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ABSTRACT Although humanity depends on the contin-
ued, aggregate functioning of natural ecosystems, few studies
have explored the impact of community structure on the
stability of aggregate community properties. Here we derive
the stability of the aggregate property of community biomass
as a function of species’ competition coefficients for a two-
species model. The model predicts that the stability of com-
munity biomass is relatively independent of the magnitude of
the interaction strengths. Instead, the degree of asymmetry of
the interactions appears to be key to community stability.

With the increasing pressure from humans on natural ecosys-
tems, there is growing interest in what makes ecological
systems stable (1, 2). Researchers have focused on the fluc-
tuations in aggregate community variables, such as total
biomass (3-5), nutrient retention (6), and CO2 flux (7). Here
we construct a two-species theoretical model to examine how
species interaction strength affects the variance of community
biomass over time.

We define community biomass (B) as the sum of the number
of individuals (N) of all species and refer to the variance in B
as the degree of ‘‘biomass stability.’’ Low variance of B
indicates high biomass stability. Similarly, we refer to the
variance of individual species’ abundances (Ni) (calculated in
the presence of the other species) as the degree of ‘‘population
stability.’’ For a two-species community, community biomass
remains constant along ‘‘biomass isoclines,’’ or the contours
where N1 1 N2 5 B (Fig. 1). Variation in total biomass occurs
perpendicular to the isoclines (in the direction of the line N1
2 N2 5 0). In contrast, population variation takes place
parallel to the axes of each species.

The model is derived from traditional density-dependent,
Lotka-Volterra competition equations. Fig. 2 illustrates a
simulation of the model. A two-species community begins at an
equilibrium point where both species have positive abun-
dances. At every time step, the abundances of each species are
perturbed independently. The dots in Fig. 2 represent the
population sizes of the species at each time step. The spread
of the points perpendicular to the biomass isoclines corre-
sponds to community stability. The spread of the points
parallel to the axes corresponds to the stability of the individ-
ual species’ populations. Thus, the community in Fig. 2a is
more stable than the community in Fig. 2b, both in terms of
biomass stability and population stability.

We use the model to consider how interspecific competition
affects biomass and population stability. The variance of
species’ populations and the variance of community biomass is
derived in terms of interaction strengths, intrinsic growth rates,
and the variance of the stochastic f luctuations.

Before proceeding, two points should be clarified. First,
there are many meanings of interaction strength in the eco-

logical literature (8). In this paper, interaction strength refers
to the Lotka-Volterra competition coefficient, a. This coeffi-
cient represents the intensity of per-capita interspecific com-
petition relative to per-capita intraspecific competition (9).

Second, just as there are many meanings of stability, there
are a variety of ways to measure each type of stability. Here we
are examining the resilience of a system, or how fast a variable
(biomass) returns to its initial value after a perturbation (10).
Empirical studies measuring resilience have measured vari-
ance (5, 7), coefficient of variation (CV) (3, 4), and the
proportional return to an initial value after a given time (4).
Although we use variance to measure population and biomass
stability, we also show how our results change if the variation
is standardized by the mean values (that is, if the CV is used).

The Model

For two species, the density-dependent, Lotka-Volterra com-
petition equations in discrete time are

N1,t11 5 f1~N1,t, N2,t! 5 N1,t 1 r0,1N1,t

~K1 2 N1,t 2 a12N2,t!

K1

N2,t11 5 f2~N1,t, N2,t! 5 N2,t 1 r0,2N2,t

~K2 2 N2,t 2 a21N1,t!

K2
,

[1]

where for species i, Ni,t is the population abundance at time t,
r0,i is the intrinsic rate of increase, Ki is the carrying capacity,
and aij is the effect of species j on species i. By definition, an
equilibrium, (N̂1, N̂2), satisfies the two equations simulta-
neously

f1~N̂1, N̂2! 5 N̂1

f2~N̂1, N̂2! 5 N̂2. [2]

We introduce the variables n1,t and n2,t which describe the
amount that N1 and N2 deviate from the equilibrium values at
time t (11). Now we can write

N1,t11 5 n1,t11 1 N̂1 5 f1~n1,t 1 N̂1, n2,t 1 N̂2!

