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Abstract
Background—Non-experimental studies of drug effects in large automated databases can provide
timely assessment of real-life drug use, but are prone to confounding by variables that are not
contained in these databases and thus cannot be controlled.

Objectives— To describe how information on additional confounders from validation studies can
help address the problem of unmeasured confounding in the main study.

Research Design—Review types of validation studies that allow adjustment for unmeasured
confounding and illustrate these with an example.

Subjects: Main study—New Jersey residents 65 years or older hospitalized between 1995 and
1997, who filled prescriptions within Medicaid or a pharmaceutical assistance program. Validation
study: representative sample of Medicare beneficiaries.

Measures—Association between nonsteroidal anti-inflammatory drugs (NSAIDs) and mortality.

Author for correspondence and reprints: Til Stürmer, MD, MPH, Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham
and Women’s Hospital, Harvard Medical School, 1620 Tremont Street, Suite 3030, Boston, MA 02120, Phone: +1 617 278 0627, Fax:
+1 617 232 8602, Email: til.sturmer@post.harvard.edu.
Til Stürmer, MD, MPH, Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital, Harvard Medical
School, 1620 Tremont Street, Suite 3030, Boston, MA 02120, Phone: +1 617 278 0627, Fax: +1 617 232 8602, Email:
til.sturmer@post.harvard.edu
Robert J Glynn, ScD, PhD, Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital, Harvard
Medical School, 1620 Tremont Street, Suite 3030, Boston, MA 02120, Phone: +1 617 278 0972, Fax: +1 617 232 8602, Email:
rglynn@rics.bwh.harvard.edu
Kenneth J Rothman, DrPH RTI Health Solutions PO Box 12194, Research Triangle Park, NC 27709, Phone: +1 617 964 0977, Email:
krothman@rti.org
Jerry Avorn, MD, Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital, Harvard Medical
School, 1620 Tremont Street, Suite 3030, Boston, MA 02120, Phone: +1 617 278 0930 ,Fax: +1 617 232 8602, Email: javorn@partners.org
Sebastian Schneeweiss, MD, ScD, Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women’s Hospital,
Harvard Medical School, 1620 Tremont Street, Suite 3030, Boston, MA 02120, Phone: +1 617 278 0937, Fax: +1 617 232 8602, Email:
schneeweiss@post.harvard.edu

NIH Public Access
Author Manuscript
Med Care. Author manuscript; available in PMC 2008 October 1.

Published in final edited form as:
Med Care. 2007 October ; 45(10 SUPL): S158–S165.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results—Validation studies are categorized as internal (ie, additional information is collected on
participants of the main study) or external. Availability of information on disease outcome will affect
choice of analytic strategies. Using an external validation study without data on disease outcome to
adjust for unmeasured confounding, propensity score calibration (PSC) leads to a plausible estimate
of the association between NSAIDs and mortality in the elderly, if the biases caused by measured
and unmeasured confounders go in the same direction.

Conclusions—Estimates of drug effects can be adjusted for confounders that are not available in
the main but can be measured in a validation study. PSC uses validation data without information
on disease outcome under a strong assumption. The collection and integration of validation data in
pharmacoepidemiology should be encouraged.

Keywords
bias (epidemiology); confounding factors (epidemiology); epidemiologic methods; propensity score
calibration; research design

Introduction
Randomized controlled trials are often regarded as the most accurate method to assess treatment
effects. Random assignment of a large number of subjects into treatment groups usually leads
to a good balance of observed and unobserved risk factors in all groups. Nevertheless,
randomized controlled trials have major limitations when they are used to assess the role of
medications in the etiology and management of chronic diseases. The main limitations stem
from selection of participants into trials who are healthier and want to pursue a more healthful
life style, the long time required from trial design to completion, the relatively short duration
of exposure, and high cost. In addition, frail elderly patients, who use the most drugs and have
the highest adverse event rates, are often underrepresented in trials. Generalization from trials
can be erroneous because effect sizes, baseline risks, and comorbidity have been shown to
differ between trial populations and the broader population that is not represented in trials.1

In observational studies it is possible to include a wide variety of participants and assess long-
term exposures, including medications, in a timely manner. Without treatment allocation by
chance, however, bias due to different baseline risks for disease in users and non-users of drugs
cannot be ruled out completely. With respect to prescribed medications, this bias is called
confounding by indication.2 It stems from risk factors for disease that influence the treatment
choices of physicians and patients, including the decision to start or stay on a drug. Some of
these factors, like attitudes towards health,3 prevention,4 and frailty,5,6 are subtle and hard to
measure. The potential for confounding is probably larger in observational studies assessing
medications than in studies assessing lifestyle factors. There is increasing evidence (eg, 7) that
confounding by indication may not have been completely controlled for in observational
studies on pharmacoprevention of chronic diseases.8

The problem can be more pronounced in pharmacoepidemiologic studies based on large health
care utilization databases, since these data are collected for reasons unrelated to the research
hypothesis and thus rarely contain sufficient information on all important confounders. These
databases are, however, often the best source of information on the association between drugs
and diseases, because they allow timely assessment of infrequently used drugs and rare
outcomes in large, representative populations under usual care conditions.

