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Abstract
Mathematical models for hepatitis C viral (HCV) RNA kinetics have provided a means of evaluating
the antiviral effectiveness of therapy, of estimating parameters such as the rate of HCV RNA
clearance, and they have suggested mechanism of action against HCV for both interferon and
ribavirin. Nevertheless, the model that was originally formulated by Neumann et al. (Science 1998:
282, 103-107) is unable to explain all of the observed HCV RNA profiles under treatment e.g., a
triphasic viral decay and a viral rebound to baseline values after the cessation of therapy. Further,
the half-life of productively HCV-infected cells, estimated from the second phase HCV RNA decline
slope, is very variable and sometimes zero with no clear understanding of why. We show that
extending the original model by including hepatocyte proliferation yields a more realistic model
without any of these deficiencies. Further, we define and characterize a critical drug efficacy, such
that for efficacies above the critical value HCV is ultimately cleared, while for efficacies below it, a
new chronically infected viral steady state level is reached.
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1. Introduction
Hepatitis C virus (HCV) infect about 200 millions people worldwide (World Health
Organization 2000). About 15-30% of asymptomatic patients (Villano et al., 1999) and more
than 50% of symptomatic patients (Gerlach et al., 2003) with acute hepatitis C spontaneously
clear the virus during the early phase of infection, with the remainder progressing to chronic
hepatitis infection. Chronic HCV infection is the main cause of chronic liver disease and
cirrhosis leading to liver transplantation or death (Alter et al., 1992).

Antiviral therapy has been used to treat chronically HCV infected patients, with successful
therapy resulting in undetectable virus for more than 6 months after treatment cessation.
Typical therapy response begins with a rapid viral decline followed by a second slower decline
until the virus becomes undetectable (Colombatto et al., 2003; Neumann et al., 1998; Pawlotsky
et al., 2004). In some patients a triphasic decline has been observed, consisting of a rapid initial
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decline in the viral load followed by a “shoulder phase” (4 – 28 days) – in which viral load
decays slowly or remains constant – and a third phase of resumed viral decay (Bekkering et
al., 2001; Herrmann et al., 2003; Sentjens et al., 2002). However, in approximately 50% of
HCV treated patients with current therapy, consisting of pegylated interferon and ribavirin, the
virus is not eradicated (termed partial responders) and either rebounds to pretreatment levels
during therapy, or converges to a lower viral plateau during treatment and then returns to
pretreatment levels upon therapy cessation (Fried et al., 2002; Manns et al., 2001).

A model of HIV infection (Perelson et al., 1996; Wei et al., 1995) was adapted by Neumann
et al. (1998) to study the kinetics of chronic HCV infection during treatment. Since then viral
kinetics modeling has played an important role in the analysis of HCV RNA decay during
antiviral therapy (see review (Perelson et al., 2005). The original model for HCV infection
(Neumann et al., 1998) includes three differential equations (here termed the original model)
representing the populations of target cells, productively-infected cells, and virus. A simplified
version of the model (here termed the two-equation model) that assumes a constant population
of target cells was used to estimate the rates of viral clearance and infected cell loss by fitting
the observed biphasic decline of HCV RNA in patients during therapy. The analytic solution
of the two-equation model, when target cells were held constant, showed that the first phase
decline in viral load depends mainly on the viral clearance rate and treatment effectiveness,
and that the second phase decline depends mainly on the loss rate of infected cells and to a less
extent on treatment effectiveness. Fitting the analytic solution to patient data, the half life of
HCV infected cells was estimated to span a large range from 1.7 days to greater than 70 days
(Neumann et al., 1998). However, in this model, the data from partial responders, exhibiting
a flat second phase, can only be fitted under the assumption that infected cells do not die or
that they have an unrealistically long half-life. Moreover, the model can not explain a triphasic
viral decay nor does it predict viral load resurgence to the baseline level upon cessation of
therapy.

The assumption of a constant population of target cells during therapy is an approximation and
is only valid for a short duration (Neumann et al., 1998). Since hepatocytes have been suggested
to be the major producers of HCV (Dahari et al., 2005a; Powers et al., 2006), we assume that
target cells are hepatocytes. The liver is an organ that regenerates, and thus we expect that due
to homeostatic mechanisms (Fausto 2004; Michalopoulos et al., 1997), any loss of infected
hepatocytes would be compensated for by the proliferation of hepatocytes (Dahari et al.,
2005b).

