
Expert Review

Designer Gene Delivery Vectors: Molecular Engineering and Evolution
of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

Inchan Kwon1 and David V. Schaffer1,2

Received July 4, 2007; accepted August 3, 2007; published online 1 September 2007

Abstract. Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to

several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of

dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several

problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2,

the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening

its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids,

and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In

addition, library selection and directed evolution have recently emerged as promising approaches to

modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-

existing immunity to AAV must be addressed for successful clinical application of AAV vectors.

BShielding^ polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in

avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high

throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies.

Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating

Fdesigner_ gene delivery vectors with enhanced properties.
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INTRODUCTION

The ability to deliver genes with high efficiency and
specificity can enable a broad range of biomedical efforts,
from basic research to clinical translation. In particular, viral
gene delivery vehicles or vectors offer the potential for safe
and efficient gene delivery to various cell types in vitro and
importantly in vivo. For example, vectors based upon adeno-
associated virus (AAV) have several desirable features as
gene delivery vectors. First, AAV is non-pathogenic (up to
90% of the human population has been exposed to AAV
serotype 2) and therefore potentially safe for use as a vector
(1,2). Furthermore, all viral genes can be deleted from
recombinant AAV (rAAV) vectors, thereby yielding an
efficient transgene delivery vehicle with enhanced safety
and reduced immunogenicity. An additional attractive fea-
ture is that AAV can efficiently infect both dividing and non-
dividing cells in muscle (3–7), liver (8–12), brain (13–16), lung
(17–20), retina (21–25), heart (26–28), and pancreas (29–31).
Fourth, although AAV serotype 2 is the best characterized,
there are a number of other available AAV serotypes with
differences in cellular tropism (32). Finally, although the
wild-type AAV preferentially integrates into a specific locus
of human chromosome 19 (33–36), recombinant virus has

mechanisms for sustained episomal maintenance or integra-
tes at a low rate semi-randomly (37).

Despite their advantageous properties, AAV vectors can
and must be improved in numerous ways to enhance their
utility from the lab to the clinic. Problems with AAV vectors
include limited tissue tropism for serotypes that bind heparan
sulfate (38,39); poor infection of refractory cell types such as
stem cells (40,41); challenges with high-efficiency, targeted
gene delivery to specific cell populations; preexisting immu-
nity due to prior exposure of the majority of the human
population with multiple AAV serotypes (2,42–47); and a
limited transgene carrying capacity (48). This review will
focus on recent advances in designing and engineering AAV
vectors for altered tropism, enhanced gene delivery efficien-
cy, and evasion of antibody neutralization.

AAV Biology

AAV has a single-stranded DNA genome approximately
4.7 kb long (49–51). The AAV genome contains two open
reading frames (ORF) flanked by inverted terminal repeat
elements (ITR) (52–54). These ITRs are the minimal cis-
acting elements necessary for viral genome integration,
replication, and packaging into the capsid shell. The first
ORF (rep) encodes four Rep proteins that are involved in
replication of the viral genome, whereas the second ORF
(cap) encodes three structural proteins (VP1, VP2, and VP3)
that are translated from one mRNA via alternative splicing
and translation initiation at different start codons (1,55).
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Sixty total copies of these three structural proteins self-
assemble to form the viral capsid, into which the viral
genome then loads, and cap therefore plays a great role in
the viral gene transduction properties. These properties are
exploited by recombinant vectors, in which rep and cap are
excised from between the ITRs, a gene of interest is
inserted in their place, and the two viral ORFs are supplied
as helper genes in trans to package the transgene inside the
capsid (56).

AAV infection begins with viral binding to the cell
surface, followed by viral uptake, intracellular trafficking,
translocation to the nucleus, virion uncoating, synthesis of
double stranded DNA, and viral gene expression (57–62).
Although these steps collectively determine AAV tropism,
viral binding to the cell surface is particularly important and
has thus been a primary target for engineering to alter AAV
tropism. AAV serotype 2 (AAV2) attaches to target cells by
exploiting heparan sulfate proteoglycan (HSPG) as its
primary cell surface receptor (62). In addition, fibroblast
growth factor receptor 1 and avb5 integrin have been
implicated as co-receptors (59,60).