To address unmeasured confounding in pharmacoepidemiologic database studies, several
approaches have been proposed.9 They can be classified according to whether they use
additional data not contained in the original administrative dataset or not. Examples of methods
that do not rely on additional data collection include instrumental variable analyses,10,11
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methods that calculate bounds for causal effects under increasingly restrictive assumptions
about the unmeasured confounder and the effect of the exposure,12–14 as well as case-
crossover studies15. Here, we will focus on analytic methods that control for bias due to
confounding that is measured not in the main study, but in an outside body of data that can
serve as a validation study.

The aims of the paper are to describe the use of external data to adjust for unmeasured
confounding, propose a framework to categorize different uses of outside data, present an
application to adjust for unmeasured confounding based on a method developed by our group,
and advocate the use of and research into external information in pharmacoepidemiologic
studies.

Framework
There is no uniform framework for the use of external information to adjust for unmeasured
confounding. So far, most research has focused on the validation of exposures16 and disease
outcomes17 to reduce bias due to misclassification or measurement error. Although many of
these issues apply to external information on confounders, the problem is distinct. Apart from
misclassification and measurement error of the confounder leading to residual confounding,
confounding is defined by the joint distribution of the confounder(s) with both exposure and
outcome. Therefore both associations need to be considered when deciding on the use of
external information. Here we will focus on the assessment of confounding. In any setting,
researchers may want to make optimal use of the additionally collected data by combining
external information on confounding with validation of exposures and outcomes to quantify
more than 1 source of bias.18,19

Aggregated data: Sensitivity analyses of individual confounders
Simple sensitivity analyses can be performed without use of additional data (eg, by making
structural assumptions and selecting parameters for a single confounder that would explain the
observed study finding under an alternative, usually null, hypothesis)12,20. They can be
extended to use parameter values from published studies or outside data sources (aggregated
or individual data) to adjust observed estimates based on the distribution of specific
confounders (eg, smoking) in the population and their association with exposure and with
disease outcomes.21 Such analyses are advantageous because they can be easily performed
based on information from the literature or expert opinion on the distribution of a specific
unmeasured confounder and its associations with exposure and disease outcome. No additional
data need be collected, and these analyses provide bounds for possible confounding by
individual factors. Their main disadvantage is that they do not address joint confounding by
several unmeasured covariates.

To address confounding by multiple confounders, an extension of these simple sensitivity
analyses has been applied.22 The approach is based on separate estimates of the prevalence of
external dichotomous confounders, their association with the exposure of interest, and their
association with disease outcome. Using a weighted average of the expected confounding effect
of several covariates, this ad hoc method allows researchers to approximate the magnitude and
direction of confounding by several covariates. The method treats the unobserved confounders
as separate covariates without taking into account their joint distributions with the exposure
and the disease outcome.

Using data from a cross-sectional validation study, Schneeweiss et al. could show that selective
COX2 inhibitor users were less likely to be smokers (8% versus 10%) than nonselective NSAID
users, while the prevalence of obesity (24% vs. 24%) was comparable. Failure to adjust for
five potential confounders not measured in the administrative claims data (smoking, obesity,
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aspirin use, education, and income) would lead to only a small underestimation of the
association between selective COX2 inhibitors and myocardial infarction and is thus unlikely
to introduce substantial bias in the study based on claims data.22

Although this approach is a significant improvement over analyses based on a single
confounder, it does not allow researchers to address possible joint confounding by these
variables. The method can still be applied based on distributions and associations taken from
the literature. If it is based on information contained in outside study data on individuals,
however, it does not make optimal use of the joint distribution of the covariates contained in
the validation study.

Individual-level data: External adjustments addressing the joint distribution
of several confounders

To address joint confounding by multiple covariates, data on the joint distribution of these
covariates are necessary. This procedure requires individual-level data from validation studies.
Such studies can be categorized as external or internal depending on whether data are collected
from individuals outside or within the main study population.