N2,t11 5 n2,t11 1 N̂2 5 f2~n1,t 1 N̂1, n2,t 1 N̂2!. [3]

Performing a Taylor expansion of f1 and f2 about (N̂1, N̂2) and
dropping the higher-order terms yields the linear model in
discrete time

n1,t11 5 ~1 2 r1!n1,t 2 r1a12n2,t 1 z1,t

n2,t11 5 ~1 2 r2!n2,t 2 r2a21n1,t 1 z2,t, [4]

where ni,t is the deviation at time t of the population size of
species i from its long-term average value. Stochastic pertur-
bations (zi) are added to the population abundance of species
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i and are independently identically distributed random vari-
ables with mean zero and variance sz

2. (For simplification, we
assume that the perturbations of both species have the same
distributions.) Here ri are the effective rates of increase of the
species and equal r0N̂iyKi (11), or

r1 5 r0

1 2 a12

1 2 a12a21

r2 5 r0

1 2 a21

1 2 a12a21
, [5]

where r0 is the intrinsic growth rate, which, for simplicity, is the
same for both species.

In the following steps, we derive the variance of n1, n2, and
n1 1 n2 (equivalent to the variance of N1, N2, and N1 1 N2).
In matrix form Eq. 4 is

n# t11 5 An# t 1 z# t. [6]

Let A represent the matrix S 1 2 r1 2r1a12

2r2a21 1 2 r2
D, and n# t11, n# t and

z# t denote the vectors Sn1,t11

n2,t11
D, Sn1,t

n2,t
D, and Sz1,t

z2,t
D, respectively.

The eigenvectors of A describe the direction of the species’
response to perturbations from the equilibrium, and the
eigenvalues describe the strength of the response in these
directions. Below we arrange Eq. 6 so that we can derive the
variance of the populations and total biomass in terms of the
community’s eigenvectors and eigenvalues and the variance of
the stochastic perturbations.

Let the matrix T be a matrix of the unit length eigenvectors
(e#1 and e#2) of A.

T 5 ~e#1e#2! 5 S t11 t21

t12 t22
D . [7]

Eq. 6 can be rewritten as

n# t11 5 A~TT21!n# t 1 z# t [8]

T21n# t11 5 T21A~TT21!n# t 1 T21z# t. [9]

Because A has distinct eigenvalues and its eigenvectors are
linearly dependent, A is equal to TDT21, where D is a matrix

with the eigenvalues of A as the diagonal entries and zeros
elsewhere. Hence, D 5 T21AT and Eq. 9 becomes

T21n# t11 5 Sl1 0
0 l2

DT21n# t 1 T21z# t. [10]

When uliu , 1, then the equilibrium is stable.
The multiplication of each term in the above equation by

T21 transforms the vectors to a new basis along the inverse
eigenvectors. We represent this change of basis by an asterisk:

n# * 5 T21n# and n# 5 Tn# *. [11]

Eq. 10 now can be written

n# *t11 5 Dn# *t 1 z#*t. [12]

Considering the elements of the column vectors separately,

n*1,t11 5 l1n*1,t 1 z*1,t

n*2,t11 5 l2n*2,t 1 z*2,t. [13]

These equations are equivalent to Eq. 4, but written in terms
of the eigenvectors and eigenvalues of A. Eq. 13 is a ‘‘first-
order autoregressive process’’ and can be solved by successive
substitution:

n*i,t 5 O
s50

`

li
sz*i,t2s. [14]

Then, the variance of the series is

V~n*i,t! 5 sz*i
2 O

s50

`

l2s, [15]

where sz*i
2 is the variance of the perturbations of species i in the

new coordinates (12). When uliu , 1, Eq. 15 simplifies to

V~n*i,t! 5
sz*i

2

1 2 li
2 , [16]

which does not depend on t. This equation gives the variance
of a species’ population along the inverse eigenvectors when
adding a perturbation z at every time step, where the pertur-
bations have a normal distribution with mean 0 and variance
sz

2. The variance of sz*
i

2 can be written in terms of sz
2. As defined

in Eq. 11, z#* 5 T21z#, or

z*1 5 t11
~21!z1 1 t21

~21!z2

z*2 5 t12
~21!z1 1 t22

~21!z2, [17]

FIG. 2. Simulations of the model where the abundance of each
species is perturbed at each time step (sz

2 5 8). The curves show the
trajectories of the nonlinear model without perturbations (Eq. 1). The
dots represent the abundances of both species at 200 time steps. The
community in (a) (r0 5 1) is more stable than (b) (r0 5 0.3) in terms
of both biomass and population stability.