AAV is an inherently defective virus, such that upon its
arrival in the nucleus, viral replication requires functions
supplied by co-infection with helper viruses, such as adeno-
virus and herpesvirus (63–66). In the absence of helper
viruses or helper functions, the viral DNA can become
integrated into the host chromosomal genome to establish a
latent infection (67,68). Importantly, rAAV, which lacks both
viral genes and is thus replication incompetent even in the
presence of helper virus, can form a latent infection after
entry.

MODULATING TROPISM AND ENHANCING
TRANDUCTION

rAAV was first generated for transgene delivery in the
1980s (52,69). Vectors based on AAV2 (rAAV2) have been
the most studied and are currently used in clinical trials for
numerous diseases including cystic fibrosis, hemophilia B,
prostate and melanoma cancers, Canavan disease,
Alzheimer_s, Parkinson_s, muscular dystrophy, rheumatoid
arthritis, and HIV vaccines (70). This vector has been shown
in animal models to deliver genes to broad range of cells in
muscle, brain, retina, liver, and lung (4,12,13,15,57,71–73).
However, this broad tropism is not always beneficial for
targeted gene delivery to specific types of tissues or organs.
In addition, some highly desirable gene delivery targets,
including stem cells, are refractory to vectors based on
AAV2 (40). Therefore, a number of efforts have focused on
manipulating capsid proteins to alter tropism and enhance
transduction efficiency (Fig. 1).

Isolation of Novel AAV Serotypes and Pseudotyping

The majority of capsid engineering work has been
conducted with AAV2, the best characterized AAV serotype.
However, over 100 AAV serotypes from different animal
species have been isolated in recent years (5,6,74–81). AAV1,
AAV2, AAV3, and AAV4 were isolated as contaminants in
a simian Adenovirus type 15 stock (SV15), an Adenovirus
type 12 stock, an Adenovirus type 7 stock, and African green

monkeys infected with SV15, respectively (74,77,79). AAV5
was isolated from a human penile condylomatous wart (75)
and AAV6 was found as a contaminant in a laboratory
adenovirus stock. Gao et al. isolated AAV7 and AAV8
serotypes from rhesus monkeys, and AAV9 was isolated from
three humans (6). AAV10 and AAV11 were isolated from
cynomolgus monkeys (78), and Schimidt et al. isolated two
new AAV serotypes, AAV (VR-195) and AAV (VR-355)
from simian adenovirus stocks (81). Finally, Gao et al. found
86 AAV serotypes in nonhuman primates (6).

Many in vitro and in vivo studies have shown that these
various natural AAV serotypes exhibit different tissue or cell
tropisms. Furthermore, cross-packaging an AAV genome of
one serotype into the capsid of another serotype, i.e. vector
pseudotyping, can result in infectious vector with the tropism
of the new capsid. For example, pseudotyped vector consist-
ing of AAV2 genome and AAV4 capsid (AAV2/4) exhibited
ependymal cell-specific transduction, whereas AAV2 vector
(AAV2/2) showed transduction biased to neurons in the
central nervous system (38). Since the biology and genetics of
the AAV2 genome have been broadly studied, pseudotyping
a AAV2 genome serves as a convenient technique to isolate
and characterize the capsid properties of newly identified
serotypes. Recently, Grimm et al. have examined effect of
viral DNA packaging sequences on AAV vector transduc-
tion to liver. Based on the observed gene transfer to the
liver by various pseudotyped vectors, they concluded that
AAV tropism is determined by the AAV cap gene and not
the rep gene (82), which supports validity of pseudotyping
methods.

