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Abstract
There are many biological steps between viral infection of CD4+ T cells and the production of HIV-1
virions. Here we incorporate an eclipse phase, representing the stage in which infected T cells have
not started to produce new virus, into a simple HIV-1 model. Model calculations suggest that the
quicker infected T cells progress from the eclipse stage to the productively infected stage, the more
likely that a viral strain will persist. Long-term treatment effectiveness of antiretroviral drugs is often
hindered by the frequent emergence of drug resistant virus during therapy. We link drug resistance
to both the rate of progression of the eclipse phase and the rate of viral production of the resistant
strain, and explore how the resistant strain could evolve to maximize its within-host viral fitness. We
obtained the optimal progression rate and the optimal viral production rate, which maximize the
fitness of a drug resistant strain in the presence of drugs. We show that the window of opportunity
for invasion of drug resistant strains is widened for a higher level of drug efficacy provided that the
treatment is not potent enough to eradicate both the sensitive and resistant virus.
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1 Introduction
Mathematical models have proven valuable in the understanding of human immunodeficiency
virus type 1 (HIV-1) dynamics, disease progression and antiretroviral responses (see reviews
in [38,39,41,42]). Many important insights into the host-pathogen interaction in HIV-1
infection have been derived from mathematical modeling and analyses of changes in the level
of HIV-1 RNA in plasma when antiretroviral drugs are administered to perturb the equilibrium
between viral production and viral clearance in infected individuals [22,43,44,58].

In a basic HIV model that has been frequently used to describe virus infection, there are three
variables: uninfected CD4+ T cells, productively infected T cells, and free virus [38,43]. In
this model, infected cells were assumed to produce new virions immediately after target cells
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were infected by a free virus. However, there are many biological processes between viral
infection and subsequent production within a cell. For example, after viral entry into the host
cell, the viral RNA genome is reverse transcribed into a complementary DNA sequence by the
enzyme reverse transcriptase (RT). The DNA copy of the viral genome is then imported into
the nucleus and integrated into the genome of the lymphocyte. When the infected lymphocyte
is activated, the viral genome is transcribed back into RNA. These RNAs are translated into
proteins that require a viral protease to cleave them into active forms. Finally, the mature
proteins assemble with the viral RNA to produce new virus particles that bud from the cell.
The portion of the viral life cycle before production of virions is called the eclipse phase.
Several mathematical models have been developed that either introduce a constant (discrete)
delay [11,14,21,34] to denote the eclipse phase, or assume that the time delay is approximated
by some distribution functions (e.g., a gamma distribution) [30,35]. The introduction of a time
delay in models of HIV-1 primary infection to analyze the viral load decay under antiretroviral
therapy has refined the estimates of important kinetic parameters, such as the viral clearance
rate and the mortality rate of productively infected cells [34,35]. Some more complex models,
including age-structured models, have been employed to study virus dynamics [33] and the
influence of drug therapy on the evolution of HIV-1 [26,50].

It should be noted that the above-mentioned age-structured models essentially treat the
transition of a cell from the uninfected state to the productively infected state as a deterministic
process by taking into account the time delay that occurs between various steps in the virus
life cycle within a target cell. In contrast, in this study we incorporate an eclipse stage to
describe the stage of an infected cell between viral attachment and generation of new virus.
The present stage-structured model implicitly treats the progression of an infected cell from
the initial infection to subsequent reproduction as an exponentially distributed process. We
have chosen to adopt the stage-structured approach because it allows us to explore
mechanistically biological trade-offs between protein functions and drug resistance while
avoiding the complications of time delay models.

The advent of highly active antiretroviral therapy (HAART) has been an important
breakthrough in HIV-1 treatment, resulting in a great reduction in the morbidity and mortality
associated with HIV infection [52]. However, the clinical benefits of combination therapy are
often compromised by the frequent emergence of drug resistance driven by the within-host
selective pressure of antiretroviral drugs [7]. In addition, the persistence of viral reservoirs,
including latently infected resting memory CD4+ T cells that show minimal decay even in
patients on HAART up to many years [6,17,60], has been a major obstacle to the long-term
control or eradication of HIV-1 in infected individuals.

Drug resistance results from mutations that emerge in the viral proteins targeted by
antiretroviral agents. Most of our knowledge regarding resistance comes from the genotypic
analysis of virus isolates from patients receiving prolonged drug treatment [28]. Important
insights into the mechanisms underlying the evolution of drug resistant viral strains have also
been derived from mathematical modeling of virus dynamics and antiretroviral responses [3,
27,37,48,49,56]. Both deterministic and stochastic modeling approaches suggest that treatment
failure is mostly likely due to the preexistence of drug resistant strains before the initiation of
therapy rather than the generation of resistant virus during the course of treatment [3,48]. The
evolution of HIV resistance is associated with selective pressures exerted by drug treatments
that are not potent enough to completely suppress the viral replication. The longer the drug
efficacy remains in the intermediate range, the greater the possibility that drug resistant virus
variants will arise during therapy [32]. Nonetheless, the conditions of mutant selection are very
complex in treated patients due to time-dependent intracellular drug concentrations in vivo
[14,24] and spatial heterogeneity [25]. The management of such patients requires a careful
understanding of the mechanistic evolution of HIV-1 variants during treatment.

Rong et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The evolution of resistant strains in the presence of drugs is thought to depend on inherent
trade-offs that exist between the proper functioning of HIV's reverse transcriptase and protease
enzymes and their reduced susceptibility to antiretroviral regimens in their mutated forms.
Indirect evidence for such trade-offs is found in the observation that there is a reduction in
replication capacity for drug resistant virus variants in the absence of drug therapy [8,36]. These
trade-offs not only help explain that even after drug resistance arises viral load often remains
partially suppressed below pre-therapy levels but also could be potentially exploited in order
to better manage the evolution of drug resistance within a patient.

The main purpose of this study is to develop a mathematical framework that can be used to
formalize and examine simple hypotheses about the life-history trade-offs that allow drug-
resistant viral strains within a patient to persist in the presence of drug therapy. We incorporate
the eclipse phase of viral replication into a mathematical model to characterize the stage during
which infected CD4+ T cells have not yet started to produce new virus. The inclusion of the
progression of infected cells from this eclipse phase to the productive stage enables us to capture
more variability in HIV dynamics. We observe that the strain of virus with a faster progression
rate essentially has a quicker process of reverse transcription of RNA into DNA and integration
of the DNA into the chromosome, which gives rise to an increased chance for that viral strain
to persist. More importantly, our approach allows us to link drug resistance to reverse
transcriptase inhibitors to the progression of the eclipse phase and identify the optimal
evolutionary strategy for the drug resistant strain under some simple assumptions. It is widely
believed that most HIV drug resistance mutations affect highly conserved amino acid residues
that are thought to be important for optimal enzyme functions, and thus for the full replicative
potential of virus [8]. Consequently, we assume that in the absence of drug therapy the wild-
type strain will evolve to replicate as fast as possible and produce as many new virions as
possible. Thus, a viral strain with a slower progression rate, which is operating suboptimally,
will possibly have a higher level of resistance to antiretroviral drugs, creating a trade-off
between the progression rate and the drug efficacy of reverse transcriptase inhibitors. In
addition, there are trade-offs between the viral production rate and the clearance rate of
productively infected cells [12], and between the viral production rate and the drug efficacy of
protease inhibitors (see the last section for more discussions). We will investigate how these
trade-offs may affect the fitness of drug-resistant viral strains in the presence of drugs at
different concentration levels. The optimal progression rate and the optimal viral production
rate are derived by maximizing the viral fitness of drug-resistant strains. An invasion criterion
of resistant strains is also obtained in the presence of drug therapy. Both analytical results and
numerical simulations suggest that with a more effective drug treatment (yet not potent enough
to eradicate the virus), a wider range of drug-resistant strains will be able to invade in response
to the selective pressure of drugs.