FIG. 1. Biomass isoclines for a two-species community. N1 and N2
are the number of individuals of species 1 and 2, respectively. Total
community biomass is constant along any line where N1 1 N2 equals
a constant, B. Total biomass varies in the direction shown by the
arrows, perpendicular to the biomass isoclines.
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where tij
(21) represents the terms of the matrix T21. Then,

V~z*1! 5 ~t11
~21!!2sz

2 1 ~t21
~21!!2sz

2

V~z*2! 5 ~t12
~21!!2sz

2 1 ~t22
~21!!2sz

2, [18]

because the perturbations z1 and z2 are independent, that is,
Cov(z1, z2) 5 0.

The variance of the species’ deviations in the original
coordinates is similarly related to the deviations in the new
basis given in Eq. 16:

V~n1! 5 t11
2 V~n*1! 1 t21

2 V~n*2! 1 2t11t21Cov~n*1, n*2!

V~n2! 5 t12
2 V~n*1! 1 t22

2 V~n*2! 1 2t12t22Cov~n*1, n*2!. [19]

In the same manner,

V~n1 1 n2! 5 V~n1! 1 V~n2! 1 2Cov~n1, n2!

5 ~t11 1 t12!
2V~n*1! 1 ~t21 1 t22!

2V~n*2!

1 2~t11 1 t12!~t21 1 t22!Cov~n*1, n*2!. [20]

The covariance of n*1 and n*2 can also be expressed in terms of
the eigenvectors and eigenvalues of A (see Appendix):

Cov~n*1, n*2! 5
t11
~21!t12

~21!V~z1! 1 t21
~21!t22

~21!V~z2!

1 2 l1l2
. [21]

The CV of population abundance is simply the SD divided
by the equilibrium value (the mean abundance), or

CV~n1! 5 ÎVar~n1!
~1 2 a12a21!

K1~1 2 a12!

CV~n2! 5 ÎVar~n2!
~1 2 a12a21!

K2~1 2 a21!
. [22]

Similarly, the CV of community biomass is the SD of the sum
of the species divided by the sum of species’ equilibrium values,
or

CV~n1 1 n2! 5 ÎVar~n1 1 n2!
1 2 a12a21

K1~1 2 a12! 1 K2~1 2 a21!
.

[23]

Results

We are concerned with the behavior of a community when it
is perturbed from a stable equilibrium where all species have
positive values (an interior equilibrium). An equilibrium is
stable when the absolute value of the eigenvalues of the
community matrix (A) is less than one and assures that when
a species is moved from the equilibrium it eventually will
return (i.e., the perturbation goes to zero). Here we explore a
range of parameter values where the interaction coefficients
and the intrinsic growth rate satisfy the conditions for a stable
interior equilibrium (0 , a12 , 1, 0 , a21 , 1, 0 , r0 , 2).

The Symmetric Case. For a two-species community with
symmetric competition (where a12 5 a21 5 a), the eigenvalues
of the matrix A (Eq. 6) are

l1 5 1 2 r0

l2 5 1 2 r0

1 2 a

1 1 a
, [24]

and the matrix of unit eigenvectors is

T 5
1
Î2

S1 1
1 21D . [25]

Solving for Eqs. 19 and 20,

V~n1! 5 V~n2!

5
sz

2

2 3 1
1 2 ~1 2 r0!

2 1
1

1 2 S1 2 r0

~1 2 a!

~1 1 a!
D 24 [26]

and

V~n1 1 n2! 5 2
sz

2

1 2 ~1 2 r0!
2 . [27]

Fig. 3a plots Eqs. 26 and 27 as a function of the species’
interaction strength (a) for particular values of r0 and sz

2.
Population stability decreases (the variance increases) as in-
teractions become stronger, with a sharp decline in stability as
a approaches 1. Biomass stability does not depend on inter-
action strength, however. When a is zero—that is, the species
are independent—the variance of the sum of the species simply
equals the sum of the variances of both species individually. If
interactions increase, biomass variance remains equivalent to
two independent species, and eventually the population vari-
ance of the competing species surpasses the biomass variance.

FIG. 3. The symmetric case sz
2 5 5; r0 5 1). (a) The variance of

n1 1 n2 (solid line) and n1 (dashed line), as a function of the a
coefficient. Calculations of the variance from a simulation of the
original Lotka-Volterra model agree with the results of the linear
approximation [each point is variance after 1,000 time steps; variance
of N1 1 N2 (o), variance of N1 (x)]. (b) The CV of n1 1 n2 (solid line)
and n1 (dashed line), as a function of the a coefficient (K1 5 K2 5
100).
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Simulations reveal that the linear model is a good approxima-
tion of the original Lotka-Volterra equations (Fig. 3a).

