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Abstract

The opa genes of the Gram negative bacterium Neisseria meningitidis encode Opacity-associated outer membrane proteins
whose role is to promote adhesion to the human host tissue during colonisation and invasion. Each meningococcus
contains 3–4 opa loci, each of which may be occupied by one of a large number of alleles. We analysed the Opa repertoire
structure in a large, well-characterised collection of asymptomatically carried meningococci. Our data show an association
between Opa repertoire and meningococcal lineages similar to that observed previously for meningococci isolated from
cases of invasive disease. Furthermore, these Opa repertoires exhibit discrete, non-overlapping structure at a population
level, and yet low within-repertoire diversity. These data are consistent with the predictions of a mathematical model of
strong immune selection upon a system where identical alleles may occupy different loci.
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Introduction

The Opacity (Opa) proteins of the bacterial pathogen Neisseria

meningitidis mediate adhesion to and invasion of the human

nasopharyngeal epithelium [1] via interaction with cell surface

saccharides [2] and members of the carcinoembryonic antigen cell

adhesion molecule (CEACAM) family of proteins [3,4]. The opa

gene repertoire comprises 3–4 loci per meningococcus (opaA, opaB,

opaD and opaJ) [5–8]. These are constitutively transcribed and

their expression is controlled by stochastic changes in a phase

variable, pentameric repeat tract within the reading frame of the

genes [9]. Varying numbers of opa loci may be expressed at

different times and in different combinations, providing both

functional flexibility and a possible mechanism for immune

evasion.

Opa proteins are highly diverse [8,10] with the majority of

sequence changes localised in three regions which correspond to

surface exposed loops in the proposed protein structure. It is

thought that different sequences in the semivariable (SV) and two

immunodominant hypervariable (HV) regions [10,11] confer

different receptor specificities to the protein [12,13]. Diversity is

generated by gene conversion, mosaicism and also modular

exchange of variable regions, with the consequence that different

opa loci in the same meningococcus may encode identical, similar

or diverse HV regions [14,15].

It has been shown that the Opa repertoire is highly structured

among the hyperinvasive lineages of meningococci that are

responsible for the majority of global disease [16]. Isolates from

the same hyperinvasive clonal complexes (as defined by MLST)

have been shown to possess similar and often identical Opa

repertoires, despite being sampled from disparate geographical

locations and temporal periods [8]. Little information is available,

however, on the extent of the diversity of the Opa repertoire in

carried populations of meningococci which contain the majority of

meningococcal biodiversity. In this investigation, we analysed the

Opa repertoires of a geographically and temporally related

collection of asymptomatically carried meningococci to determine

whether the association between clonal complexes and particular

combinations of these adhesins, as observed in hyperinvasive

lineages, was present in non-disease causing meningococci.

We analysed the data using a theoretical model of immune

selection which incorporated the particular features of this

antigenic system including its phase variable nature and the

modular exchange of variable regions within genotypes. We found

the patterns of diversity evident at both the population level and

within individual repertoires to be indicative of strong immuno-

logical selection acting in addition to the forces of functional

adaptation in influencing the structure of the Opa repertoire.

Results

Association between Opa repertoire and clonal complex
The four known opa loci were analysed in the 216 meningo-

coccal isolates from a carried population sample from the Czech

Republic: a total of 864 loci. In 784 loci (90.74%) an intact opa

sequence was detected; these contained a total of 222 alleles
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(nucleotide p distance: 13.59%). These encoded 76 HV1 variants

(amino acid p distance: 47.8%) which fell into 19 families and 93

HV2 variants (amino acid p distance: 37.6%) which fell into 21

families. A total of 212 opa loci were also analysed in a

contemporaneous collection of 53 isolates from invasive disease.

In 185 loci (87.26%) an opa sequence was detected, these contained

a total of 75 alleles (nucleotide p distance: 14.26%). These encoded

41 HV1 variants (amino acid p distance: 48.4%) which fell into 15

families and 44 HV2 variants (amino acid p distance: 40.1%)

which fell into 17 families.