2 Model formulation
A basic mathematical model has been widely adopted to describe the virus dynamics of HIV-1
infection in vivo (see [43] and reviews in [38,39,41]). Important features of the interaction
between virus particles and cells have been determined by fitting the model to experimental
data. In this paper, we extend the basic model by including a class of infected cells that are not
yet producing virus and two viral strains to study the evolution of drug resistant strains.

2.1 Inclusion of cells in the eclipse phase
After a virus enters a target CD4+ T cell, there are a number of biological events before the
production of new virions: reverse transcription from viral RNA to DNA, integration of the
DNA copy into the DNA of the infected cell (the integrated viral DNA is called the provirus),
transcription of the provirus and translation to generate viral polypeptides, cleavage of
polypeptides by the HIV protease, assembly and budding of new virus. Perelson et al. [40]
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examined a model for the interaction of HIV with CD4+ T cells that considers a class of infected
T cells, which contain the provirus but are not producing virus. In this work, we begin with a
modification of the model in [40], and then incorporate antiretroviral effects to study the
evolution of drug resistance.

As suggested in [63], when a virus enters a resting CD4+ T cell, the viral RNA may not be
completely reverse transcribed into DNA. If the cell is activated shortly following infection,
reverse transcription can proceed to completion. However, the unintegrated virus harbored in
resting cells may decay with time and partial DNA transcripts are labile and degrade quickly
[64]. Hence a proportion of resting infected cells can revert to the uninfected state before the
viral genome is integrated into the genome of the lymphocyte [15]. To model these events, we
include a class of infected cells in the eclipse stage of viral replication, i.e., the stage between
the initial infection and subsequent viral production. Thus, a portion of infected cells in the

eclipse phase can revert to the uninfected class. Let T(t), , T*(t) and V(t) denote the
concentrations of uninfected CD4+ T cells, infected cells in the eclipse stage, productively
infected cells, and free virus particles at time t, respectively. The model can be described by
the following equations:

(1)

where λ is the recruitment rate of uninfected T cells, d is the per capita death rate of uninfected
cells, k is the rate constant at which uninfected cells get infected by free virus. δ is the per capita
death rate of productively infected cells, p is the viral production rate of an infected cell, and
c is the clearance rate of free virus. Cells in the eclipse phase revert to the uninfected T class
at a constant rate b. In addition, they may alternatively progress to the productively infected
class T* at the rate φ, or die at the rate δE. Notice that our model assumes that the expected
residence time of a cell in the eclipse phase is exponentially distributed, and the parameter φ
is determined, in part, by the activity of reverse transcriptase. For example, if reverse
transcription is quick, then φ will be large and the infected cells in the eclipse phase will
progress to the productively infected state with a high probability, i.e., φ/(b + φ + δE).

As with the basic HIV model, there are two possible steady states of model (1). One steady
state is the infection-free steady state, the other is the infected steady state.

If we define

(2)

then it can be shown in Appendix A that the infected steady state exists if and only if ℛ0 > 1.
In fact, ℛ0 can be written as the product of kλp/(dcδ) and φ/(b + φ + δE). Obviously, kλp/
(dcδ) is the basic reproductive ratio of the standard model without the eclipse phase. φ/(b +
φ + δE) is the probability that an infected T cell survives the eclipse phase. Therefore, ℛ0 in
(2) defines the basic reproductive ratio for model (1). It is further shown that ℛ0 determines
whether the virus population dies out or persists. The infection-free steady state Ē is locally
asymptotically stable (l.a.s.) if ℛ0 < 1 and unstable if ℛ0 > 1. The infected steady state Ẽ is
l.a.s. whenever it exists, i.e., when ℛ0 > 1.
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It is clear that ℛ0 defined in (2) is an increasing function of the progression rate φ (a larger
value of φ corresponds to quicker reverse transcription) and a decreasing function of the
mortality rate δE. Thus, with all else equal, we expect that the viral strain that can complete
reverse transcription more quickly is more likely to lead to a more severe infection (e.g., viral
persistence at a higher infection level). This is supported by numerical simulations (Figures 1
and 2).

In Figure 1, ℛ0 is plotted as either a function of φ or a function of δE. In Figure 1 (a), δE = 0.7
day−1 (or ln 2/δE = 1 day [63]) is fixed. It shows that ℛ0 > 1 for φ > 0.23 day−1, in which case
the viral load will converge to the infected steady state, and that ℛ0 < 1 for φ < 0.23 day−1, in
which case the virus population will die out (the infection-free steady state). In Figure 1 (b),
φ = 1.1 day−1 (or 1/φ = 0.9 days [43]) is fixed. Other parameter values are chosen from the
literatures: k = 2.4 × 10−8 ml day−1 [40]; λ = 104 ml−1 day−1 [14]; d=0.01 day−1 [31]; c=23
day−1 [47]; δ = 1 day−1 [29]. The viral production rate p can be written as Nδ, where N (burst
size) is the total number of virus particles released by a productively infected cell over its
lifespan [43]. The estimate of burst size varies from 100 to a few thousands [19,23] and possibly
could be significantly larger [5]. Here, as an example, we choose N = 4000. Thus, p = 4000
day−1. Because only a small fraction of cells in the eclipse phase will revert to the uninfected
state [15], we assume that b=0.01 day−1.

Figure 2 demonstrates the dynamic behavior of the viral load for different progression rate φ
or mortality rate δE. We observe that there is a viral peak followed by an oscillatory approach
to a set-point value. As φ increases, the time needed to reach the peak viral load is shortened,
while the amplitude of the peak and the subsequent set-point value are increased (Figure 2 (a)).
We observe similar behaviors as the mortality rate δE decreases (Figure 2 (b)). The steady state
of the viral load is presented as either a function of φ (δE = 0.7 day−1 is fixed, see Figure 2 (c))
or a function of δE (φ = 1.1 day−1 is fixed, see Figure 2 (d)). These results show that the viral
strain that has a larger progression rate φ or a smaller mortality rate δE will have a higher viral
steady state level, and thus is more likely to induce faster disease progression.

2.2 The model with two strains
To study the invasion of drug-resistant mutant variants into an environment in which the wild-
type strain is already established, we incorporate both drug-resistant and drug-sensitive strains
in the model (1) and get the following two-strain model:

(3)

where the subscripts s and r represent the drug sensitive and resistant strains, respectively.