Chao et al. have reported that AAV2 genomes packaged
by AAV1, AAV3, and AAV4 capsids showed 900-, 30-, and
3-fold enhanced transgene expression in skeletal muscle
compared to AAV2/2 (83). In addition, AAV2/5 mediated
efficient gene transfer to murine cerebellar neurons (84), and
AAV2/6 efficiently transduced skeletal muscle (85). Gao et

al. have shown that pseudotyped AAV2/7 exhibited gene
transfer to skeletal muscle with efficiency comparable to that
of AAV1, at that time the most efficient serotype for
muscular delivery. Gao et al. also found that AAV2/
8 showed 10- to 100-fold higher transgene expression upon
delivery to the murine liver compared to other serotypes
(5). In addition, AAV2/9 showed very efficient gene
transfer in the liver, lung, muscle, and extracardiac tissue
of mice in vivo (6,86). The capsid proteins of AAV10 and
AAV11 showed 84 and 65% similarity, respectively, with
the AAV2 capsid protein. Systemic injection of AAV2/10
led to persistent transduction in the murine liver, heart,
muscle, lung, kidney, and uterus, whereas AAV2/11
resulted in efficient transduction of the muscle, kidney,
spleen, lung, heart, and stomach. These results are distinct
from AAV2/2, which yields persistent transduction only of
liver and spleen (78). In addition, intravenously adminis-
tered AAV2/10 and AAV2/11 mediated efficient delivery
of a transgene to the lymphoid tissues in Cynomolgus
monkeys (87). AAV (VR-195) and AAV (VR-355) showed
distinct tropisms from AAV6 in a panel of human cancer
cell lines, though they share 96% sequence identity with
AAV6 (81).

Although the isolation of novel AAV serotypes has
extended rAAV delivery to previously refractory cell types, it
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remains unlikely that a serotype with specificity for a single
cell type or tissue will emerge. As a result, various efforts to
apply rational or combinatorial rAAV design strategies are
still being developed to generate novel capsid mutants for
transduction of specific cells.

Mosaic Capsids

Mosaic virions, composed of a mixture of VP capsid
subunits from different serotypes, are an alternative ap-
proach to modify the properties of AAV vectors. In
particular, this method has the potential to combine benefi-
cial features from different serotypes. For instance, AAV2 is
readily purified by heparin affinity chromatography and has
moderate infectivity for liver, whereas AAV1 shows efficient
transduction of muscle. To combine the advantages of both
AAV2 and AAV1, Hauck et al. generated mosaic capsid

vectors, by mixing the two helper plasmids during vector
packaging, that can efficiently transduce both muscle and
liver (88). Furthermore, Rabinowitz et al. examined proper-
ties of mosaic capsids made from pairwise combinations of
AAV serotype 1 to 5. Mixing AAV3 and AAV5 at the 3:1
ratio exhibited dual binding properties to heparin and mucin
agarose, which mimic the primary binding receptors for
AAV3 and AAV5, respectively. An unexpected, synergistic
transduction effect was observed for some cell lines when
AAV1 capsid subunits were mixed with AAV2 or AAV3,
which suggests the potential utility of this approach to
produce new and novel AAV vector tropisms (89).

Gigout et al. extended the definition of a mosaic capsid
by generating vectors with a mixture of wild-type capsid
protein and mutant capsid containing the IgG binding Z34C
fragment of protein A, building upon earlier work discussed
below [receptor targeting via genetic engineering (90)].

Wild-type AAV2

A B C D E F

Various types of cells Neutralizing antibodies

AAV variants with altered tropism AAV variants that evade
neutralizing antibody

Directed evolutionDirected evolution

Fig. 1. Molecular engineering and evolution approaches have been applied to design AAV viral vectors for tropism change (A–D) and

evasion of neutralizing antibodies (NABs) (C–F). A Mosaic capsids, composed of a mixture of capsid subunits from different serotypes, can

possess the beneficial features of different serotypes. B Decoration of AAV capsids with either an antibody or a peptide targeting a cellular

receptor can yield a targeted vector. C Pseudotyping the AAV2 genome with a capsid from a different serotype can Btransfer^ the desirable

properties of the different serotype to AAV2. D Directed evolution of the AAV capsid, distinct from single round library generation and

selection, involves multiple rounds of genetic diversification and selection. AAV libraries containing capsid variants are generated and

subjected to selection for novel, diverse properties. Specific variants with desirable properties will be enriched and used for library generation

of a next round of selection (denoted by the solid, curved arrows). E Disruption of the epitopes of AAV2 NABs allows evasion of antibody