Internal validation studies
Internal validation studies can be defined as studies based on additional data obtained for a
subset of participants in the main study population. This sub-sample can then be conceptualized
as “complete subjects,” in contrast to the other participants, who are regarded as incomplete
subjects because they have missing values for all confounders assessed only in the validation
study. The main study participants on whom additional data are collected in the validation
study can be a random sub-sample of the baseline cohort. In that case, a method such as multiple
imputation23 can be used to fill in the missing values of the confounder(s) in the main dataset
to control for unmeasured confounding.

Garshick et al. recently used multiple imputation in a retrospective cohort study on lung cancer
in railroad workers exposed to diesel exhaust without information on smoking.24 Without
adjustment for smoking, the relative risk of lung cancer in those exposed to diesel exhaust was
1.35. Smoking history was obtained using data from a companion case-control study. Smoking
histories of 5 random persons of the validation study with the same job category (the exposure
of interest), age, birth cohort, and outcome of interest (whether the person died of lung cancer
or not) were imputed for each person of the main study. The resulting 5 different datasets were
then analyzed separately and results combined to obtain mean estimates and their standard
errors. This multiple imputation led to an estimate of the relative risk for lung cancer and
exposure to diesel exhausts of 1.22. Based on data on smoking from the validation study, the
authors conclude that small differences in smoking behavior between diesel exposed and
unexposed workers do explain some but not all of the elevated risk.24 Although the companion
study is not an internal validation study in the strict sense of the term, the study clearly contains
enough detail on the exposure of interest, measured confounders, and the outcome of interest
(a prerequisite for multiple imputation to be applicable)25 to be used as an example of an
internal validation study.

Instead of imputing actual values from random draws of persons from the validation study,
multiple imputation is often based on fitting a linear model in the validation study with the
covariate that is missing in the main study included as the dependent variable. Imputations are
then based on multiple draws from the posterior distribution of the parameter estimates of this
regression model plus an additional random error term.
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To increase efficiency, selection into the validation study can be based on available information
about exposure or disease outcome of interest or both (ie, non-random selection). This approach
is referred to as anamorphic design26 or 2-stage design.27,28 The data can then be analyzed
using a method that takes into account the sampling for the internal validation study. Examples
of such a method are maximum likelihood, the method developed by Breslow and Cain, and
estimating equations.29

The main advantages of internal validation studies over external validation studies are 1) better
representativeness of the main study and 2) possible efficiency gains based on over-sampling
on exposure or disease outcome of interest. Most published work on efficiency gains by
different non-random sampling strategies (eg, counter-matching,30 flexible matching31) is
based on estimation of main exposure effects and interactions. The general principles of non-
random selection to increase efficiency also hold when considering confounding.32

Examples of 2-stage designs include an early cohort study on vasectomy and non-fatal
myocardial infarction33 and a nested case-control study on nonsteroidal anti-inflammatory
drugs and breast cancer34. Both use claims data to define the study population, the drug
exposure of interest, and the outcome. In the study by Walker et al., information on additional
confounders for matched sets of exposed and unexposed was collected for sets that included
at least one outcome (myocardial infarction).33 Chart review of these sets allowed the authors
to efficiently validate both exposure and outcome and abstract information on additional
potential confounders including obesity, hypertension, diabetes, and smoking history. Because
the relative risk for vasectomy and myocardial infarction was essentially the same before and
after control for these additional covariates in the stage 2 sample (1.25 vs. 1.22), the authors
concluded that there was little evidence for confounding by these factors and reported the stage
1 estimate as their primary finding (RR=1.0).33

Similarly, Sharpe et al. report the stage 2 estimate based on information on additional
confounders obtained by telephone interview in selected cases and controls separately from
the stage 1 estimate (not adjusting for these potential confounders).34 Based on the similarity
of these two estimates the authors conclude that the protective effect (of nonsteroidal anti-
inflammatory drugs on breast cancer) could not be attributed to confounding by other
determinants.34

Possibly because of the absence of joint confounding by the additional covariates, both studies
use the information from stage 2 qualitatively. If confounding by the additional covariates is
detected in stage 2, however, the estimates from stages 1 and 2 can be quantitatively combined
into an adjusted overall estimate.35

The main disadvantage of an internal validation study based on non-random sampling is that
it is specific to a certain exposure-outcome association, and therefore less efficient for
addressing unmeasured confounding for other associations. Internal validation studies depend
on the feasibility of collecting additional data from study participants. Contacting individuals
whose data are routinely collected for administrative purposes may not be possible because of
privacy concerns or laws. Temporality and (differential) recall-bias are further concerns that
need to be considered.