For each strain, we obtain the corresponding reproductive ratio, which is given by

(4)
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Let Ẽs denote the steady state in which only the drug-sensitive strain is present and Ẽr denote
the steady state in which only the drug-resistant strain is present. We prove in Appendix B that
each steady state is biologically feasible if and only if the reproductive ratio for the
corresponding strain is greater than 1. Furthermore, if ℛs > ℛr > 1, then Ẽs is l.a.s. and Ẽr is
unstable. If ℛr > ℛs then Ẽs is unstable and Ẽr is l.a.s. Therefore, the resistant strain cannot
invade the sensitive strain if ℛr < ℛs. If ℛr > max(ℛs, 1) then the resistant strain is able to
invade and out-compete the sensitive strain. We will apply this result to determine the criterion
for invasion and to examine how the resistant virus may evolve to optimize its fitness in the
presence of antiretroviral treatment.

2.3 The model with drug therapy and resistance
We modify model (3) by incorporating combination antiretroviral therapy. Currently, a
combination of reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) is
commonly used in the treatment of HIV infection. RTIs interfere with the process of reverse
transcription and prevent the infection of new target cells. PIs prevent infected cells from
producing new infectious virus particles [38]. To incorporate these drug effects into our model,
we define εRTI and εPI to be the efficacies of RTIs and PIs for the wild-type strain, respectively.
We define these constants relative to the impact of the drugs on the most susceptible genetic
variants of reverse transcriptase and protease. As a result, εi = 0 (i = RTI or PI) implies that the
inhibitor is completely ineffective against wild-type virus, while εi = 1 implies that the inhibitor
is 100% effective against them. Note that in reality 100% effectiveness may not be clinically
feasible due to problems with drug delivery or absorption.

When εPI is say 0.7, this implies that 70% of the wild-type virus particles produced are non-
infectious due to the action of the protease inhibitor. This population of virions has previously
been denoted VNI [43]. The remaining 30% of particles are assumed not to be affected by the
PI and contain the same population of virions as in an untreated patient. Although this
population has a mixture of infectious and non-infectious virions, it has been previously
denoted VI [43] and for simplicity called the infectious population. A more precise definition
would call VI the virions not made non-infectious by the protease inhibitor. In the model below
we will follow the drug sensitive and drug resistant forms of the VI population only, and denote
them Vs and Vr, respectively. The equations for the drug sensitive and resistant virion
populations corresponding to VNI will be ignored as they can be decoupled from the system
(see (5)).

To model the reduced susceptibility of drug-resistant virus variants to antiretroviral agents, we
assume that the drug efficacies of RTIs and PIs for the resistant strain are reduced by factors
σRTI and σPI, respectively. σRTI and σPI are between 0 and 1. Therefore, εRTIσRTI and εPIσPI are
the drug efficacies of RTIs and PIs for the resistant strain. σi = 1 (i = RTI or PI) corresponds
to the completely drug-sensitive strain while σi = 0 corresponds to the completely drug-resistant
strain.

In order to focus on the role of the progression rate of cells in the eclipse phase, φ, and the viral
production rate, p, on the evolution of drug-resistant virus, we assume that all other parameters
for the two strains in model (3) are equal, i.e.,

The cost of drug resistance will be discussed later.

The modified model including antiretroviral drugs and resistance can be described by the
following equations:

Rong et al. Page 6

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

In the above model, the progression rate of cells in the eclipse class to the productively infected
state is reduced due to the effect of RTIs and the viral production rate of infectious virus is
reduced due to the effect of HIV protease inhibitors. As noted above, the equations for the non-
infectious particles generated by the PI decouple from the system. These equations are

The total drug sensitive and drug resistant populations are then  and ,
respectively.

Because HIV resistance is usually associated with changes of highly conserved amino acid
residues that are believed to be essential for the optimal enzyme function, drug-resistant
variants display some extent of resistance-associated loss of viral fitness in the absence of
therapy [8,9]. We incorporate this feature in our model by assuming a reduced progression rate
φ and a reduced viral production rate p for the resistant strain. Based on the arguments given
previously, we assume that infected cells of the wild-type strain, the most susceptible strain to
drug therapy, have the maximal progression rate, φs, and the maximal viral production rate,
ps. Therefore, for all resistant strains we have φr < φs and pr < ps.

We further assume that the resistance factor, σRTI, is an increasing function of φr. The
justification for this assumption is the following. φr is mainly determined by the activity of
reverse transcriptase, and the more resistant a strain is to an RTI (a smaller σRTI) the more likely
that the RT of that strain functions poorly (a smaller φr). Thus, we assume that σRTI is an
increasing function of φr. Similarly, we assume that σPI is an increasing function of the viral
production rate pr, which reflects the fact that the more drug-resistant a strain is to a protease
inhibitor, the more poorly its protease functions and hence the lower the capacity to produce
new infectious virus [8,65].

As suggested in [10,18], the mortality rate of productively infected cells is also an increasing
function of the viral production rate. This is because the loss of cell resources utilized to produce
virus may impair cell functions. In addition, cell-mediated immune responses are likely to
rapidly kill cells expressing more viral proteins.

To summarize, in model (5) we have assumed that σRTI(φr), σPI(pr) and δr(pr) are all increasing
functions, with σRTI(φs) = σPI(ps) = 1 and δr(pr) = δs when pr = ps, i.e., δr(ps) = δs.

3 Results
In this section, we use model (5) and the results in previous sections to investigate the evolution
of drug-resistant strains in the presence of antiretroviral treatment. Specifically, we study how
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the resistant virus evolves to maximize its fitness, and derive the range of drug efficacy in
which the drug-resistant strain will be able to invade and out-compete the wild-type strain.

3.1 Optimal φr and pr that maximize viral fitness
Within-host viral fitness has received increasing interest due to its potential clinical
implications for viral load, drug resistance, and disease progression (see reviews in [8,36,
46]). The term fitness is commonly used in clinical settings to describe the ability of a virus to
effectively replicate in a particular environment. Due to the fact that drug-resistant virus is less
susceptible to antiretroviral regimens, the mutant variant is more fit than the wild-type virus
in the presence of drug, although resistance mutations may decrease the intrinsic capacity of
the virus to replicate. In practice, it still remains unclear which assay is most appropriate to
measure the fitness of HIV-1 isolates, and many studies have been performed to test different
hypotheses that extend the definition of relative fitness (reviewed in [46]). The basic
reproductive ratio is a commonly used measure of the absolute fitness of a virus within a host
[18]. In this section we examine the effect of antiretroviral treatment on the HIV-1 fitness of
resistant virus by analyzing the reproductive ratio in the presence of therapy.

The reproductive ratio of the resistant strain (in the presence of therapy) for model (5), denoted
by ℛr, is given by a function of φr and pr (see (4)):

(6)

where

(7)

and σRTI(φr), σPI(pr), and δr(pr) are increasing functions as mentioned previously.

Using the formulas (6) and (7) we can find the optimal  and  that maximize the
reproductive ratio ℛr(φr, pr). Because we assume that φr and pr are independent, we can
maximize F1(φr) and F2(pr) individually. When specific forms of the functions σRTI(φr),

σPI(pr), and δr(pr) are given we are able to obtain explicit formulas for  and . Before we
discuss some particular forms of these functions, we present the following result in terms of

general functions, which provides some convenient criteria for finding the optimal  and

. The proof can be found in Appendix C.