In both the carriage and disease collections, we found that

genetically related isolates, whether belonging to hyperinvasive

clonal complexes or not, often had identical Opa repertoires (see

Text S1 and Tables S1 and S2). For example, for the ST-11

complex, the opa gene alleleic repertoire opaA 83, opaB 11, opaD

132 and an insertionally inactivated opaJ locus was present in 27 of

32 carried isolates and 16 of 20 disease isolates. The remaining

isolates from this complex in each collection had highly related

repertoires, differing at only one or two loci. These repertoires

were highly similar to those of isolates belonging to the same clonal

complexes observed in a global collection of hyperinvasive

meningococci (see Text S1 and Tables S1 and S2)[8].

Population structure of Opa repertoires
The modular exchange of the immunodominant HV regions

among different opa loci [14,15] makes the system unusual in the

context of immune selection, since the same hypervariable region

variants may be present at multiple opa loci within the same isolate,

as well as in different isolates. We extended a multi-locus

mathematical model (see Materials and Methods for details)

developed by Gupta et al.[17] to incorporate this feature by

allowing the two HV regions (HV1 and HV2) at each locus to

contain two possible amino acid sequence epitopes (‘a’ and ‘b’ for

HV1 and ‘x’ and ‘y’ for HV2) as shown in Figure 1. Thus, possible

combinations of HV regions in Opa proteins expressed by

different meningococci could be: ‘ax’, ‘ay’, ‘bx’, ‘by’, ‘axy’, ‘bxy’,

‘abx’, ‘aby’, and ‘axby’. The behaviour of this model under

different levels of immune selection is shown in Figure 2. These

simulations indicate that the system shows a tendency to self

organise at a population level into discrete antigenic types as the

strength of immune selection increases, as previously observed [17]

for multi-locus systems without modular exchange of variable

regions. When immunological selection (as measured by cross-

protection between pathogen types sharing variable regions) is

weak, all antigenic types coexist at the similar abundances as

shown in Figure 2a. By contrast, when immunological selection is

high, a subset of two strains expressing two non-overlapping HV1/

HV2 region combinations (for example, ‘ax’ and ‘by’) dominates,

excluding all other strains, as exemplified by Figure 2c. Between

these two extremes, we observe cyclical dynamics with strains

expressing subsets of non-overlapping HV variants successively

dominating the population (Figure 2b).

Figure 3 shows the combinations of HV1 and HV2 present at

all loci for all isolates. Each opa locus is treated independently, so

each isolate can contribute more than one combination. Variants

for which only a single isolate was found were excluded from this

analysis (see Table S3 for full details). To determine which of these

population structures best described these data, a simple metric

(f *) was developed to assess the extent of overlap between two

epitopes among different isolates (see Materials and Methods for

the derivation, and Text S1 for model validation): f * scores close

to 1 indicate a highly non-overlapping structure, expected when

cross-immunity is high, whereas scores close to 0 occur when

strains have completely overlapping antigenic repertoires. Scores

obtained from the opa loci in the dataset were compared to scores

from housekeeping genes belonging to the same isolates. The f *

metric for the data shown in Figure 3 is 0.9737, whereas pairwise

comparisons of the housekeeping gene loci yielded a mean f * score

of 0.3453 and a maximum of 0.4578. These scores indicate the

non-overlapping nature of the Opa HV1/HV2 combinations as

compared to the housekeeping loci, and reflect the diagonal

pattern observed in the figure.

A total of 124 HV1/HV2 combinations were observed out of a

possible total of 7068 (76 HV1 variants multiplied by 93 HV2

variants). Discrete, non-overlapping combinations of HV1 and HV2

are clearly dominant, despite the presence of rare combinations

generated by frequent recombinational exchange. These observa-

tions support the model structure described above in which strong

immune selection is responsible for structuring Opa repertoires.