External validation studies
External validation studies are usually cross-sectional because of cost and time constraints in
collecting information on infrequent disease outcomes. Their main advantages are that data
are often already collected and can be re-used for several main studies addressing multiple
hypotheses. The main disadvantage of external validation studies is that they often do not
contain exactly the same measures used in the main study, that they are not perfectly
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representative of the main study, and that they usually lack information about the disease
outcome of interest. All of these challenge the assessment of the joint distribution of the
unmeasured confounders with the disease outcome of interest.

Since external validation studies are not specific to a certain hypothesis, many such studies are
available, including public domain data or data that can be purchased for a small fee. Their use
in pharmacoepidemiology is often limited, however, because data on medication use from
external sources is often cross-sectional (eg, current use is assessed based on self-administered
questionnaires or interviews) with varying potential for misclassification and a limited number
of incident users. To provide enough information on rarely used drugs, including newly
marketed ones, validation studies need to be large and current. We present a detailed example
of an external validation study in a following section.

In Table 1 we summarize advantages and limitations of internal and external validation studies,
and list possible analytic techniques to use data from these studies to adjust for confounding
unmeasured in the main study.

Application example
In the following sections we illustrate how external validation data without information on the
disease outcome of interest can be used to adjust estimates of an exposure-outcome association
based on published work. This application example has been previously described in
detail36 and is only summarized here.

There is no known biological reason to expect that nonsteroidal anti-inflammatory drugs
(NSAIDs) would cause a reduction in the risk of death (indeed, there is some evidence for the
contrary). Glynn et al. observed that NSAID were associated with a strong reduction in risk
for short-term mortality (relative risk = 0.74) in elderly hospitalized patients, however, even
after a wide variety of health indicators available in claims data were controlled for.6 This
association is likely to be due to selection bias leading to strong unmeasured confounding:
Physicians are less likely to prescribe NSAIDs (eg, compared with narcotics) in frail old adults
as well as in patients with advanced cancer and a variety of other comorbidities, including renal
disease, that are associated with a high mortality. Some of these, however, are measured in
claims data and a single unobserved confounder would need to be strongly associated with
avoidance of NSAIDs and mortality as well as be prevalent to explain the strong inverse
association between NSAIDs and mortality. Although a single confounder explaining the
strong inverse association might be implausible, joint confounding by a variety of confounders,
each of which is only moderately associated with NSAID use and mortality and not very
prevalent, but all acting in the same direction might nevertheless be plausible.

To incorporate information on joint confounding by unmeasured covariates using data from a
cross-sectional external validation study, we combined propensity scores (PS)37 and
regression calibration38 into propensity score calibration (PSC)36.

The PS is defined as the conditional probability of exposure (to a drug) given observed
covariates. It is usually estimated from the data at hand using multivariable logistic regression.
Individuals with the same estimated PS are then thought to have the same chance of being
exposed. As a group, treated and untreated subjects paired on the same PS will have similar
distributions of and thus comparisons be unconfounded by observed covariates.37

Regression calibration is a method to correct effect estimates for measurement error.38 In the
context of generally sparse use of methods to correct for measurement error in epidemiology,
regression calibration is the most widely used approach. It is based on data from a validation
study that includes the “error-prone” measure of the variable used in the main study and an
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additional “gold-standard” measure of the same variable. Within the validation study, one
estimates a linear measurement error model with the “true” or “gold-standard” variable as
dependent variable and the “error-prone” variable and variables measured without error as
independent covariates. Under the main assumption that the “error-prone” variable contains
no information on the outcome beyond the “gold-standard” variable (surrogacy),39 regression
calibration then uses the regression estimates from this measurement error model to correct
the 'naive' regression estimates obtained from error-prone variable in the main study.36
Regression calibration is used mainly to correct associations between continuous exposures
(eg, blood pressure, nutrients) and outcomes for measurement error in the exposure of interest.

To apply regression calibration to adjust for the joint confounding of multiple confounders
unobserved in the main study, we first combine all confounders into a single score, the PS, and
assume that the PS estimated in the main study based on a subset of important confounders is
measured with error. This error can be estimated in an external validation study using data on
additional confounders. One can then adjust for unmeasured confounding due to that
measurement error using regression calibration.

