Skip to main content
. 2008 Feb 29;4(2):e1000022. doi: 10.1371/journal.pgen.1000022

Figure 6. Suppression of eat-3(ad426) Phenotypes.

Figure 6

(A) Mitochondria in a wildtype (N2) muscle cell with their normal tubular morphology. (B) Fragmented mitochondria in a muscle cells of the eat-3(ad426) mutant. (C) Mitochondria with highly connected outer membranes (green) but not connected matrix compartments (red) in a muscle cell of the eat-3(ad426); drp-1(cq5) double mutant. (D) Similarly connected mitochondrial outer membranes in a muscle cell of the drp-1(cq5) mutant after removal of the eat-3(ad426) mutation by backcrossing. The mitochondria in muscle cells were detected with the transmembrane segment of C. elegans Tom70 fused to YFP (shown in green) and the matrices are labeled with a mitochondrial leader sequence fused to CFP (red). Nuclei are marked with n. The bar indicates 5 µm. (E) Histograms showing rescue of the eat-3(ad426) broodsize defect by drp-1 and fzo-1 RNAi, but not rescue of the eat-3(tm1107) deletion allele by drp-1 or fzo-1 RNAi. Wildtype (N2) and mutant animals were grown on bacteria with the feeding RNAi plasmid pILL4440 without insert, with fzo-1 cDNA or with drp-1 cDNA. The bars on the right show that the brood size of the eat-3(ad426) mutant is also rescued by a chromosomal drp-1 mutation (drp-1(cq5)). This rescue depends on residual eat-3 function in the ad426 allele, because it is eliminated by eat-3 RNAi. The brood sizes were defined as the numbers of viable larvae that developed to the L4 stage. Error bars indicate SE. An unpaired Student's t test was used for statistical analysis. The single asterisk indicates P<0.0001 and the double asterisk indicates P<0.01 (n = 24 for eat-3(ad426) alone, n = 14 for the same with fzo-1 RNAi and n = 7 for drp-1 RNAi).