The independence of biomass stability and species interac-
tion strengths can be explained by the symmetric competition.
The species affect one another’s populations in the same
manner, so that the species exactly compensate for one another
regardless of interaction strength. In contrast, an increase in
interaction strength increases the variance of each population,
because a species responds not only to its own perturbations,
but increasingly to the perturbations of the other species.

Because the equilibrium values of species’ abundances are
dependent on a, the CV of the individual populations and the
CV of the total biomass are functions of the species’ interaction
strength (Fig. 3b). Fig. 3b illustrates another qualitative
change: the stability (measured by the CV) of total biomass is
greater than that of individual populations for all interaction
strengths between 0 and 1. Using CV as a measure of stability,
however, does not alter the result that biomass stability is much
less influenced by interaction strength compared to population
stability.

For any pair of symmetric competition coefficients between
0 and 1, the variance of n1 1 n2 is lowest when the species’
intrinsic growth rates (r0) are 1, and increases to infinity as r0
approaches 0 or 2 (Fig. 4). When r0 5 1, the species returns
to the equilibrium biomass in the next time step. In this case,
the biomass variance is simply the variance of the environ-
mental perturbations (sz

2). If the growth rate falls below 1, the
species are slow to respond to perturbations, and the biomass
variance increases. Similarly, if the growth rate is above 1, the
species overcompensate for perturbations and again, the bio-
mass variance increases.

The variance of the environmental perturbations (sz
2) sim-

ply scales both the variance of the biomass and the individual
populations. For instance, a doubling of the variance of the
environmental shocks decreases both biomass stability and
population stability by one-half.

An explanation of the eigenvectors and eigenvalues of the
community matrix, A, may help to clarify further Eqs. 26 and
27. The eigenvectors of A describe the directions of the species’
response to perturbations, and the eigenvalues describe the
strength of the species’ response along these directions. In the
symmetric case, the first eigenvector is perpendicular to and
the second is parallel to the biomass isoclines. Because biomass
stability is measured as variation perpendicular to the biomass
isoclines, only changes along the first eigenvector matter. The
strength of the response along this eigenvector (the first
eigenvalue) does not depend on a thus, biomass stability is
independent of species’ interaction strength.

Conversely, components of both eigenvectors affect popu-
lation stability, because the eigenvectors are not parallel to

either species’ axis. Therefore, both eigenvalues (including the
second eigenvalue that depends on a) appear in Eq. 26.

The Asymmetric Case. The general two-species case, where
species interactions may be asymmetrical (a12 Þ a21), is given
in the Appendix. In this section, we describe the solution with
figures and a special case. The dominant trend is that biomass
stability is highest when the interaction coefficients of the two
species are equal and decreases as the difference between a12

and a21 increases (Fig. 5a). In other words, as the competitive
abilities of the species become more disparate, the response to
the perturbations by each species becomes more unequal and
biomass stability decreases.

This pattern holds when r0 is not high (,;1.5), and is
strongest for species with low intrinsic growth rates. When r0

is high (.;1.5), there are asymmetric pairs of alphas that yield
a lower biomass variance than symmetric pairs.

Just as in the symmetric case, the larger the interaction
coefficients, the lower the population stability. The results are
complicated by the intrinsic growth rates of the species, but the
trends are robust for most values. In general, the variance of
species 1 increases as the effect of species 2 on 1 (a12) increases
(Fig. 5b). Similarly, increasing the strength of the effect of
species 1 on 2 (a21) increases the variance of species 1,
particularly when the intrinsic growth rates are high.

The main results do not change when measuring stability as
the CV rather than variance. The CV of total biomass generally
increases as the interaction strengths become more different
(Fig. 5c), and the CV of species 1 increases as a12 increases
(Fig. 5d). One trend does change: the CV of species 1
decreases as a21 increases (Fig. 5d). The increased abundance
of species 1 at high values of a21 outweighs the increase in
variance because of stronger interactions. Finally, as in the
symmetric case, standardizing the stability measure by the
expected mean changes the relative degree of biomass stability
versus population stability for some interaction strengths. For
most combinations of alphas, the CV of total biomass is lower
than the CV of individual populations (note the different
scales in Fig. 5 c and d).

It is useful to examine the special case where a12 1 a21 5 1
to interpret the complex relationship between the biomass
variance and the three parameters (a12, a21, and r0). In this
case, biomass variance reduces to

FIG. 4. The variance of total biomass, n1 1 n2, as a function of the
intrinsic rate of increase, r0 (a 5 0.5; sz

2 5 1).