Here, we extend the original model of HCV infection under therapy (Neumann et al., 1998) to
account for the proliferation of hepatocytes (Fig. 1) (here termed the extended model), as was
recently used to model HCV RNA kinetics in primary infection in chimpanzees (Dahari et al.,
2005b). We then compare the behavior of the two-equation model, the original model and the
extended model. We show that the extended model can explain both biphasic and triphasic
viral decays, the response seen in “flat partial responders” in which virus decay is characterized
by a flat second phase, as well as the rebound of virus to its pre-treatment or baseline level on
the cessation of therapy. We also show that there exists a critical drug efficacy such that for
efficacies below the critical value a flat partial response will occur, whereas for efficacies above
the critical value ultimate HCV elimination should occur.

2. Original model during antiviral therapy
Neumann et al. (1998) modeled HCV infection and treatment with the following system of
differential equations (Fig. 1):
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(1)

(2)

(3)

where T represents uninfected hepatocytes, I represents infected hepatocytes and V represents
virus. The model assumes that uninfected hepatocytes are produced at a constant rate s, die at
rate, d, per cell and are infected at constant rate β. Infected hepatocytes are lost at a rate δ per
cell. Viral particles (virions) are produced at rate p per infected hepatocyte and cleared at rate
c per virion. Chronic HCV infection is treated using interferon-α in combination with the
antiviral drug ribavirin. Interferon-α acts primarily by blocking the production/release of new
virus, although we also allow for a treatment effect in blocking de novo infection. The efficacy
of treatment in blocking virion production and reducing new infections are described by two
parameters, εp and η, respectively. For example, a treatment efficacy in blocking virion
production of 95% corresponds to εp = 0.95.

2.1 Two-equation model
The non-linear system in equations (1) - (3) does not have a closed form analytic solution.
However, if one assumes the target cell population remains constant during the course of
therapy, the resulting two-equation model:

(4)

(5)

where T0 is the target cell level at the start of therapy, can be solved exactly under the
assumption that the system was in quasi-steady at the start of therapy, i.e., pβT0=cδ (Neumann
et al., 1998).

2.1.1 Steady states of the two-equation model—The two-equation model admits two
steady states before therapy initiation (i.e., εp=η=0): an uninfected steady state with no virus
and no infected cells (i.e., I=V=0) and total number of uninfected hepatocytes equal to T0, and
an infected steady state with

(6)

where V0 represents any given baseline pre-therapy HCV level.

2.1.2 Analytical solution of the two-equation model—Assuming a patient is in the
infected steady state and then begins treatment at time t=0, so that T0 = cδ/(pβ), V(0) = V0 and
I(0) = cV0/p, the solutions of Eqs. (4) and (5) are:
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(7)

(8)

where

and

According to Eqs. (7) and (8), the viral load under treatment will always decrease to the
uninfected steady state following a double exponential decay, with rates λ1 and λ2. The infected
cell population also decreases to the uninfected steady state. However, current estimates of
model parameters obtained from comparisons with experimental data (Neumann et al., 1998),
suggest c ≫ δ. Under these conditions, λ1≫λ2, B ~ 0, and I(t) follows an approximate single
exponential decay, with rate λ2. In most patients, the viral load data under treatment does in
fact show a two phase decline until the virus becomes undetectable, and Eq. (7) can be fitted
to the data. These fits are usually done assuming η = 0, and yield estimates for εp, c and δ
(Neumann et al., 1998). The assumption η = 0 is made because it can be shown that for large
values of εp, as are obtained by many therapies, the effect of η on Eq. (7) is negligible (Neumann
et al., 1998). The value of η can also be fixed to non-zero values, but in general the available
data are insufficient to estimate it.

2.1.3 Flat partial responses to therapy—In patients that partially respond to therapy, an
initial decrease in viral load is followed by a flat second phase with no additional decreases
(e.g. patients 1A, 1F and 1H in Neumann et al. (1998)). Equation (7) can fit this pattern only
if δ is very small or zero, such that λ2 ~ 0. However, this is clearly not biologically realistic
because there must be a finite positive loss rate of infected cells.

