|
encourage students to precisely and carefully articulate their views |
|
require students to self-identify as a member of the synthetic biology community. As stakeholders, they can test their comfort with the advantages and risks, practice and evaluate the rhetoric around thorny issues. |
|
raise the thorny issues. Sweeping under the rug all questions of security, safety, dual-use, and ownership is a disservice to all. The current crop of students will almost certainly face a biological threat in their lifetimes, and we will be relying on them to react sensibly and constructively. Teachers may themselves have to move outside their comfort area of expertise to address such questions. This, too, is a good outcome. |
DON'T |
|
|
|
conflate synthetic biology with existing disciplines such as genetic engineering and nanotechnology. Without question, there is overlap, sometimes profound overlap, making clear definitions impossible, but to teach a "synthetic biology lab" which moves a luciferase gene into E. coli is incorrect. Teach PCR, teach bacterial transformation, but teach them as tools that are common and available, not as the core of synthetic biology. |
|
shy away from criticizing the fledgling efforts that synthetic biology has itself celebrated. The Registry is great but far from perfect. Ask students to make it better. The production of artemisinin has tremendous promise but is a hybrid effort that resembles but doesn't exemplify the engineering of biology. Confirm that students see the distinction and what they would implement as v2.0. |
|
overstate what synthetic biology may do or anticipate that every garage will be filled with designer biology. Nature is a harsh critic, so while the widespread availability of biological components will surely give rise to a cadre of volunteer debuggers and verifiers, it's reasonable to think that their failure rate will overwhelmingly exceed their successes, at least in the near term. |