To implement PSC, we first controlled for measured confounding in the main cohort using the
“error-prone” PS estimated in the main study. We then estimated 2 additional PSs in the
external validation study: the “error-prone” PS based on information available in the main
cohort, and the “gold-standard” PS that included covariates available only in the validation
study (see Table 2). Based on these 2 PSs in the validation study, we applied regression
calibration to correct regression coefficients in the main cohort.36

Main study
To test this approach, we identified a main study population assembled for an analysis of pain
medication use in elderly patients.40 It comprised all community dwelling New Jersey
residents who were aged 65 years or older, filled prescriptions within Medicaid or the
Pharmaceutical Assistance to the Aged and Disabled program, and were hospitalized between
January 1, 1995 and December 31, 1997. Eligible individuals were those who filled a
prescription for any drug within 120 days before hospitalization and another prescription more
than 365 days before hospitalization. Covariates were assessed during the 365 days before
hospitalization.

For all 103,133 eligible subjects we extracted the following variables: age, sex, race, all
prescriptions filled within 120 days before the date of hospital admission, all diagnoses
assigned, number of hospitalizations, and number of physician visits within 365 days before
that date. The time until death or 365 days of follow-up (whichever came first) was assessed
starting from the date of hospital admission, based on linkage to Medicare files.41

External validation study
The Medicare Current Beneficiary Survey (MCBS) is conducted in a sample of beneficiaries
selected each year to be representative of the current Medicare population, including both aged
and disabled beneficiaries living in the community or in institutions. Data, including
medication use over the last 4 months verified by inspection of medication containers, are
obtained from face-to-face interviews and linked to Medicare claims data. The survey has a
high response rate (between 85% and 95%) and very high data completeness.42

The MCBS data used for the validation study in this analysis were drawn from a list of all
persons enrolled in Medicare on January 1, 1999. As in our main study, the validation study
population was restricted to persons aged 65 years or older living in the community (10,446
persons). To make the validation study population more comparable with the main study, we
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randomly selected MCBS individuals according to the age (3 categories) and sex distribution
in the main cohort (frequency matching). This resulted in 5,108 MCBS subjects used for all
subsequent analyses.

Control for observed confounding
During a follow-up period of 1 year, 21,928 (21.3%) of the main study population died during
or after hospitalization. Without any control for confounding, NSAID use appeared to be
associated with a 32% (95% CI: 29 – 36%) mortality risk reduction (Table 3). This observed
association is likely to be due to selection bias (ie, the fact that physicians are less likely to
treat pain with NSAIDs in frail old adults). Controlling for just age and gender in the
conventional outcome model, we observed a smaller estimate of decreased risk (26%; 95% CI:
23 – 29%) compared with the unadjusted result. Controlling for a wide variety of health
indicators available in claims data (for a list, see Table 3 footnote) in the outcome model, we
observed a risk reduction of 20% (95% CI: 17 – 23%). We observed essentially the same
amount of risk reduction (19%; 95% CI: 16 – 22%) when we controlled for confounding using
a PS that was estimated based on the same claims data covariates as were used in the outcome
model and modeling mortality as a function of the estimated PS together with the exposure.

Control for unobserved confounding with Propensity Score Calibration
We implemented the PSC approach by using regression calibration to correct for measurement
error in the PS of the main study. Regression calibration was based on the estimation of the 2
PSs (“error-prone” and “gold-standard”) in the external validation study (Table 4). Better
prediction of exposure by inclusion of the survey information in the “gold-standard” PS
resulted in an increased c-statistic or area under the receiver operating characteristic curve
(AUC) of 0.66, compared with 0.60 in the “error-prone” PS. None of the additional variables
entered in the “gold-standard” PS is strongly related to exposure to NSAIDs. Nevertheless, the
prediction of NSAIDs exposure is substantially improved as quantified by the c-statistic, giving
plausibility to our hypothesis that the strong unmeasured confounding in the main study is not
due to a single dominant confounder but rather due to the joint effect or combination of multiple
modest confounders. In general, however, the c-statistic of the PS has only limited value when
assessing its performance to control for confounding.43

We implemented regression calibration using a linear measurement error model. The “gold-
standard” PS that predicted NSAID exposure based on claims data combined with interview
data was the dependent variable; the “error-prone” PS that predicted NSAID exposure based
on claims data only was one independent variable, and NSAID exposure served as the second
independent variable. As noted above, the analysis of the exposure-outcome association
controlling for the “error-prone” PS in the main study indicated a 19% risk reduction. When
we adjusted this estimate for the measurement error in the “error-prone” PS (as estimated by
comparison with the “gold-standard” PS in the validation study), we found NSAID use to be
associated with a very small 6% (95% CI: 0 to 11%) increased mortality risk after PSC (Table
3). Thus, adding information on additional confounders using PSC resulted in a more plausible
estimate for the association between NSAID use and all-cause short-term mortality in the
elderly.36