2.1.4 HCV kinetics after treatment cessation—In most treated individuals the virus
returns to its pretreatment levels within 1-2 weeks after cessation of treatment (Gretch et al.,
1995; Sentjens et al., 2002). The dynamics of viral recovery can easily be predicted from Eqs.
(4) and (5). Assume therapy is given until time te. To study what occurs after therapy ends, we
solve the two-equation model, Eqs. (4) and (5), with initial conditions I(0)=I(te) and V(0)=V

(te). Since  and εp=η=0 for t>te, Eqs. (4) and (5) can be rewritten as:

with solution

(9)
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At the eventual steady state obtained after cessation of therapy, which we denote by the use of
the subscript ∞, dV/dt=0 so from Eq. (5) pI∞ = cV∞. Thus, pI∞ + δV∞ = (c + δ)V∞, and the new
viral steady state after treatment cessation can be written as

(10)

where V(te) and I(te) can be calculated using Eqs. (7) and (8), respectively.

A more intuitive expression can be obtained if we assume that virus is in quasi-steady state
during therapy, which tends to be a good assumption as long as c ≫ δ. Then, at the last time

treatment is present, te,  or

(11)

Substituting Eq. (11) into Eq. (10), we obtain

(12)

However, since ,

(13)

Thus, the two-equation model predicts that after cessation of therapy the viral load will only
increase by a factor 1/(1-εp) (Fig. 2A), and not necessarily return to its pre-treatment level,
V0, as observed in patients (Gretch et al., 1995;Sentjens et al., 2002).

In summary, the two-equation model can not predict the observed flat partial viral response
with a realistic positive value for the death rate of infected cells and can not predict viral
resurgence to pretreatment levels. The question still remains of whether the original three-
equation model, system (1)-(3), without assuming that dT/dt = 0, can explain these phenomena.

2.2 Steady states of the original three-equation model
The original model, Eqs. (1) - (3), admits two steady states: an uninfected steady state with
I=V=0 and total number of uninfected hepatocytes equal to

(14)

It also has an infected steady state given by
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(15)

Before treatment the drug efficacy is zero (η = εp = 0), while during antiviral therapy, 0≤η≤1,
0≤εp≤1. In Eq. (15), we combined the terms for drug efficacy into a single term 1−ε = (1−εp)
(1−η) where ε represents the overall drug efficacy.

2.3 Stability analysis of the original model during therapy
During antiviral therapy, the model given by Eqs. (1) - (3) predicts that viral load evolves to
one of the two steady states: complete viral eradication (cure) as given in Eq. (14) or persistent
viral infection, as described in Eq. (15). The local stability of the two steady states is determined
by linearizing the equations of the model around each steady state and examining the
corresponding eigenvalues. Such analysis indicates that there exists a transcritical bifurcation
point at

(16)

that separates the region of stability for the infected steady state from the region of stability
for the uninfected steady state. When the left hand side of Eq. (16) is less than the right hand
side, the uninfected steady state is stable (Callaway et al., 2002;Huang et al., 2003). Given the

population of hepatocytes in the uninfected steady state , and the population of

uninfected hepatocytes in chronic infection prior to treatment  the bifurcation point,
termed the critical efficacy, εc, can be rewritten as:

(17)

where T̄/T̄0 is the ratio of the number of uninfected hepatocytes in a chronically infected
individual before treatment to the total number of hepatocytes in an uninfected individual. In
the case of successful drug therapy ε > εc, and the viral load will approach zero. Otherwise (ε
< εc), the system will converge to a new infected steady state with lower levels of virus and
infected cells as given by equation Eq. (15). The critical condition ε > εc is also equivalent to
the standard condition from epidemiology that the basic reproductive number R0 < 1, where

 (Callaway et al., 2002).

2.4 Eigenvalues close to the uninfected steady-state
Upon successful treatment, i.e., ε > εc, the viral load converges to the uninfected steady state
at a rate given by the eigenvalues of Eqs. (1) - (3) linearized around the uninfected steady state.
To simplify the calculation of the eigenvalues, we assume that the viral load is in quasi-steady

state during therapy, i.e., . This assumption can be justified because the virus
clearance rate, c, is much larger than the death rate of infected cells, δ. Thus, the original model
(Eqs. (1) - (3)) is reduced to the following system of differential equations:
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(18)

(19)

where . Equations (18) and (19) can be linearized about the uninfected state-
state (Eq. (14)). The Jacobian is

(20)

Thus, close to the uninfected state-state of the system, we obtain the following linear equations

(21)

(22)

where T’ and I’ represent the values of T and I near the uninfected steady state, i.e. T = T ̄ +

T’ and I = Ī + I’, where the steady-state values are T ̄ and Ī. Using the definition , Eq.
(22) can be rewritten as

(23)

Thus, after an initial transient that depends on c and εp (first phase decline far from the
uninfected equilibrium), the viral load during the second phase, which is proportional to the
number of infected cells, converges to the uninfected steady state with eigenvalue

. Note that in the case of successful treatment , (Eq. 17).
For values of drug efficacy ε ~ 1, λ ≈ -δ. For drug efficacies near the critical efficacy, ε ~
εc<1, the viral decline close to the uninfected steady state will be slow and affected by the
fraction of infected hepatocytes, 1−T ̄

0/T ̄.