Proposition 1—(i) ℛr is maximized at  if there exists a unique value 
satisfying

(8)

and

(9)

(ii) ℛr is maximized at  if there exists a unique value  satisfying
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(10)

and

(11)

Proposition 1 suggests that if σRTI(φr), σPI(pr) and δr(pr) are concave up functions, then

equations (8) and (10) determine the optimal progression rate  and the optimal viral

production rate , respectively. It should be noted that the concave up property is not required

in Proposition 1, as the four conditions, (8)-(11), involve only  and .

We now consider some specific forms of the increasing functions σRTl(φr), σPI(pr) and δr(pr).
Noticing that φr ≤ φs and σRTl(φs) = 1, we choose σRTl(φr) to be a simple power function

(12)

where a ≥ 1 is a constant, ensuring that the second derivative is nonnegative. From Proposition

1 we get the optimal progression rate  (see (8)). Therefore, we can
establish the following result:

Result 1: Let σRTl(φr) be given in (12). Then

i.

if , then the optimal progression rate  is φs; and

ii.

if , then the optimal progression rate is an intermediate value within

(0, φs); i.e., .

This result suggests that when the drug efficacy εRTI is low, the best strategy for a resistant
strain to achieve the maximal viral fitness is unchanged from the non-treatment scenario, i.e.,
infected cells in the eclipse phase need to progress to the productively infected state as soon
as possible. When the drug efficacy is high, the optimal viral fitness is achieved at an

intermediate value  (in the case of a = 1), instead of the maximal progression
rate φs.

To examine the optimal production rate , we assume that the drug resistance factor σPI(pr)
is a linear function of pr, and that the death rate of productively infected cells of the resistant
strain follows a non-linear relationship between the cell death and viral production as examined
in [10]; i.e.,

(13)

Rong et al. Page 9

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where pr ≤ ps, β is a constant and m is a fixed background mortality rate. Since we require that
the function value δr(pr) evaluated at ps (the wild-type strain) is exactly the constant δs, β can
be chosen to be 2(δs − m). Then, using (10) we obtain the following result for the optimal

production rate .

Result 2: Let σPI(pr) and δr(pr) be given by (13). Then the optimal production rate 
determined by equation (10) is

(14)

Moreover, if δs < 2m, then  provides a threshold such that

i.
the optimal production rate of resistant virus is ps if ; and

ii. the optimal production rate of resistant virus is an intermediate value given by (14)

if .

The formula (14) allows us to study the effect of the background mortality rate, m, on the viral

fitness. As m → 0, the optimal production rate . A straightforward calculation shows

that . This implies that slow production is the best strategy for long-lived
infected cells. This result is consistent with the observation in [10].

These results are demonstrated in Figure 3. Figure 3(a) illustrates the optimal progression rate

 for the special case a = 1 in (12).  is plotted as a function of the drug efficacy of RTIs,

εRTl. Figure 3 (b) plots the optimal production rate  as a function of the drug efficacy of
protease inhibitors, εPI. In these graphs, m is chosen to be the same as δE, and the values for
other parameters are the same as those in Figure 1.

Figure 3 (c) and (d) plot the reproductive ratios for the drug-resistant strain using the optimal

values  and  (as shown in the upper panel) and the wild-type strain. The flat surface is
constant 1, the upper surface is for the reproductive ratio of the drug-resistant strain (ℛr, r for
resistant strain), and the lower surface is for that of the wild-type strain (ℛs, s for sensitive
strain). We choose different background mortality rates of infected cells. For example, in Figure
3 (c) m = δE and hence β = 2(δs − δE), and in Figure 3 (d) m = d and hence β = 2(δs − d). In
both cases, the reproductive ratio of the resistant strain (ℛr) is always greater than or equal to
that of the sensitive strain (ℛs).

We observe that for a large background mortality rate m (for example, m is equal to the death
rate of infected cells in the eclipse phase), ℛr becomes less than one as drug efficacy increases
although it is always greater than or equal to ℛs. Thus, in this case both strains of virus will
be eradicated for a high drug efficacy (Figure 3 (c)). However, if the background mortality rate
is very small (for example, m is equal to the death rate of uninfected T cells), then the threshold

value of εPI corresponding to (14) is , which is less than zero. Hence, the optimal

production rate  is always given by the intermediate value determined by (14). In this case,
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simulation results show that ℛr is always greater than both ℛs and 1 (Figure 3 (d)), and
according to the result given in Section 2.2, the drug-resistant strain that evolves with the

optimal  and  will always be able to invade and out-compete the wild-type strain in the
presence of drug therapy.

3.2 Invasion criterion
In the previous section, we have shown that if the drug-resistant strain continuously evolves

to adopt the optimal  and  that maximize its viral fitness, then the resistant strain will
always be expected to emerge and out-compete the established wild-type strain, provided that
the antiretroviral treatment is not potent enough to eradicate both strains. Now a natural
question arises: if the optimal viral fitness is not achieved, is it possible that the drug-resistant
strain can still invade the population of the wild-type virus? If yes, what is the invasion
criterion? Below we attempt to address these questions using model (5).

To derive the condition under which a drug-resistant strain (with parameters φr and pr, φr <
φs and pr < ps) can invade the sensitive-strain in the presence of drug therapy, we assume that
the population of wild-type virus is at the infected steady state. Recall that the infected steady
state exists only if the reproductive ratio of the wild-type strain is greater than 1. From Section
2.2, the drug-resistant strain will be able to invade the wild-type strain if the following condition
is satisfied:

(15)

The reproductive ratio for the drug-resistant strain in the presence of therapy is given by (see
(4), (6) and (7))

(16)

and the reproductive ratio for the wild-type strain is

(17)

where the functions F1 and F2 are given in (7)). Using the criterion (15) and formulas (16)
(17), we can establish the following result. The proof is given in Appendix D.

Result 3—(i) When both drug efficacies, εRTI and εPI, are low then the resistant strain cannot
invade the sensitive strain. (ii) If the drug efficacies are above certain threshold values then
invasion is possible by a resistant strain for which the progression rate φr and the viral
production rate pr are in some given ranges.

Clearly, the invasion ranges defined by (37) and (38) in Appendix D depend on the drug
efficacies εRTI and εPI. In fact, such ranges increase with increasing εRTI and εPI (see Figure
4). Also, if the background death rate m is much smaller than δs, then from the formula (38)
we can see that ℛr > ℛs for almost all values of pr such that pr < ps.

In Figure 4, the reproductive ratios ℛs and ℛr are plotted either as a function of φr (Figures 4
(a) and (b)) or as a function of pr (Figures 4 (c) and (d)) for different values of εRTI or εPI. For
example, Figures 4 (a) and (b) are for εRTI = 0.4 and εRTI = 0.5, respectively, for fixed values
of εPI = 0 and a = 3 (see Eq.(12)). We observe that the range in which ℛr > ℛs is bigger for a
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larger value of εRTI, suggesting that for a more effective drug therapy, the resistant strain can
invade the sensitive strain at a smaller progression rate φr.