Figure 1. Schematic of the model setup. Each isolate has two opa
loci, each having two HV regions (HV1 and HV2). Each HV region can
express one of two possible variants, a or b for HV1 and x or y for HV2,
which may be the same for both opa genes. There is no dose
dependence; an isolate with locus 1 expressing ‘ax’ and locus 2
expressing ‘ax’ is considered to be just ‘ax’. This simple 2-locus system
can be generalized to more loci without affecting the qualitative model
outcome.
doi:10.1371/journal.ppat.1000020.g001

Author Summary

Neisseria meningitidis is a globally important pathogen that
causes 2,000–3,000 cases of invasive meningococcal
disease annually in the United Kingdom. The meningo-
coccal Opa proteins are important in mediating adhesion
to and invasion of human tissues, and are important for
evasion of the host immune response. They are encoded
by a repertoire of 3–4 genomic loci in each meningococcus
and exhibit high levels of sequence diversity. Here we
analyzed the Opa repertoires of a large, well-characterised,
asymptomatically carried meningococcal isolate collection.
We found that the Opa repertoires were specific to
individual meningococcal genotypes, similar to that
observed in isolates from cases of invasive disease. These
repertoires exhibited discrete, non-overlapping structure
at a population level, and yet low within-repertoire
diversity. These data were consistent with the predictions
of a mathematical model of strong immune selection,
suggesting that the collective immune response of the
host population shapes the antigenic diversity of the
meningococcal Opa repertoire. This study provides new
insights into Opa-mediated meningococcal pathogenesis
and the effect of host population immunity on the
biodiversity and population structure of bacterial patho-
gens. These data may also have implications for the design
of new meningococcal vaccines based on surface proteins.

Immune Selection on Opa Proteins
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Diversity within Opa repertoires
Another important feature of the simulations presented in

Figure 2 which is unique to a system with modular exchange

between loci is that immune selection paradoxically leads to a

reduction in diversity within individual opa repertoires. In other

words, if more than one opa locus is expressed in vivo, selection will

favour those strains expressing multiple loci encoding the same

combination of HV regions, rather than different, more diverse

variants. It is evident from Figure 2a that even under low levels of

immune selection, the prevalence of strains expressing three or four

antigenic determinants is suppressed. The magnitude of suppression

increases with the degree of cross-protection (represented in the

model by the parameter c), such that these more diverse types are

entirely absent in Figure 2c. This suppression occurs because strains

expressing more than two HV variants are less likely to encounter

hosts who have not previously been exposed to one or more of their

epitopes, and are therefore at a disadvantage within the population.

Thus, at very high levels of immune selection, we observe only

meningococci that expressed a single opa locus, or multiple loci

encoding the same combination of HV regions (i.e. ‘ax’ at locus 1

and ‘ax’ at locus 2). This is because the pathogen population, and

therefore the background of host immunity, is dominated by two

non-overlapping strains, say ‘ax’ and ‘by’, so that more diverse

strains (such as ‘axy’) are more likely to be recognized by hosts who

have encountered either one of the dominant strains.

To investigate the effect of host immunity on the structuring of

the HV region repertoire diversity in individual isolates, we

analysed the HV combinations of different Opa proteins within

the same isolate for those that had full opa sequences at more than

one locus (not including those that had frame-shift mutations or

insertional inactivations). Figure 4 shows the proportion of isolates

with identical HV1/HV2 combinations at different opa loci within

the same isolate, compared to a hypothetical pathogen population

in which the same combinations found in the data were distributed

randomly within and among isolates. Only unique Opa repertoires

were included in the analysis, to control for bias due to particularly

prevalent sequence types and clonal complexes.

Our results showed that significantly more isolates contained

two or more of the same HV1/HV2 combination than would be

expected by chance given the same overall prevalence of variants

(p,0.0001). Furthermore, they were not always the same HV1/

HV2 combinations that were identical, with 28 different

combinations occurring more than once within isolates. Finally,

the probability that two or more were identical increased with the

number of opa loci at which a full length opa allele was detected for

each isolate (see Figure 4).