2.5 Viral decline during treatment
Solving the original three-equation model numerically during therapy, i.e., without making a
quasi-steady state assumption as above, with antiviral efficacy higher than the critical efficacy,
i.e., ε > εc, we confirm that for ε ~ 1, the second phase viral decline slope represents the death
rate of infected hepatocytes, δ, but for efficacies near the critical the second phase decline slope
is much less than δ (Fig. 3A). However, this model and its solutions do not predict the triphasic
viral decay observed in some patients, as noted before (Herrmann et al., 2003).
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2.6 Flat second phase slope in partial responders
Solving the original model numerically during therapy with antiviral efficacy lower than the
critical efficacy, i.e., 0 < ε < εc, one obtains a flat second phase in the viral decline without
making the assumption that δ ~ 0 (Fig. 4A).

2.7 Viral kinetics after treatment cessation
Unlike the two-equation model (Fig. 2A), the three-equation model predicts virus resurgence
to pretreatment levels (with damped oscillations) after cessation of therapy (Fig. 2B).

3. Extended model
The original Neumann et al. (1998) model of chronic hepatitis infection and treatment assumes
a source of hepatocytes but ignores proliferation of both infected and uninfected cells. Here
we include density-dependent proliferation terms for both infected and uninfected hepatocytes
(Fig. 1) that only allow growth of the liver until a maximum size, Tmax, is reached (Dahari et
al., 2005b). The extended model is given by

(24)

(25)

(26)

where uninfected (T) and infected (I) hepatocytes can proliferate with maximum proliferation
rate r, under a blind homeostasis process, in which there is no distinction between infected and
uninfected cells in the density-dependent term. Because HCV infection is non-cytopathic and
viral production rates in vivo appear to be low, there is no reason to suppose that infected cells
can not proliferate. In principle, the maximum proliferation rate r, could be different for
infected and uninfected cells, and this generalization will be pursued elsewhere.

3.1 Steady states of the extended model
The extended model admits two steady states: an uninfected steady state with I=V=0 and total
number of uninfected hepatocytes equal to

(27)

where r > d and s ≤ dTmax in order to have a physiologically realistic model (i.e., T ̄
0 ≤ Tmax),

and an infected steady state with

(28)

where
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3.2 Stability analysis of the extended model during therapy
The local stability of the two steady states is determined by examining the corresponding
eigenvalues, as before. Standard analysis shows that there still exists a transcritical bifurcation
point, but now it is at

(29)

The transcritical bifurcation separates the region of stability for the infected steady state from
the region of stability for the uninfected steady state.

3.3 Eigenvalues close to the uninfected steady-state
Again assuming the virus is in quasi-steady state, then upon successful treatment, i.e., ε>εc,
the viral load converges, again after an initial transient (first phase decline), to the uninfected
steady state at a rate determined by the eigenvalue

(30)

Note that , because of the condition ε > εc. For values of drug
efficacy ε ~ 1, λ is close to -δ, while for drug efficacies near the critical efficacy (εc ~ ε), λ is
close to 0.

3.4 Triphasic and biphasic viral decline
Solving the extended model numerically assuming ε > εc, we find that for certain parameter
values the viral decay is triphasic (Fig. 3B), with the third phase decline slope close to the death
rate of infected hepatocytes (δ) for ε ~ 1. As the influx rate of new hepatocytes, s, is made
larger the “shoulder phase” of the triphasic viral decay shrinks eventually yielding a biphasic
viral decay (Fig. 3C).