FIG. 5. The asymmetric case. The variance of (a) n1 1 n2 and (b)
n1 as a function of a12 and a21. The CV of (c) n1 1 n2 and (d) n1 as
a function of a12 and a21 (K1 5 K2 5 100). In all cases, sz

2 5 1 and
r0 5 1.
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Var~n1 1 n2! 5 sz
2S ~a21 2 a12!

2

a12
2 1 a21

2

1
1 2 l1

2

1
1

a12
2 1 a21

2

1
1 2 l2

2D , [28]

where

l1 5 1 2 r0

a12a21

1 2 a12a21
.

l2 5 1 2 r0. [29]

Substituting the constraint a12 1 a21 5 1 into Eq. 5, the first
eigenvalue (l1) is equal to 1 2 r1a12 or 1 2 r2a21. The terms
r1a12 and r2a21 also appear in Eq. 4, as the response of one
species to the abundance of the other species. Hence, l1 is
inversely related to the strength of the response of one species
to the other. Just as in the symmetric case, the second
eigenvalue depends only on r0, the growth rate of the species
by itself.

Eq. 28 now can be divided into two components, which we
will refer to as the response term (including l1, which depends
on r1a12), and the self term (including l2, which depends only
on r0). In other words, the biomass variance is the sum of the
response term and the self term multiplied by sz

2. The first part
of each term is a coefficient determined by the alphas. These
coefficients reflect the direction of the eigenvectors and scale
accordingly the contributions of eigenvalues to the biomass
variance. As long as the interaction strengths are not equal,
neither eigenvector is parallel to the biomass isoclines, and
both eigenvalues contribute to the biomass variance.

Fig. 6 plots the response and self terms as functions of r0 and
the difference between a12 and a21. For a given pair of alphas,
how does r0 affect the two component’s contributions to biomass
variance? An increase in r0 increases the response of a species to
the other (r1a12 5 r2a21), which corresponds to a decrease in the
response term’s contribution to biomass variance. For the self
term, r0 is related to biomass variance in the same manner as the
symmetric case: the minimum biomass variance occurs when r0 5
1 and increases as r0 goes to 0 and 2.

Conversely, for a given growth rate, how does the disparity of
the alphas affect the component’s contributions to biomass
variance? The response term changes in two ways as the inter-
action strengths become more different: (i) the response of one
species to the other (r1a12) decreases, and (ii) the first eigenvector
becomes more perpendicular to the biomass isoclines. Both
factors lead to an increase in overall biomass variance. In contrast,

the self term decreases as the interaction strengths become more
unequal, because the direction of the second eigenvector be-
comes more parallel to the biomass isoclines.

The relationships described above and depicted in Fig. 6
explain why, at high intrinsic growth rates, the relationship
between the interaction coefficients and biomass stability
changes from the simple form in Fig. 5a. When r0 is very high,
the increased ability of the species to respond to one another
makes up for some of the variation in biomass caused by
unequal interaction strengths.

Discussion

The model suggests that the predictability of an aggregate
community property may be relatively independent of the
strength of the species’ interactions. Evenness of the species
competitive abilities appears to be key to community stability.
This result conflicts with the idea that more tightly linked
communities may be more stable (13, 14). Using a similar
analysis, Ives (15, 16) studied the resilience of population
abundances in stochastic systems. He also concluded that the
greater the similarity (in terms of competitive abilities) of two
species, the greater the buffering of densities against stochastic
f luctuations.

The model also highlights that the stability of individual
species’ populations may not necessarily be related to overall
community stability, as others have pointed out (4). Although
the magnitude of species competition is largely independent of
biomass stability, strong interactions sharply decreased popu-
lation stability.

The different relationships between population and com-
munity stability and interaction strength predict that as the
intensity of competition increases, population variation will
become increasingly greater than biomass variation (both in
terms of variance and the CV). In a grassland ecosystem,
Tilman (4) found that plant species’ abundances fluctuated
more than total plant biomass over an 11-year period and, in
fact, these plant species appear to be competing strongly.
Reexamining other published studies may help to test this
hypothesis.

The ‘‘point of entry’’ of random fluctuations can influence
the results of stochasticity on population growth models (e.g.,
refs. 17-19). Here random fluctuations are incorporated as
direct perturbations to abundances. Random temporal varia-
tion also can be added to parameters such as r, K, and a. The
consequences of this type of stochasticity should be explored
for this model.