Figures 4 (c) and (d) are for εPI = 0.5 and εPI = 0.6, respectively, for a fixed value of εRTI = 0.
We have assumed that the background mortality rate m is equal to δE, hence β = 2(δs − δE).
We observe again that the range in which ℛr > ℛs is bigger for a larger value of εPI. Therefore,
for a higher protease inhibitor drug efficacy, the resistant strain can invade the sensitive strain
at a smaller production rate pr.

4 Discussion and conclusion
Advances in the development of potent combination antiretroviral therapy have dramatically
reduced HIV-related morbidity and mortality in the developed world. However, increasing
emergence of resistance to antiretroviral drugs could challenge this achievement. The rapid
development of drug resistant HIV variants is due to the high turnover of HIV—approximately
10 billion new virus particles are produced per day in the average mid-stage HIV-infected
untreated patient [43]—and the exceptionally high error rate of HIV reverse transcriptase. This
leads to a high mutation rate and constant production of new viral strains, even in the absence
of drug therapy. Understanding the evolution of viral resistance during therapy has far-reaching
implications in predicting treatment outcomes and designing treatment strategies employed in
clinical practice.

In this work, we have developed a mathematical model to explore the initial constraints that
may shape the evolution of viral resistance to antiretroviral drugs. We focused on the
interactions between two classes of drugs (reverse transcriptase inhibitors and protease
inhibitors) and the enzymes they target, and the trade-offs that are likely to result from such
interactions. For RT and its inhibitor we assumed that there is a trade-off between the efficiency
of RT and its susceptibility to the inhibitor. Our rationale was as follows: within-patient
selection should favor the virus that maximizes its burst size N, the total number of virions
made by an infected cell during its lifetime [18]. The burst size is a function of the lifespan of
the infected cell, with longer living cells potentially able to make more virions. Due to the
mortality rate of an infected cell the contribution of virion production to N is effectively
discounted as the infected cell ages. In addition, viral mRNA is susceptible to attack by host
nucleases once it enters the cell. As a result, within-host selection will inherently favor the
virus with an RT that can rapidly reverse transcribe the virus' genome and integrate it into the
host's genome. Because we expect these forms of RT to be favored by within-host selection
we also expect them to be the most susceptible to inhibition by drugs designed to interfere with
their activity. Along the same line of reasoning, other forms of RT that have low activity levels
are expected to have low frequencies within the host, maintained primarily by drift and
mutation. However, the very genetic changes that confer low activity levels to these RT variants
are also likely to confer some resistance to the drugs designed to target RT with high activity
levels. As a result we posit that there is likely a simple trade-off between RT activity and
susceptibility to RT inhibitors.

The HIV protease also plays a critical role in the virus' life cycle by converting a viral
polypeptide into mature and functional viral proteins necessary for viral infectivity. Because
mutations associated with the emergence of drug resistance to protease inhibitors modify some
key viral proteins [1,59], the virus forced to develop resistance under drug pressure is thought
to have a substantial impairment in its replicative capacity [7] even though some additional
mutations can compensate for this impaired viral replication potential [36]. We thus expect
that there is a trade-off between the efficacy of protease inhibitors and the viral production rate
for the drug-resistant virus variants selected during therapy.
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Once a cell begins actively producing virions it becomes highly susceptible to attack by the
patient's immune response and viral cytopathic effects. Viral cytopathicity and cell-mediated
immune responses are assumed to depend on the rate of viral production. If the mortality rate
of infected cells is a concave up function with respect to the viral production rate, then the
optimal viral production rate is likely to be at some intermediate level below its physiological
maximum [18]. Under such conditions, an intermediate production rate will maximize the
within-patient viral fitness by maximizing the burst size N. This is consistent with our findings
when drug resistance to antiretroviral regimens is considered in the model. It should be
mentioned that our model assumes that the viral production rate is time independent. When
the production rate is allowed to vary with time during infection, the optimal production
schedule to maximize the burst size is still to produce virus at a constant rate [10]. More results
on the optimal viral production schedule from the perspective of virus can be found in [10].

Taken together, the model developed here allows us to investigate the fitness of different HIV
variants taking into account the trade-offs between the progression of infected cells in the
eclipse phase and resistance to RT inhibitors, between viral production and cell mortality, and
between viral production and resistance to protease inhibitors. The model predicts that when
the drug efficacy is not high enough to exert sufficient selective pressure (the threshold values

in our example are εRTI = 0.5 and ), the resistant strain will be unable to
invade the established sensitive strain. For a more effective drug therapy (but not potent enough
to eradicate both the wild-type and resistant strains), a wider range of resistant virus variants
can invade and out-compete the drug-sensitive strain.

In the present model, the efficacies of antiretroviral drugs are assumed to be constant. However,
this assumption may not be realistic because drug concentrations in the blood and in cells
continuously vary due to drug absorption, distribution and metabolism. There are some existing
models that use time-varying drug concentrations to determine the efficacy of antiviral
treatment [14,24,57,62]. The pharmacokinetic model developed by Dixit and Perelson [14]
was also employed to determine drug efficacies for both the sensitive and resistant strains
[51]. They showed that using the average drug efficacy can still give a good prediction of the
long-term outcome of therapy although the viral load displays frequent oscillations when the
time-varying drug efficacy is employed.

Another important factor that affects drug efficacy is patients' adherence to prescribed regimen
protocols. In fact, non-adherence and non-persistence with antiretroviral therapy is the major
reason most individuals fail to benefit from their treatments [2]. A number of mathematical
models have been developed to study the effects of non-perfect adherence to drug regimens
[16,24,45,51,53,57,61]. An overview can be found in Heffernan and Wahl [20]. Careful
modeling of drug pharmacokinetics and more realistic adherence patterns can provide an
important tool in the study of the kinetics of evolutionary adaptation of HIV to drug therapy
and ultimately may improve our ability to develop procedures to defeat this deadly virus.
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Appendix A. Stability of steady states of model (1)
The infection-free steady state of model (1) is
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(18)

The infected steady state is , where

(19)

Using (2),  can be rewritten as

Therefore, the infected steady state exists if and only if ℛ0 > 1.

Let  denote a steady state of model (1). Then the characteristic equation
at Ê is

(20)

where ζ is an eigenvalue. Equation (20) can be simplified to

(21)

(i) Let ℛ0 < 1. Evaluating (21) at the infection-free steady state Ē, we get

Clearly, there is one negative eigenvalue −d, and other eigenvalues are determined by

which can be rewritten as (see (2))

(22)

If ζ has a nonnegative real part, then the modulus of the left-hand side of (22) satisfies
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(23)

which leads to a contradiction in (22) since ℛ0 < 1. Therefore, all the eigenvalues have negative
real parts, and hence Ē is l.a.s.

When ℛ0 > 1, we define

It is clear that f(0) < 0 and f(ζ) → ∞ when ζ → ∞. By the continuity we know there exists at
least one positive root. Hence, the equilibrium point Ē is unstable if ℛ0 > 1.