The best way to understand why this extended model can give rise to a triphasic decay is to
focus on the shoulder or flat second phase. During this period the infected cell level is
maintained approximately constant, i.e., the loss of infected cells is compensated for by infected
cell proliferation. The viral levels stay constant because they are in quasi-steady state with the
infected cells that produce virus (Fig. 3D). However, uninfected cells also proliferate and are
assumed to be generated de novo from precursors at rate s. Thus, during the shoulder phase
target cell numbers also increase (Fig. 3D), and when the target cell level approaches that of
infected cells they start causing a decrease in the infected cell proliferation rate due to density-
dependent form of the proliferation term. As the infected cell proliferation rate falls, the infected
cell levels fall and the shoulder phase ends. Thus, shoulder phases, and hence triphasic
responses, are only seen when the number of infected cells is much higher than the number of
target cells before therapy (i.e., T/I ≪ 1). The shoulder phase persists until the ratio between
target cells and infected cells is approximately one (T/I ~ 1) (Fig. 3E). When the ratio of target

Dahari et al. Page 9

J Theor Biol. Author manuscript; available in PMC 2008 July 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cells to infected cells before therapy is greater then one, i.e., T/I > 1, the shoulder phase does
not exist (not shown). In addition, for drug efficacies close to 1, the second phase (in the
biphasic viral decay; Fig 3F) or the third phase (in the triphasic viral decay; Fig. 3B) slope is
close to the death rate of infected hepatocytes, δ.

3.5 Flat second phase in partial responders can be generated with a reasonable infected cell
death rate (δ)

Solving the extended model numerically with 0 < ε < εc, a flat second phase can be obtained
with a realistic infected hepatocyte half-life and a rapid viral convergence to a lower viral
plateau (Fig. 4B).

3.6 Viral kinetics after treatment cessation
As shown for the original model (section 2.7), the extended model predicts virus resurgence
to pretreatment levels after cessation of therapy (Fig. 2C). Also, the inclusion of proliferation
in the model tends to blunt the predator-prey type oscillations seen in the original three-equation
model (Fig. 2B). The kinetics of viral resurgence thus tend to mimic that observed in patients
taken off therapy.

3.7 Model agreement with patient data
To show that the extended model is consistent with experimental data, we fitted the model to
HCV RNA data from interferon treated patients that exhibits a biphasic decline (Neumann et
al., 1998) (Fig. 5A), a triphasic decline (Herrmann et al., 2003)(Fig. 5B) and a flat partial
response (Neumann et al., 1998) (Fig. 5C).

4. Discussion
Hepatitis C infection is an important infectious disease affecting millions of people and with
high levels of morbidity and mortality (NIH. 2002). However, there are now therapies that use
interferon-α and ribavirin, which clear the virus in a substantial number of patients (Fried et
al., 2002; Manns et al., 2001). Unfortunately, in some patients especially those affected with
HCV genotype 1 or of African-American descent, treatment is much less successful (Dixit et
al., 2004). Thus, better understanding of treatment effects on viral load and its correlates of
success will have direct clinical impact.

Here we have examined in detail the model currently used to analyze viral load during HCV
treatment (Neumann et al., 1998). We specifically addressed two shortcoming of this model,
namely its incompleteness in explaining the viral load profile in patients that respond to
treatment only partially with a flat second phase of decline and the impossibility to fit with
such model the viral load of those patients that show a triphasic profile in virus decay
(Herrmann et al., 2003). We analyzed the model, without the linearization imposed by
assuming a constant level of uninfected hepatocytes during therapy. Moreover, we used an
extended model that includes density-dependent proliferation of hepatocytes, as previously
implemented in a study to explain HCV RNA kinetics during primary HCV infection in
chimpanzees (Dahari et al., 2005b). Here, we show that the inclusion of proliferation of
hepatocytes in existent HCV kinetic models, can better predict viral kinetics in chronic HCV
patients during and after antiviral therapy. These terms also make the model more biologically
realistic, as it is well known that small transplanted livers quickly grow by cell proliferation to
reach the size suitable for the patients (Fausto 2004; Michalopoulos et al., 1997).

In the field of HIV therapy the notation of a critical drug efficacy has been introduced (Callaway
et al., 2002; Huang et al., 2003; Wein et al., 1998). If efficacy is not high enough, i.e., below
its critical value, then theory predicts that HIV rather than declining monotonically during
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therapy, will decline initially, possibly rebound, and then stabilize at a therapy-induced set-
point lower than the pre-treatment baseline. Here we extend this idea into the field of HCV
infection and show the existence of a transcritical bifurcation point in models for HCV infection
that defines whether the treatment will be successful leading to HCV eradication, or if it will
lead only to a partial response. We were also able to show that the period (4 – 28 days) of
approximately constant viral load after the rapid early decline and before the late third phase
observed in some patients, occurs when hepatocytes proliferation is included (i.e., the extended
model) and the majority of the liver is infected by the virus (i.e., T ̄/Ī ≪ 1 before therapy) with
a small influx (s) of new hepatocytes.