neutralization. F Conjugation of a synthetic polymer to AAV capsid can shield the AAV vector from NABs.
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These AAV2 mosaic capsid vectors were able to selectively
and efficiently transduce MO7e and Jurkat cells in the
presence of targeting antibodies against either the stem cell
factor receptor kit (CD117) or b1 integrins (CD29), whereas
AAV2 vector with a IgG binding domain alone exhibited 20-
and 100-fold lower infectivity, respectively, than that of wild-
type AAV2 vector (91). More recently, Stachler and Bartlett
have produced mosaic vectors composed of AAV1 capsid
proteins containing an RGD4C peptide to target integrins
present on vasculature, and AAV1 capsid proteins containing
a peptide that can be metabolically biotinylated for efficient
purification by avidin affinity chromatography. The resulting
mosaic AAV1 vectors exhibited 50- to 100-fold enhanced
transduction of endothelial cells and could be efficiently
purified without reduction in transduction efficiency (92).
Despite this impressive promise, the mosaic capsid approach
has two potential shortcomings. First, the ratios between two
serotypes may not be reproducible from packaging run to
run or scaleup. Second, a mosaic capsid can potentially be
inactivated by NABs directed against either serotype.
Additional investigation is required to address these
issues (88).

Receptor Targeting via Chemical Engineering

AAV2 vectors bind to HSPG, a receptor present in
many tissues and cell types (62). This broad distribution
therefore restricts this receptor_s utility for targeted trans-
duction in vivo. In order to overcome this limitation, several
research groups have developed novel conjugate-based
targeting methods to bridge interactions between the AAV
vector and specific cell receptors, thereby allowing AAV
transduction of nonpermissive cell lines (93,94). Bartlett et al.
have shown that binding of bispecific F(ab_g)2 antibody, with
specificity for the AAV2 capsid and the surface receptor
aIIbb3, to AAV vectors enables transduction of normally
nonpermissive megakaryocyte cell lines (93). However, the
reversible and potentially transient nature of virus-bispecific
antibody complexes in vivo may be a limiting factor for
achieving of efficient virus uptake and correct intracellular
trafficking in vivo (43).

As an alternative to bispecific antibodies, Ponnazhagan
et al. used a bispecific avidin-human epidermal growth factor
(EGF) fusion protein in conjunction with biotinylated rAAV2
to target cells via the EGF receptor. This approach significantly
increased transduction of EGF receptor-positive SKOV3.ip1
cells. Similar to EGF, human fibroblast growth factor 1 (FGF1)
has been fused to avidin to make a bridge between biotinylated
rAAV and FGF receptor-positive M07e cells (94). Recently,
Arnold et al. have described an alternative to chemical
biotinylation of AAV: metabolic biotinylation of an AAV
variant with a BirA biotin ligase substrate peptide genetically
inserted into the capsid. Co-expression of Escherichia coli BirA
yields biotinylated vector during production (95).

Receptor Targeting via Genetic Engineering

The majority of AAV targeting studies have involved
direct genetic insertion of targeting ligands into the cap gene.
In early work, Yang et al. created an AAV vector with a
single-chain antibody against human CD34 genetically

inserted at the N-terminal region of capsid proteins in an
effort to target hematopoietic progenitor cells (96). This
approach significantly increased the rAAV selectivity to-
wards a CD34+ human myoleukemia cell line, which is
refractory to infection of wild-type AAV vector; however,
titer was significantly compromised, a recurring theme in
capsid engineering. In a subsequent landmark study, Girod
et al. generated AAV2 capsid mutant (I-587) vector by inserting
a 14-amino-acid peptide, L14 (QAGTFALRGDNPQG), at
position 587 of the AAV2 capsid protein, an important and
subsequently often used position chosen via homology mapping
to the known crystal structure of canine parvovirus [the AAV2
structure was solved several years later (97)]. L14, which
contains an RGD motif that binds several cellular integrin
receptors, mediated efficient transduction of cell lines present-
ing appropriate integrins on their surface. Furthermore, the
genetically modified virus packaged at titers comparable to
wild-type AAV2 vector (98).