Discussion

The Opa repertoire structure observed in the carried menin-

gococci from the Czech Republic, and its relationship to clonal

Figure 2. Different dynamics generated by the model. a) All strains coexist (no strain structure NSS), but strains expressing 3 and 4 epitopes
are suppressed, c = 0.65. b) Cyclical dynamics (cyclical strain structure CSS) with successive dominance of discordant sets of strain expressing 2
variants, and suppressed oscillations of strains expressing 3 and 4 alleles , c = 0.83. c) The pathogen population is dominated by a subset of non-
overlapping strains (DSS), each expressing two alleles, all other strains are suppressed, c = 0.9.
doi:10.1371/journal.ppat.1000020.g002

Immune Selection on Opa Proteins
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complex, was similar to that previously described in an isolate

collection representing the diversity of meningococci causing

disease globally in the latter half of the 20th century [8]. This does

not imply that the Opa repertoire has no role in meningococcal

pathogenesis since other factors, such as differences in expression

patterns among meningococci and host susceptibility, are likely to

influence the outcome of infection.

Despite evidence for extensive recombination of opa loci among

meningococci, only a fraction of all possible combinations of HV1

and HV2 were observed. . These combinations exhibited a non-

random and non-overlapping structure, which was consistent with

a model of immunological selection in which competition between

pathogen types leads to a pathogen population dominated by non-

overlapping combinations of antigenic variants [17–19]. The low

frequency off-diagonal elements shown in Figure 3 may be

attributed either to the point prevalent nature of the data set (ie.

that these combination are shortlived) or reflect the fact that

certain variants possess immunological similarities, and are

therefore equally likely to occur in combination with certain

others. It is also possible that there are functional constraints in

operation here since particular HV1/HV2 combinations influence

receptor tropism and potentially also avidity [12,13,20]. It has

been suggested that expression of CEACAM on host cell surfaces

may allow evasion of antibody responses by Opa-mediated entry

into epithelial cells [4] and modulation of the host immune

responses by interaction with CD4+ T cells [21]. The specificity of

these interactions is likely to constrain allowable HV1/HV2

combinations and may explain why particular combinations are

entirely absent in our data.

Non-overlapping patterns of epitope combinations have also

been observed among meningococcal PorA variable regions

[17,19]. Unlike PorA however, the Opa repertoire is a four-locus

Figure 3. The combination of HV1-HV2 epitopes occurring in all carried isolates from the Czech Republic between March and June
of 1993, presented as a heatmap. HV1 and HV2 epitopes are classified into alleles as described in the Materials and Methods section. The colours
indicate the total number of observations of each particular combination. Each opa locus is treated independently, so each isolate can contribute
more than one combination. (See Text S1 for an alternative representation of the data).
doi:10.1371/journal.ppat.1000020.g003

Figure 4. Observed and expected numbers of Opa loci per
repertoire with identical HV1-HV2 combinations. Only unique
repertoires were included, in order to control for prevalent repertoires,
and the x-axis shows how many of these loci have identical HV
combinations. The ‘random’ distribution was generated using the same
number of HV combinations found in the data, and these were
randomly distributed among isolates. Note that the deviation from the
data would be even greater if the HV combinations were truly
randomized, ie. if all combinations had the same probability of
occurring in a given repertoire. The observed number of isolates with
two or more of the same HV combination departs significantly from the
expected number (p,0.0001).
doi:10.1371/journal.ppat.1000020.g004
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system [5,8], and has been suggested to play a role in immune

evasion [22,23]. For the Opa proteins, individual repertoires

exhibited more identical HV variants than would be expected

under the assumption that antigenic diversity of a surface

component prolongs infection (Figure 4). This result is, however,

consistent with the predictions of a mathematical model of strong

immune selection upon a system where identical alleles may

occupy different loci. Within this framework, isolates expressing

diverse repertoires are at a disadvantage because they are more

likely to encounter hosts with previous exposure to one or more of

their epitopes. This results in selection for identical variants at

multiple loci: in other words, a reduction in the diversity of the

Opa repertoires within individual meningococci. The prevalence

of identical Opa variants within repertoires implies that multiple

opa loci are expressed in vivo; if expression were restricted to a single

opa locus, there would be no selective disadvantage of carrying a

diverse repertoire. An alternative explanation for the low within-

repertoire diversity is that identical HV combinations reflect

genetic duplication events that are followed by specialisation of

duplicates for new functions [24,25].