The extended model proposed here to analyze HCV RNA decay under treatment includes more
parameters than the simplified version of the two-equation model (Neumann et al., 1998).
Whether we will be able to use these models to fit viral load data in practice remains to be seen,
although the model is clearly consistent with the data (Fig. 5). However, our results present
some new insights on the possible mechanisms for the gamut of viral load profiles observed
in the clinic. It is our hope that the systematic application of this type of model will lead to a
better understanding of treatment success and failure in HCV infection.
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Figure 1. Diagrammatic representation of the model of chronic viral infection
The original Neumann et al. (1998) model assumes that there is no proliferation of target and
infected cells (i.e., r=0). The extended model that we introduce here accounts for target and
infected cell proliferation (i.e., r > 0). T, and I represent target and infected cells, respectively,
and V represents free virus.
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Figure 2. Viral kinetics after therapy cessation
We simulated virus resurgence post therapy cessation using the two-equation model (A), the
original model (B), and the extended model (C). Different drug efficacies (ε = 0.4, 0.8 and
0.99) were assigned at time 0 for 14 days, and then set to ε=0 for the rest of the simulation. In
all simulations the following parameters were held fixed: d = 0.0026 day-1, p = 2.9 virions/
day, β = 2.25×10-7 ml day-1 virions-1, c = 6.0 day-1, δ = 0.26 day-1. A) During therapy (ε > 0)
the virus concentration V(t) can be calculated using Eq. (7). Here the initial condition V(0) =
V0 = 106/ml was used. Upon cessation of therapy at time te = 14 days, V increases from V(te)
to a new steady-state level V(te)/(1-ε), but not to its pretreatment level, as explained in section
2.1.4. B) Using the original model, with s = 2.6×104 cell ml-1 day-1, the virus resurges to
pretreatment levels with damped oscillations. The curve for virus increase after therapy
cessation with drug efficacies of ε = 0.99 and ε = 0.8 largely superimpose. The virus resurges
to pretreatment viral load levels in a significant shorter time with higher values of p and/or β
(not shown). C) Using the extended model, with s = 2.6×104 cell ml-1 day-1, r = 4.2 day-1 and
Tmax = 1.0 × 107 cells, the virus resurges to pretreatment levels within a week post therapy
cessation.
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Figure 3. Viral kinetics during successful antiviral treatment
We simulated virus decay during therapy using the original model (A), and the extended model
(B - F), with different drug efficacies higher than the critical efficacy (ε > εc), and (unless
otherwise stated) d = 0.01 day-1, p = 2.9 virions/day, β = 2.25×10-7 ml day-1 virions-1, δ = 1.0
day-1, c = 6.0 day-1, r = 2.0 day-1, s=1.0 cell ml-1 day-1 and Tmax = 3.6 × 107 cells ml-1. A)
With drug efficacies (i.e., ε = 0.93, 0.98 and 0.996) higher than the critical efficacy (εc=0.90),
a biphasic viral decline is shown which lead to viral eradication. Based on simulation results,
the second phase viral decline slopes under the three efficacies (i.e., ε=0.93, 0.98 and 0.996)
are 0.047 day-1, 0.050 day-1 and 0.051 day-1, respectively (i.e., 91%, 98% and 99% of the death
rate of infected cells used here (δ = 0.052 day-1). Tmax = 1.0 × 107 cells ml-1, s=2.6×104 cell
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ml-1 day-1 and d = 0.0026 day-1. B) With drug efficacies (i.e., ε = 0.80, 0.90 and 0.99) higher
than the critical efficacy (εc=0.74), a triphasic viral decay is shown that consists of a first phase
with rapid virus decline followed by a “shoulder phase” in which virus load remains constant
and a third phase of faster viral decay. For the three efficacies 0.80, 0.90 and 0.99 the third
phase viral decline slopes are 0.04 day-1, 0.34 day-1 and 0.82 day-1, respectively, i.e., 4%, 34%
and 82% of the infected cell death rate used here (δ=1.0 day-1). C) Higher influx rates of new
hepatocytes, s, shrinks the “shoulder phase” and even eliminates it giving rise to a biphasic