Wu et al. used a similar approach to enhance AAV
infectivity. Insertion of the serpin receptor ligand in the N-
terminal regions of VP2 led to 15-fold enhanced infectivity to
IB3 lung epithelial cells (99). Loiler et al. have also shown
that display of an ApoE ligand at the VP2 N-terminus of
rAAV2 resulted in 220- and 4-fold higher infection of both
islet cells ex vivo and murine hepatocytes in vivo compared
to wild-type rAAV, respectively (100).

Although a given peptide insertion allows targeting of a
single receptor, targeting a new receptor will then require a
new genetic modification of the capsid proteins. In order to
facilitate targeting new surface receptors, Ried et al. devel-
oped a versatile rAAV vector targeting system that is readily
capable of redirecting rAAV binding specificity. The Z34C
immunoglobulin (IgG) binding domain was inserted at
position 587 of the capsid protein to enable rAAV to bind
different antibodies via their Fc regions. The Fab region of
bound IgGs thus remains free to function as a ligand directed
against a specific cell surface receptor. rAAV2-Z34C vectors
coupled to antibodies against CD29, CD117, and CXCR4
efficiently infected human hematopoietic cell lines, which are
ordinarily refractory to infection of wild-type rAAV2 vector
(90). While highly versatile, this approach may also involve
reversible association of the AAV and IgG, which could pose
a challenge in vivo.

Library Selection and Directed Evolution Approaches

AAV vectors based on naturally occurring novel sero-
types, mosaic vectors, and rationally modified capsids have
shown some successes in altering AAV vector tropism or
enhancing infectivity. However, these approaches may have
limited potential for generating AAV tropism beyond those
already present in natural serotypes or in known, defined
targeting peptides. Although antibody conjugation to AAV
results in re-targeting of the vector to non-permissive cells to
some extent, this approach has several challenges including
improving packaging efficiency and improving the efficiency
of intracellular trafficking (101).

Advances in molecular cloning techniques and the
development of diverse high-throughput screening/selection
methods have enabled researchers to explore library-based
approaches to improve protein properties and to isolate
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novel proteins/peptides. Library-based approaches have also
been extended to modify viral vectors for gene delivery. This
section will focus three different approaches: isolation of
novel peptides from phage libraries and subsequent insertion
into AAV, direct selection of targeting peptide libraries in
context of the AAV capsid, and the directed evolution of
novel capsid proteins.

Insertion of Phage Library-Derived Peptide at Capsid
Proteins

M13 phage has long been used as a powerful platform
for the surface display of foreign proteins or peptides via
insertion into the phage coat proteins (102). Peptide libraries
displayed on the surface of the phage have been broadly
employed to select biologically active peptides that bind to
many different targets, including antibodies, receptors,
enzymes, and cultured cells (103). In addition, Pasqualini et
al. have successfully used phage display peptide library to
select peptides capable of mediating selective localization of
phage to murine brain and kidney vasculature (104). Several
investigators have first isolated cell and tissue targeting
peptides via phage display, then inserted the selected
peptides into AAV in order to alter vector tropism (105–
107). Grifman et al. have incorporated a tumor-targeting
peptide previously identified from phage display into rAAV2,
which successfully shifted vector tropism. However, peptides
selected via phage often suffer a reduction in targeting
capacity when transferred to the different protein context of
the AAV capsid (105). Analogously, Nicklin et al. have
selected a peptide from a phage display library that binds
selectively and efficiently to human umbilical vein endothelial
cells (HUVECs). The selected peptide SIGYPLP when
inserted at position 587 of the capsid protein mediated
enhanced transduction of HUVEC cells compared with wild-
type AAV vector. Additionally, enhanced transduction was
not observed in other cell lines including primary human
vascular smooth muscle cells and human hepatocytes,
indicating that the modified AAV vector exhibited a
degree of specificity (106). More recently, Work et al. have
shown that in vivo selection of a phage library resulted in
isolation of peptides that mediated phage localization to rat
brain and lung. Subsequent insertion of these peptides into
the V3 region of the AAV capsid protein yielded AAV
vectors that exhibited preferential localization to rat brain
and lung (108). However, these studies collectively showed
that transferring targeting peptides from phage to AAV
resulted in reduction in transduction efficiency, posing a
limitation of this approach.