An exception to the pattern of diversity within the Opa

repertoires in most clonal complexes was that of the ST-11

complex which did not have any identical HV variants among its

loci. This may be due to the recent entry and rapid spread of this

clonal complex into the population of the Czech Republic, where

it was responsible for a rapid increase in the incidence, mortality

and morbidity of invasive meningococcal disease in 1993 [26].

Retrospective monitoring of isolates since 1970 suggested that this

strain was not present in the country before 1993 and

consequently the Czech population may have been immunolog-

ically naı̈ve, allowing these meningococci to spread through the

population. Thus, high Opa repertoire diversity may be selectively

advantageous for the invasion of new communities of hosts with

variable immunological backgrounds. During prolonged carriage

in the same host population however, increased diversity may

become costly as the proportion of immunologically naı̈ve hosts

decreases. This would inevitably cause a reduction in the range of

receptor tropism, but this would be offset by the gain in probability

of transmission. To date, the majority of Opa proteins tested bind

at least CEACAM1 [27], suggesting that the repertoire retains

binding of this major receptor.

Intriguingly, the number of opa loci differ among the Neisseria

species, with 3–4 in Neisseria meningitidis [6,7], 11–12 loci in

Neisseria gonorrhoeae [28] and two in Neisseria lactamica [29]. The

reasons for these differences are unclear, but our analyses in this

study suggest a theory based on population prevalence and

immunological cross-protection. For example, whereas N. meningi-

tidis is transmitted by aerosol inhalation, N. gonorrhoeae is

transmitted sexually and consequently has a much lower

population prevalence. The likelihood of N. gonorrhoeae encounter-

ing an immunologically naı̈ve host may be much higher, therefore,

and the diversity-reducing effect from the host population’s

immunological responses less pronounced than for the meningo-

coccus. A more diverse Opa repertoire with more loci may be

more advantageous in these circumstances. Further information

on the antigenic diversity of the gonococcal Opa repertoire and

immunological responses against both pathogenic Neisseria species

would be required to test this hypothesis.

In conclusion, this analysis demonstrates that particular Opa

repertoires are associated with meningococcal clonal complexes

irrespective of geographic or temporal sampling, whether isolated

from asymptomatic carriers or invasive disease cases. The

repertoires exhibit discrete, non-overlapping structure on a

population level and low within-repertoire diversity, indicating

that immune selection plays an important role in shaping Opa

repertoires.

Materials and Methods

Isolate collection, determination of opa gene sequences
and variable region assignment

A total of 216 meningococcal isolates were obtained from an

asymptomatically carried population of meningococci collected in

the Czech Republic between March and June of 1993 [30]. A full

description of these meningococci, including year and location of

isolation, MLST and antigen gene sequencing data appears online

at http://pubmlst.org. Genomic DNA was prepared by culturing

isolates as previously described [30] before extracting with a DNA

mini kit (Qiagen, Crawley, UK) according to the manufacturer’s

instructions. The opa loci were isolated in separate, locus-specific

PCR amplifications, their nucleotide sequences determined at least

once on each strand and their variable regions identified as

previously described [8]. Nucleotide and amino acid sequence data

are available in an online database located at http://neisseria.org/

nm/typing/opa/. For analyses of diversity, by uncorrected

nucleotide or amino acid percentage (p) distance, sequences were

aligned and diversity calculated using the program DAMBE: Data

Analysis and Molecular Biology and Evolution [31].

