mutations derived from the four MPM samples (Patients 1–4) were selected
for confirmation and characterization by using conventional Sanger sequenc-
ing, both in the discovery samples and additional tumors (the validation set)
and matched normal tissue from patients with MPM.
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