Random Peptide Library Displayed Directly on AAV

In order to overcome the challenge of selecting a
targeting peptide in a different context from that in which it
is ultimately used, peptides can be directly screened or
selected in the context of AAV. Perabo et al. have utilized
a novel AAV library, which displayed random peptides on
the AAV capsid, to select variants with altered tropism (109).
Specifically, random 7 amino acid peptide sequences were
inserted at position 587 of the capsid, previously identified by
Girod et al. for its ability to tolerate insertions (98). The

resulting capsid mutant library was subjected to repeated
cycles of infection and harvesting on two cell lines, a human
megakaryocytic and a B-cell chronic lymphocytic leukemia
cell line, which are refractory to infection by wild-type AAV.
The resulting capsid mutant clones selected from the library
transduced the same cells with 100-fold increased efficiency
compared to wild-type AAV vector (109). Muller et al. used
an analogous approach to construct a random peptide library
displayed on AAV, which was then subjected to selection on
human coronary artery endothelial cells. The selected
peptides led to 10- to 630-fold enhanced replicative titers
and 4- to 40-fold enhanced expression of luciferase in human
coronary artery endothelial cells (110). This creative and
promising approach can improve interactions of virus with a
cellular target protein, though it may be unable to overcome
multiple extracellular and intracellular barriers to transduc-
tion, which may require engineering multiple regions on the
viral surface.

Directed Evolution of the Capsid Protein

Directed evolution has been used to generate protein
pharmaceuticals with enhanced biological activities, antibodies
with enhanced binding affinity, new vaccines, and retroviral
vectors with improved properties (111–115). Maheshri et al.
have applied this powerful approach to create AAV capsids
with novel and enhanced properties, including altered receptor
binding (116). A library of capsid mutants was prepared by
error-prone PCR followed by the staggered extension process
to distribute random point mutations throughout the primary
sequence of the capsid protein (116). After several rounds of
heparin affinity fractionation and passaging on cells, AAV2
mutants with affinities either higher and lower than wild-type
virus were isolated. This method has also been successful in
enhancing AAV infectivity of nonpermissive cells, such as
human astrocytes and other cell types (Koerber and Schaffer,
unpublished data). This approach can be further extended to
address many additional challenges in the development of viral
gene delivery vectors.

EVADING IMMUNE RESPONSES

Although AAV vectors have many desirable properties,
another challenge they face is pre-existing humoral and
cellular immunity. For example, seroepidemiological studies
have shown that 30–80% of the human population is
seropositive against AAV2 (2), and antibodies that neutralize
AAV2 infectivity been found in 20 to 67% of the human
population (2,42–44). Similar statistics exist for other human
AAV serotypes, as well as non-human serotypes that share
significant sequence similarity with human serotypes. Nu-
merous animal studies have shown that pre-exposure to
AAV is a major barrier to gene delivery. For example,
Maning et al. found that NABs directed against the AAV2
capsid prevents transgene expression after readministration
of rAAV vectors to muscle in a murine model (117).
Recently, Riviere et al. also found that repeated administra-
tion of rAAV2 vector to skeletal muscle of immunocompe-
tent mice resulted in 10- to 100-fold reduction in transgene
expression (118). In addition, Peden et al. have shown that
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preimmunization by administration of AAV to rat brains
prevents trangene expression following administration of
rAAV (45).

NABs pose the primary defense against initial viral
infection. Burton and colleagues have proposed the
Boccupancy^, or the Bantibody coating^ theory that posits
that the number of antibody required to neutralize the
infectivity has linear correlation with the surface area of
particle (119–121). This theory also implies that neutraliza-
tion of viruses results from steric hindrance of a portion of
the viral surface hampering interactions between virus and
cell surface or receptors (120,122). Considering the relative
sizes of an antibody, IgG (14–17 nm) (123) and an AAV2
virion (25 nm) (124), the occupancy theory seems plausible
for AAV neutralization.