Derivation of the f* metric
A non-overlapping strain structure results in a matrix of allelic

associations between two antigenic loci in which each allele at

locus 1 should be predominantly associated with only one allele at

locus 2, and vice versa. This means that the most prevalent strains

should dominate both the ‘row’ and ‘column’ of their allelic

association matrix. The level of overlap within such a matrix can

therefore be measured by assessing the dominance of the most

prevalent allele combinations;

fa~fi|fj|fij

The dominance of the most prevalent allele combination in each

column (fa) is calculated, where locus 1 expresses allele i, and locus

2 expresses allele j. fi is the frequency of the most prevalent strain

expressing allele i at locus 1, with respect to all strains expressing

that allele (ie. the ‘column’ dominance), fj is the frequency of that

strain with respect to all strains expressing allele j at locus 2 (ie. the

‘row’ dominance), and fij is the frequency of allele combination ij

overall. These are calculated as follows:

fi~
fijP

i

fij

, fj~
fijP

j

fij

, fij~
fijP

i

P
j

fij

The sum over all fa gives the overall overlap between two loci:

f �~Safa

such that f * varies between 0 and 1. For a completely non-

overlapping matrix, with no combinations found except for those

that do not overlap, f * will be exactly one. As this structuring

breaks down, the f * score will decrease rapidly.

Model setup
Three differential equations, based on a model by Gupta et al.

[17,18], describe the system:

Immune Selection on Opa Proteins
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dzi

dt
~bxi 1{zið Þ{mzi

dwi

dt
~
X

i0
bxi 1{wið Þ{mwi

dxi

dt
~bxi 1{wið Þz 1{cð Þ wi{zið Þ½ �{sxi

The model states that once infected with a particular strain, the

host gains partial immunity to any other strains expressing shared

antigenic determinants (the subset of strains i’ above) as specified

by the parameter c. For each strain i, the host population consists

of three overlapping compartments; the proportion infectious to

other hosts, xi; the proportion exposed (and therefore immune) to

strain i, zi, and the proportion exposed to any strain sharing

antigenic determinants with i, wi. It was assumed that the duration

of infectiousness (1/s) was short compared to the average host life-

span (1/m), and that immunity was life-long. All strains were

assumed to have the same transmission coefficient, b. The effect of

recombination was not explicitly included in the model, however

all possible strains were present from the start in order to

investigate the competitive interactions between them. Note that

in this model there was no dose-dependence; two loci expressing

Opa proteins with identical HV regions was taken as being the

same as if only one locus expressed the protein.

Supporting Information

Table S1 opa repertoires of meningococci isolated from asymp-

tomatic carriage in the Czech Republic during 1993. ST: multilocus

sequence typing (MLST) sequence type, CC: MLST clonal complex

SV: semi variable region variant, HV1: first hypervariable region

variant, HV2: second hypervariable region variant, ND: opa

sequence not detected, ININ: insertional inactivation of opa locus

by insertion sequence-like element, FSM: opa locus present but non-

functional due to frameshift mutation.

Found at: doi:10.1371/journal.ppat.1000020.s001 (.097 MB

DOC)

Table S2 opa repertoires of meningococci isolated from invasive

disease in the Czech Republic during 1993. ST: multilocus

sequence typing (MLST) sequence type, CC: MLST clonal

complex SV: semi variable region variant, HV1: first hypervari-

able region variant, HV2: second hypervariable region variant,

ND: opa sequence not detected, ININ: insertional inactivation of

opa locus by insertion sequence-like element, FSM: opa locus

present but non-functional due to frameshift mutation.

Found at: doi:10.1371/journal.ppat.1000020.s002 (0.19 MB

DOC)

Table S3 The combination of all HV1-HV2 epitopes occurring

in all carried isolates from the Czech Republic between March

and June of 1993. (Figure 3 in the text does not contain variants

for which there is only a single isolate found). HV1 and HV2

epitopes are classified into alleles as described in the methods

section.

Found at: doi:10.1371/journal.ppat.1000020.s003 (0.03 MB

DOC)

Text S1 Supplementary material

Found at: doi:10.1371/journal.ppat.1000020.s004 (0.10 MB

DOC)
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