Like regression calibration, PSC is dependent on the surrogacy assumption that the “error-
prone” PS does not contain any information on the disease outcome given the “gold-standard”
PS and exposure.39,44 In simulations over a wide range of parameters we found that PSC is
valid if surrogacy holds, but that it can increase rather than decreases bias in situations where
surrogacy is violated.45 Surrogacy holds when the directions of confounding by the measured
and the unmeasured covariates are the same. In the NSAIDs example, it is plausible that the
underlying frailty leading both to a lower propensity for NSAID use and to higher mortality is
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only partly captured in the main study and is better captured when additional information from
the validation study (eg, data on activities of daily living) is added. Thus, surrogacy might be
assumed in this setting. The “gold-standard” PS also performs as an approximate instrument
under assumptions similar to surrogacy because it hopefully better approaches the true, but
unknown, propensity of treatment than the “error-prone” one.39,46

Conclusions
The advantages of health care utilization data for the assessment of intended and unintended
drug effects have a price: the relatively narrow set of variables available to characterize patients.
This limitation makes the data from such analyses vulnerable to confounding bias, such as
confounding by indication. Of the possible sources of additional data to adjust for unmeasured
confounding, cross-sectional external validation studies are most widely available. Internal
validation studies offer specific advantages since they are more representative and allow
application of methods that do not require assumptions about the direction of confounding.
Such validation studies should therefore be considered whenever feasible. Using PSC to
incorporate information on confounders not available in health care utilization data from
external validation studies can help researchers to adjust for unmeasured confounding, albeit
under a strong surrogacy assumption.
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Table 1
Classification of validation studies for external adjustment of confounding unmeasured in the main study and
general notions about their availability, possible use of different analytic strategies, and possible use for multiple
associations

Validation study

Internal External

Information on disease outcome Yes Yes No
Availability Rare* Rare Frequent
Analytic methods
 Multiple imputation Yes† Yes† No
 2-stage sampling Yes No No
 Propensity score calibration Yes Yes Yes
Validation study can be used to adjust multiple
associations

Yes (if random sample) Yes Yes

Transportability of parameters‡ Yes ? ?

*
Availability does not equal feasibility – internal validation studies might be rarely available but easily feasible in specific settings.

†
Internal validation studies contain information on disease outcome of interest by design. Any particular validation study might not have sufficient

information on the disease outcome of interest due to small size and/or low incidence, however, for multiple imputation to be applied.

‡
Models and their relevant parameters from the validation study can be applied to the main study - this is usually given in internal validation studies but

needs to be assumed (i.e., is questionable) in external validation studies.
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Table 2
Concept of propensity score calibration

Study Main Study Validation Study

Propensity Score Error-Prone Error-Prone Gold-Standard
Variables Claims Data Claims Data Claims & Survey

Exposure X X X
Demographics X X X
Diagnoses X X X
Procedures X X X
Prescriptions X X X
Visits X X X
Smoking X
Aspirin X
Body Mass Index X
Education X
Activities of Daily X
Living
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Table 3
Association between non-steroidal anti-inflammatory drug use and 1-year mortality in a population-based cohort
of 103,133 elderly - propensity score calibration adjustment based on data from 5,108 participants of the Medicare
Current Beneficiary Survey as external cross-sectional validation study (modified from reference 29)

Hazard Ratio* (95%Confidence Interval)*

Unadjusted model 0.68 (0.66 – 0.71)
Conventional multivariate outcome model
 Age and gender adjusted 0.74 (0.71 – 0.77)
 Fully adjusted† 0.80 (0.77 – 0.83)
Propensity score (main study) adjusted† 0.81 (0.78 – 0.84)
Propensity score calibration adjusted 1.06 (1.00 – 1.12)

*
Hazard ratios and their 95% confidence intervals estimated using Cox proportional hazards regression; propensity score calibration adjusted models

include uncertainty due to the estimation of the error model.

†
Adjusted for age (continuous), sex, race (white, black, other), myocardial infarction, congestive heart failure, diabetes, cancer, arthritis (RA or OA),

number of physician visits (0–5, 6–11, 12+), number of hospitalizations (0, 1, 2+), and use of thiazides, steroids, and anticoagulants.
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