We used a linear model hoping to capture the same biolog-
ical spirit of the Lotka-Volterra equations. The variance of
numerical simulations of the original Lotka-Volterra equa-
tions closely agree with the prediction of the linear model. This
result coincides with previous analyses where stochastic f luc-
tuations are added to the carrying capacity (20). Although the
fit of the linear model does decrease as the variance of the
perturbations (sz

2) increases, the chance of species extinction
increases at the same time. Thus, before the approximation
becomes problematic, the probability of species extinction
becomes consequential.

The technique used in this paper to model the predictability
of an aggregate community variable is generalizable for other
indexes. For example, total nutrient retention (R) of a plant
community might be modeled as R 5 aN1 1 bN2 1 . . . 1 xNn,
where Ni is the abundance of each of the n species. The
contours of the index then could be compared to the direction
of the eigenvectors. The model also could be used to address
the influence of species diversity on the predictability of
community variables. As human beings continue to alter the
planet’s ecosystems, understanding the relationship between
community structure and the maintenance of ecosystem func-

FIG. 6. The contribution of the response and self terms (see text)
to the variance of community biomass [Var(n1 1 n2)] as functions of
the intrinsic growth rate (r0) and the interaction coefficient (a12)
where a12 1 a21 5 1.
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tioning will become increasingly valuable in managing and
preserving essential ecosystem services (21).
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Appendix

Derivation of Eq. 21. By the definition of covariance,

Cov~n*1, n*2! 5 E~n*1n*2! 2 E~n*1!E~n*2!

5 E~n*1n*2!,

because E(n*i) 5 0. As in Eq. 14, n*i can be solved by successive
substitution, so

Var~n1 1 n2! 5 S sz
2

~a12 1 a21 2 2a12a21!
2D

~a21 2 a12!
2~~1 2 a12!

2 1 ~1 2 a21!
2!

1 2 l1
2

1
~2 2 a21 2 a12!

2~a12
2 1 a21

2 !

1 2 l2
2

1 2 ~a21 2 a12!~2 2 a21 2 a12!

3
~a12~1 2 a12! 2 a21~1 2 a21!!

1 2 l1l2

Cov~n*1, n*2! 5 ES O
i50

t

l1
i zt2i O

j50

t

l2
j zt2jD .

Where i Þ j, the terms are zero, and the equation above
becomes

5 O
i50

t

~l1l2!
iE~z*1,t2iz*2,t2i!.

As t 3 `, this becomes

5 O
i50

`

~l1l2!
iCov~z*1, z*2!

5
Cov~z*1, z*2!

1 2 l1l2
.

Because E(z*1) 5 E(z*2) 5 0, the above equals

5
E~z*1z*2!
1 2 l1l2

.

Substituting Eq. 17 for z*1 and z*2,

Cov~n*1, n*2! 5
E~~t11

~21!z1 1 t21
~21!z2!~t12

~21!z1 1 t22
~21!z2!!

1 2 l1l2

5
E~t11

~21!t12
~21!z1

2 1 t21
~21!t22

~21!z2
2!

1 2 l1l2

5
t11
~21!t12

~21!V~z1! 1 t21
~21!t22

~21!V~z2!

1 2 l1l2
,

because E(z1z2) 5 0 and E(z1) 5 E(z2) 5 0.
The Asymmetric Case. The variances of the species’ popu-

lations are

Var~n1! 5 S sz
2

~a12 1 a21 2 2a12a21!
2D

3 1
a12

2 ~~1 2 a12!
2 1 ~1 2 a21!

2!

1 2 l1
2 1

~1 2 a12!
2~a12

2 1 a21
2 !

1 2 l2
2

1 2
a12~1 2 a12!~a12~1 2 a12! 2 a21~1 2 a21!!

1 2 l1l2

2
Var~n2! 5 S sz

2

~a12 1 a21 2 2a12a21!
2D

3 1
a21

2 ~~1 2 a12!
2 1 ~1 2 a21!

2!

1 2 l1
2 1

~1 2 a12!
2~a12

2 1 a21
2 !

1 2 l2
2

2 2
a21~1 2 a21!~a12~1 2 a12! 2 a21~1 2 a21!!

1 2 l1l2

2 .

The variance of community biomass is
where

l1 5 1 2 r0

~1 2 a12 2 a21 1 a12a21!

~1 2 a12a21!

l2 5 1 2 r0.
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