(ii) Let ℛ0 > 1. Substituting the infected steady state Ẽ for Ê in the characteristic equation (21),
we have

(24)

Obviously, (24) does not have a nonnegative real solution.

From (19) and (2), we can write Ṽ in terms of the basic reproductive ratio in the form

Now we want to prove that (24) does not have any complex root ζ with a nonnegative real part.
Suppose, by contradiction, that ζ = x + iy with x ≥ 0, y > 0 is a root of (24).

When ℛ0 → 1, equation (24) reduces to

(25)

Using the same arguments as in part (i), we can show that (25) does not have any root with a
nonnegative real part.

By the continuous dependence of roots of the characteristic equation on ℛ0, we know that the
curve of the roots must cross the imaginary axis as ℛ0 decreases sufficiently close to 1. That
is, the characteristic equation (24) has a pure imaginary root, say, iy0, where y0 > 0. From (24),
we have

(26)

We now claim that the following inequality holds:

(27)

In fact, after straightforward computations, we have
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Thus, (27) holds. It follows that

This contradicts (26). Therefore, we conclude that the characteristic equation (24) does not
have any root with a nonnegative real part. Thus, the infected steady state Ē is l.a.s whenever
it exists.

Appendix B. Steady states and stability of model (3)

Assume that  and . We have

(28)

Obviously, each steady state exists if and only if the corresponding reproductive ratio is greater
than 1.

If  denotes a coexistence steady state (i.e.,  and

, hence both strains are present), then Ť satisfies . Therefore, Ě exists
only if ℛr = ℛs.

The Jacobian matrix at Ẽs is

where

(29)
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(30)

and “*” denotes a 4 × 3 matrix that does not affect the proof. Notice that the characteristic
equation of G is exactly the same equation (20) with the subscript s added. From Appendix A
and ℛs > 1, all eigenvalues of G have negative real parts. Thus, the stability of Ẽs is completely
determined by the eigenvalues of H.

Suppose ζ is an eigenvalue of H, then ζ satisfies

(31)

If we define

(32)

Then (31) can be rewritten as

(33)

We remark that  represents the effective reproductive ratio for the drug-resistant strain (i.e.,

the reproductive ratio when the sensitive strain is at its infected steady state). If , then
the resistant strain will be able to invade the established wild-type strain.

Using the same arguments as in Appendix A, we have that Ẽs is l.a.s. if  and it is unstable

if . Notice from (28) and (4) that

Substituting this for T ̃s in (32) and using (4), we obtain

Thus,  if and only if ℛr > ℛs and  if and only if ℛr < ℛs. It follows that Ẽs is
l.a.s. if ℛr < ℛs, and it is unstable if ℛr < ℛs.

From the mathematical symmetry of the two strains we can use the same arguments for the
stability analysis of Ẽr, and show that Ẽr is l.a.s. if ℛr > ℛs and unstable if ℛr < ℛs.

Appendix C. Proof of Proposition 1

(i) We want to find  that maximizes F1(φr) (see equation (7)). Let
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(34)

Then F1(φr) is maximized if and only if f1(φr) is maximized. Notice that (8) holds if and only

if  is a critical point of f1 on (0, φs). Since , we have

Hence,  if . It follows that f1, and hence ℛr, assumes its maximum

at  if (8) and (9) hold.

(ii) If  satisfies (10) then we can easily verify that  is a critical point of F2(pr); i.e.,

. The second derivative of F2(pr) at  is

(35)

It is easy to verify that  if  and  are both nonnegative, which implies

that F2(pr) has a maximum at . Therefore, ℛr is maximized at . This finishes the
proof of Proposition 1.

Appendix D. Proof of Result 3
We prove this result using the specific functional forms for σRTI(φr), σPI(pr), and δr(pr) given
by (12) (in the case of a = 1) and (13).

(i) The invasion condition (15) is equivalent to (see (16) and (17))

(36)

From the analysis in Section 3.1, we know that for a low level of drug efficacy εRTI (e.g., 0 <

εRTI < 1/2 when a = 1, see Result 1), the maximum of F1(φr) can only occur at . Thus,
F1(φr) < F1(φs) for φr < φs. Similarly, from Result 2 we know that the maximum of F2(pr) can

only occur at  if , where . Thus, F2(Pr) < F2(ps) for pr <
ps. Therefore, the invasion condition (36) does not hold for any drug efficacies with 0 < εRTI

< 1/2 and .

(ii) When 1/2 < εRTI < 1, solving the inequality F1(φr) > F1(φs) for φr, we have
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which is equivalent to

or

From the above inequality (and noticing that εRTI > 1/2), we have

(37)

When , solving the inequality F2(pr) > F2(ps) for pr gives

which can be rewritten as

Noticing that β = 2(δs − m), we can solve the above inequality and obtain

(38)

Since , which guarantees that

we know that (38) defines an interval on which F2(pr) > F2(ps). Therefore, for (φr, pr) in the
regions defined by (37) and (38) the invasion condition (36), or equivalently (15), holds.

This finishes the proof of Result 3.

References
1. Barrie KA, Perez EE, Lamers SL, Farmerie WG, Dunn BM, Sleasman JW, Goodenow MM. Natural

variation in HIV-1 protease, Gag p7 and p6, and protease cleavage sites within gag/pol polyproteins:

Rong et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



amino acid substitutions in the absence of protease inhibitors in mothers and children infected by
human immunodeficiency virus type 1. Virology 1996;219:407–416. [PubMed: 8638406]

2. Becker SL, Dezii CM, Burtcel B, Kawabata H, Hodder S. Young HIV-infected adults are at greater
risk for medication nonadherence. Med Gen Med 2002;4:21.

3. Bonhoeffer S, Nowak MA. Pre-existence and emergence of drug resistance in HIV-1 infection. Proc
R Soc Lond B 1997;264:631–637.

4. Callaway DS, Perelson AS. HIV-1 infection and low steady state viral loads. Bull Math Biol
2002;64:29–64. [PubMed: 11868336]

5. Yuan Chen H, Di Mascio M, Perelson AS, Ho DD, Zhang L. Determination of virus burst size in
vivo using a single-cycle SIV in rhesus macaques. submitted

6. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K,
Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF.
Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature
1997;387:183–188. [PubMed: 9144289]

7. Clavel F, Hance AJ. HIV drug resistance. N Engl J Med 2004;350:1023–1035. [PubMed: 14999114]
8. Clavel F, Race E, Mammano F. HIV drug resistance and viral fitness. Adv Pharmacol 2000;49:41–66.