viral decline. The drug efficacy was fixed, ε=0.90, in the three simulation curves. Note, over
a large range of values for s, i.e., 1.0×105 - 3.6×105 cells ml-1 day-1, with the above parameter
values, the critical drug efficacy εc = 0.742 − 0.743, and thus does not change significantly.
D) The viral (thick line) shoulder phase is maintained by a quasi-steady-state level of infected
cells (thin line) until the target cell population level (dashed line) reaches that of infected cell
population. E) A shoulder phase is observed when the level of infected cells is much higher
than the target cell level at baseline (i.e., T/I ≪ 1 before therapy; (short-dashed line)). The
shoulder phase ends when T/I ~ 1. T/I ratio for the shorter shoulder-phase is represented by a
long-dashed line. F) With a higher influx rate of new hepatocytes, s = 3.6×105 cell ml-1
day-1, and drug efficacies ε = 0.80, 0.85 and 0.90, higher than the critical efficacy (εc=0.74),
a biphasic viral decay is shown that leads to viral eradication. The second phase viral decline
slopes for the three efficacies ε = 0.80, 0.85 and 0.90 are 0.20 day-1, 0.38 day-1 and 0.57
day-1, respectively, i.e., 20%, 38% and 57% of the infected cell death rate used here (δ=1.0
day-1).
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Figure 4. Viral kinetics with drug efficacy below the critical efficacy
We simulated virus decay during therapy using the original model (A), and the extended model
(B), with different drug efficacies below the critical efficacy (ε < εc), and η = 0, d = 0.0026
day-1, p = 2.9 virions/day, β = 2.25×10-7 ml day-1 virions-1, and c = 6.0 day-1. The critical
efficacies for the original model and the extended model were calculated using Eqs. (17) and
(29), respectively. With the original model, (A), after an initial rapid viral decrease upon start
of therapy, the virus decays in a slower second phase during the first weeks of therapy until it
reaches a viral nadir and then rebounds to a lower viral plateau. Higher values of p and/or β
lead to shorter times until the lower plateau is reached (not shown). In (A), δ = 0.052 day-1 and
s = 2.6×104 cell ml-1 day-1. With the extended model (B), after a rapid viral decrease upon start
of therapy, the virus decays in a slower phase during the first weeks of therapy until it reaches
a lower viral plateau. A lower value of r, e.g.,<0.05 day-1, leads to viral oscillation, until it
reaches the lower viral plateau (not shown). δ = 0.26 day-1, Tmax = 1.0×107 cells, s =
2.6×105 cell ml-1 day-1 and r = 1.0 day-1.
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Figure 5. The model is consistent with experimental data
(●) exhibiting biphasic (A), triphasic (B) and flat partial (C) viral decays. We fit (A) HCV
RNA levels from a chronic HCV patient treated with interferon α-2b from Neumann et al.,
1998, (B) digitized HCV RNA levels of a patient treated with pegylated interferon α-2a (shown
in figure 2B of Hermann et al., 2003), and (C) HCV RNA levels from a second patient treated
with interferon α-2b from Neumann et al., 1998. The analytical solution for V(t), i.e., Eq. (7)
in Neumann et al., 1998 was first fitted to the HCV RNA, using Berkeley-Madonna (version
7.0.2; www.berkeleymadonna.com), to estimate the delay time before viral decay begins, t0,
the IFN effectiveness, ε, and the viral clearance rate constant, c. Then, we fitted our model
(Eqs. 24 - 26; solid line) to the HCV RNA data (●) with t0, ε, and c held fixed at their previously
estimated values, and found values for the parameters s, d, δ, p, r, Tmax, and β for each patient
that generated viral load decays consistent with the data. Parameter values found in (A), (B)
and (C) respectively are: Tmax = 0.7 × 107, 0.51 × 107 and 0.6 × 107 ml-1; s = 8.0 × 105, 1.5 ×
103 and 3.7 × 104 day-1 ml-1; d = 4.7 × 10-3, 9.3 × 10-3 and 2.4 × 10-3 day-1; δ = 0.30, 0.49 and
0.06 day-1; β = 0.6 × 10-7, 3.8 × 10-7 and 1.8 × 10-7 virions-1 day-1; r = 0.45, 0.54, and 0.73
day-1; c = 5.9, 3.5, and 13.9 day-1; t0 = 0.6, 0.3, and 0.4 days; p = 5.4, 7.1 and 13.9 virions
day-1; ε = 0.906, 0.899 and 0.9675.
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