[PubMed: 11013760]
9. Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and

therapy. Science 1995;267:483–489. [PubMed: 7824947]
10. Coombs D, Gilchrist MA, Percus J, Perelson AS. Optimal viral production. Bull Math Biol

2003;65:1003–1023. [PubMed: 14607286]
11. Culshaw RV, Ruan S. A delay-differential equation model of HIV infection of CD4+ T-cells. Math

Biosci 2000;165:27–39. [PubMed: 10804258]
12. De Paepe M, Taddei F. Viruses' life history: towards a mechanistic basis of a trade-off between

survival and reproduction among phages. PLoS Biol 2006;4:1248–1256.
13. De Leenheer P, Smith HL. Virus dynamics: a global analysis. SIAM J Appl Math 2003;63:1313–

1327.
14. Dixit NM, Perelson AS. Complex patterns of viral load decay under antiretroviral therapy: influence

of pharmacokinetics and intracellular delay. J Theor Biol 2004;226:95–109. [PubMed: 14637059]
15. Essunger P, Perelson AS. Modeling HIV infection of CD4+ T-cell subpopulations. J Theor Biol

1994;170:367–391. [PubMed: 7996863]
16. Ferguson NM, Donnelly CA, Hooper J, Ghani AC, Fraser C, Bartley LM, Rode RA, Vernazza P,

Lapins D, Mayer SL, Anderson RM. Adherence to antiretroviral therapy and its impact on clinical
outcome in HIV-infected patients. J R Soc Interface 2005;2:349–363. [PubMed: 16849193]

17. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K,
Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF.
Identification of a reservoir for HIV-1 in patients during highly active antiretroviral therapy. Science
1997;278:1295–1300. [PubMed: 9360927]

18. Gilchrist MA, Coombs D, Perelson AS. Optimizing within-host viral fitness: infected cell lifespan
and virion production rate. J Theor Biol 2004;229:281–288. [PubMed: 15207481]

19. Haase AT, Henry K, Zupancic M, Sedgewick G, Faust RA, Melroe H, Cavert W, Gebhard K, Staskus
K, Zhang ZQ, Dailey PJ, Balfour HH Jr, Erice A, Perelson AS. Quantitative image analysis of HIV-1
infection in lymphoid tissue. Science 1996;274:985–989. [PubMed: 8875941]

20. Heffernan, JM.; Wahl, LM. Treatment interruptions and resistance: a review. In: Tan, WY.; Wu, H.,
editors. Deterministic and Stochastic Models of AIDS and HIV with Intervention. World Scientific
Press; Singapore: 2005. p. 423-456.

21. Herz AV, Bonhoeffer S, Anderson RM, May RM, Nowak MA. Viral dynamics in vivo: limitations
on estimates of intracellular delay and virus decay. Proc Natl Acad Sci USA 1996;93:7247–7251.
[PubMed: 8692977]

22. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma
virions and CD4 lymphocytes in HIV-1 infection. Nature 1995;373:123–126. [PubMed: 7816094]

Rong et al. Page 20

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Hockett RD, Kilby JM, Derdeyn CA, Saag MS, Sillers M, Squires K, Chiz S, Nowak MA, Shaw GM,
Bucy RP. Constant mean viral copy number per infected cell in tissues regardless of high, low, or
undetectable plasma HIV RNA. J Exp Med 1999;189:1545–1554. [PubMed: 10330433]

24. Huang Y, Rosenkranz SL, Wu H. Modeling HIV dynamics and antiviral response with consideration
of time-varying drug exposures, adherence and phenotypic sensitivity. Math Biosci 2003;184:165–
186. [PubMed: 12832146]

25. Kepler TB, Perelson AS. Drug concentration heterogeneity facilitates the evolution of drug resistance.
Proc Natl Acad Sci USA 1998;95:11514–11519. [PubMed: 9751697]

26. Kirschner DE, Webb GF. A model for treatment strategy in the chemotherapy of AIDS. Bull Math
Biol 1996;58:367–390.

27. Kirschner DE, Webb GF. Understanding drug resistance for montherapy treatment of HIV infection.
Bull Math Biol 1997;59:763–786. [PubMed: 9214852]

28. Larder, B. Nucleosides and foscarnet-mechanisms. In: Richman, DD., editor. Antiviral Drug
Resistance. John Viley and Sons Ltd; 1996. p. 169-190.

29. Markowitz M, Louie M, Hurley A, Sun E, Di Mascio M, Perelson AS, Ho DD. A novel antiviral
intervention results in more accurate assessment of human immunodeficiency virus type 1 replication
dynamics and T-cell decay in vivo. J Virol 2003;77:5037–5038. [PubMed: 12663814]

30. Mittler JE, Markowitz M, Ho DD, Perelson AS. Refined estimates for HIV-1 clearance rate and
intracellular delay. AIDS 1999;13:1415–1417. [PubMed: 10449298]

31. Mohri H, Bonhoeffer S, Monard S, Perelson AS, Ho DD. Rapid turnover of T lymphocytes in SIV-
infected rhesus macaques. Science 1998;279:1223–1227. [PubMed: 9469816]

32. Mugavero MJ, Hicks CB. HIV resistance and the effectiveness of combination antiretroviral
treatment. Drug Discovery Today: Therapeutic Strategies 2004;1:529–535.

33. Nelson PW, Gilchrist MA, Coombs D, Hyman JM, Perelson AS. An age-structured model of HIV
infection that allows for variations in the production rate of viral particles and the death rate of
productively infected cells. Math Biosci Eng 2004;1:267–288.

34. Nelson PW, Murray JD, Perelson AS. A model of HIV-1 pathogenesis that includes an intracellular
delay. Math Biosci 2000;163:201–215. [PubMed: 10701304]

35. Nelson PW, Perelson AS. Mathematical analysis of delay differential equation models of HIV-1
infection. Math Biosci 2002;179:73–94. [PubMed: 12047922]

36. Nijhuis M, Deeks S, Boucher C. Implications of antiretroviral resistance on viral fitness. Curr Opin
Infect Dis 2001;14:23–28. [PubMed: 11979111]

37. Nowak MA, Bonhoeffer S, Shaw GM, May RM. Anti-viral drug treatment: dynamics of resistance
in free virus and infected cell populations. J Theor Biol 1997;184:203–217. [PubMed: 9059598]

38. Nowak, MA.; May, RM. Virus Dynamics: Mathematical Principles of Immunology and Virology.
Oxford University Press; 2000.

39. Perelson AS. Modelling viral and immune system dynamics. Nature Rev Immunol 2002;2:28–36.
[PubMed: 11905835]

40. Perelson AS, Kirschner DE, De Boer R. Dynamics of HIV infection of CD4+ T cells. Math Biosci
1993;114:81–125. [PubMed: 8096155]

41. Perelson AS, Nelson PW. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 1999;41:3–
44.

42. Perelson, AS.; Nelson, PW. Proceedings of Symposia in Applied Mathematics. 59. American
Mathematical Society; 2002. Modeling viral infections; p. 139-172.

43. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion
clearance rate, infected cell life-span, and viral generation time. Science 1996;271:1582–1586.
[PubMed: 8599114]

44. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD. Decay
characteristics of HIV-1-infected compartments during combination therapy. Nature 1997;387:188–
191. [PubMed: 9144290]

45. Phillips AN, Youle M, Johnson M, Loveday C. Use of a stochastic model to develop understanding
of the impact of different patterns of antiretroviral drug use on resistance development. AIDS
2001;15:2211–2220. [PubMed: 11698693]

Rong et al. Page 21

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



46. Quinones-Mateu, ME.; Arts, EJ. HIV-1 fitness: implications for drug resistance, disease progression,
and global epidemic evolution. In: Kuiken, C.; Foley, B.; Hahn, B.; Marx, P.; McCutchan, F.; Mellors,
J.; Wolinsky, S.; Korber, B., editors. HIV Sequence Compendium 2001, Theoretical Biology and
Biophysics Group. Los Alamos National Laboratory; Los Alamos NM: 2001. p. 134-170.

47. Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, Markowitz M, Moore JP,
Perelson AS, Ho DD. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by
large volume plasma apheresis. Lancet 1999;354:1782–1785. [PubMed: 10577640]

48. Ribeiro RM, Bonhoeffer S. Production of resistant HIV mutants during antiretroviral therapy. Proc
Natl Acad Sci USA 2000;97:7681–7686. [PubMed: 10884399]

49. Ribeiro RM, Bonhoeffer S, Nowak MA. The frequency of resistant mutant virus before antiviral
therapy. AIDS 1998;12:461–465. [PubMed: 9543443]

50. Rong L, Feng Z, Perelson A. Mathematical analysis of age-structured HIV-1 dynamics with
combination antiretroviral therapy. SIAM J Appl Math 2007;67:731–756.

51. Rong L, Feng Z, Perelson AS. Emergence of HIV-1 drug resistance during antiretroviral treatment.
Bull Math Biol. 2007in press

52. Simon V, Ho DD. HIV-1 dynamics in vivo: implications for therapy. Nat Rev Microbiol 2003;1:181–
190. [PubMed: 15035022]

53. Smith RJ. Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance
emerges? Proc R Soc B 2006;273:617–624.

54. Smith RJ, Wahl LM. Drug resistance in an immunological model of HIV-1 infection with impulsive
drug effects. Bull Math Biol 2005;67:783–813. [PubMed: 15893553]

55. Stafford MA, Corey L, Cao Y, Daar ES, Ho DD, Perelson AS. Modeling plasma virus concentration
during primary HIV infection. J Theor Biol 2000;203:285–301. [PubMed: 10716909]

56. Stilianakis NI, Boucher CA, De Jong MD, Van Leeuwen R, Schuurman R, De Boer RJ. Clinical data
sets of human immunodeficiency virus type 1 reverse transcriptase-resistant mutants explained by a
mathematical model. J Virol 1997;71:161–168. [PubMed: 8985335]

57. Wahl LM, Nowak MA. Adherence and drug resistance: predictions for therapy outcome. Proc R Soc
Lond B 2000;267:835–843.

58. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak
MA, Hahn BH, Saag MS, Shaw GM. Viral dynamics in human-immunodeficiency-virus type-1
infection. Nature 1995;373:117–122. [PubMed: 7529365]

59. Winslow DL, Stack S, King R, Scarnati H, Bincsik A, Otto MJ. Limited sequence diversity of the
HIV type 1 protease gene from clinical isolates and in vitro susceptibility to HIV protease inhibitors.
AIDS Res Hum Retroviruses 1995;11:107–113. [PubMed: 7734183]

60. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD. Recovery of
replication-competent HIV despite prolonged suppression of plasma viremia. Science
1997;278:1291–1295. [PubMed: 9360926]

61. Wu H, Huang Y, Acosta EP, Park JG, Yu S, Rosenkranz SL, Kuritzkes DR, Eron JJ, Perelson AS,
Gerber JG. Pharmacodynamics of antiretroviral agents in HIV-1 infected patients: using viral
dynamic models that incorporate drug susceptibility and adherence. J Pharmacokinet Pharmacodyn
2006;33:399–419. [PubMed: 16583266]

62. Wu H, Huang Y, Acosta EP, Rosenkranz SL, Kuritzkes DR, Eron JJ, Perelson AS, Gerber JG.
Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency,
pharmacokinetics, adherence, and drug resistance. JAIDS 2005;39:272–283. [PubMed: 15980686]

63. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary
lymphocytes: molecular analysis reveals a labile latent viral structure. Cell 1990;61:213–222.
[PubMed: 2331748]

64. Zack JA, Haislip AM, Krogstad P, Chen IS. Incompletely reverse-transcribed human
immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the
retroviral cycle. J Virol 1992;66:1717–1725. [PubMed: 1371173]

65. Zennou V, Mammano F, Paulous S, Mathez D, Clavel F. Loss of viral fitness associated with multiple
gag and gag-pol processing defects in human immunodeficiency virus type 1 variants selected for
resistance to protease inhibitors in vivo. J Virol 1998;72:3300–3306. [PubMed: 9525657]

Rong et al. Page 22

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



66. Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, Lewin S, Talal A, Racz P, Perelson AS,
Korber BT, Markowitz M, Ho DD. Quantifying residual HIV-1 replication in patients receiving
combination antiretroviral therapy. N Engl J Med 1999;340:1605–1613. [PubMed: 10341272]

Rong et al. Page 23

J Theor Biol. Author manuscript; available in PMC 2008 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(a) Plot of the basic reproductive ratio ℛ0 in (2) as a function of the progression rate φ for a
fixed mortality rate of exposed cells δE = 0.7 day−1. (b) Plot of ℛ0 as a function of δE for a
fixed value of φ = 1.1 day−1. Other parameter values are given in the text.
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Figure 2.
Time plots for the virus dynamics of model (1) for different φ or for different δE. (a) φ = 0.8
or 1.1 day−1, δE = 0.7 day−1. (b) δE = 0.2 or 0.6 day−1, φ = 1.1 day−1. The values of other

parameters are the same as those in Figure 1. The initial values for T, , T* and V are 106

ml−1 [40], 0, 0, and 10−6 ml−1 [55], respectively. The steady state of the viral load is plotted
as a function of φ or δE in (c) and (d). When φ < 0.23, the virus population dies out.
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Figure 3.

(a) Plot of the optimal progression rate  as a function of the drug efficacy of RTIs. (b) Plot

of the optimal production rate  as a function of the drug efficacy of PIs. (c) and (d) are plots

of the reproductive ratios of the drug-resistant strain using the optimal  and  (as shown
in (a) and (b)) and the wild-type strain. In (c) we assume m = δE = 0.7 day−1; in (d) m = d =
0.01 day−1. The other parameters are: k = 2.4 × 10−8 ml day−1, λ = 104 ml−1 day−1, d=0.01
day−1, c=23 day−1, b=0.01 day−1, δE = 0.7 day−1, δE = 1 day−1, φs = 1.25 day−1, ps = 4000
day−1. The flat surface is constant 1, the upper surface is for the reproductive ratio of the drug-
resistant strain (ℛr), and the lower surface is for that of the wild-type strain (ℛs). We observe
that in both cases, ℛr is always greater than or equal to ℛs. In (c), ℛr becomes less than 1 for
a high level of drug efficacy, while in (d) ℛr is always greater than 1.
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Figure 4.
Plots of ℛs and ℛr for different values of εRTI or εPI. The long dashed line is for ℛs, and the
solid curve is for ℛr. (a) εRTI = 0.4; (b) εRTI = 0.5 (εPI = 0 and a = 3 for both (a) and (b)). (c)
εPI = 0.5; (d) εPI = 0.6 (εRTI = 0 for both (c) and (d)). It is shown that the range in which ℛr >
ℛs becomes bigger for larger values of εRTI or εPI.
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