Solutions to Antibody Neutralization

There are several approaches to overcome the problem
of pre-existing immunity of AAV2 vector. First, transient
immunosuppression during initial AAV vector administra-
tion has successfully circumvented the issue of anti-AAV
immune response in animal models (18,125,126). However,
while it has promise in attenuating cellular immune
responses, this approach does not solve the problem of pre-
exiting, circulating antibodies in the human population.
Accordingly, there have been several attempts to directly
modify the AAV capsid to evade antibody neutralization.

Chemical Engineering

Synthetic polymers have been conjugated to AAV in
attempts to shield the vector from antibody neutralization.
Conjugation of synthetic polymers, in particular biocompatible
polyethylene glycol (PEG), to protein therapeutics has been
widely used to enhance their half-life in serum by reducing
proteolysis and immune responses (127–132). Furthermore,
covalent attachment of PEG to the surface (PEGylation) of
adenovirus has been successfully used to shield the virus
from NABs in vitro and in vivo (133–140). For example,
Croyle et al. have shown that PEGylated adenovirus
exhibited 10-fold enhanced transduction efficiency in the
presence of NABs (139). Analogously, conjugation of PEG
to AAV vectors resulted in 2.3- to 5-fold enhanced protec-
tion of the vectors from antibody neutralization without
substantial loss of infectivity (141,142). However, several
limitations of this approach include difficulty in controlling
the number and sites of PEG conjugation, incomplete
protection of the full viral surface, and loss of viral infectivity
at high levels of PEGylation.

Isolation of Novel Serotypes and Pseudotyping

A new serotype is operationally defined as a virus that
does not efficiently crossreact with NABs for all other
characterized serotypes. Therefore, developing AAV vectors
using serotypes other than AAV2 seems a straightforward
approach to overcome pre-exiting immunity of AAV2.
Although extensive serological studies of all serotypes must
still be conducted, several research groups have explored the
utility of novel serotypes to achieve evasion of NABs

directed against AAV2 and other human serotypes. Xiao et
al. have shown that antibodies generated against AAV2 did
not cross-neutralize AAV1 vectors administered to murine
liver and skeletal muscle (7). Halbert et al. have shown that
AAV2 vectors pseudotyped with the AAV6 capsid (AAV2/
6) efficiently transduced mouse lung even after administra-
tion of AAV2 (20), while prior administration of AAV2
completely blocked transduction of a subsequent AAV2
vector. Hildinger et al. and Sandalon et al. showed that
AAV2/5 was not neutralized by antibodies raised against
AAV2 and exhibited efficient transduction to murine smooth
muscle cell or lung, respectively (143,144). Likewise, Peden et
al. have shown that AAV5 vector can transduce rat brain
pre-immunized against AAV2 vector (45). More recently,
Riviere et al. have examined cross-administration of AAV1,
AAV2, and AAV5 vectors to mouse skeletal muscle. Prior
immunization with various serotypes did not significantly
reduce transgene expression from a second vector of a
different serotype (118), whereas readministration of the
same serotype resulted in reduced transgene expression.
Although AAV1, AAV3, and AAV5 serotypes showed some
success in solving the problem of pre-existing immunity in
animal models, application of this approach to humans will
be limited by substantial pre-existing immunity directed
against these serotypes (1,72).

Other recently discovered serotypes offer more promise,
as for example Gao et al. have reported that only 6% of
human sera are positive against AAV7 and AAV8 (5). In
addition, pseudotyped AAV2/7 and AAV2/8 exhibited neg-
ligible neutralization following pre-administration of AAV2
vector (5). Although AAV7 and AAV8 may circumvent pre-
existing B cell immunity in human, these vectors face other
limitations. First, AAV also elicits a cytotoxic T lymphocyte
response (CTL). Recent studies have shown that AAV2 and
AAV8 capsids induce a CD8+ CTL response in a mouse
model (145,146). Importantly, although AAV2 and AAV8
may not share B cell epitopes, prior administration of AAV2
activated T cells that could mount an immune response
against AAV8 due to similar T cell epitopes present in both
capsids. In an importat recent study, Mingozzi et al. extended
this concept to human subjects. They showed that human T
cells stimulated by exposure to rAAV2 in a clinical trial
activate and proliferate upon exposure to alternate AAV
serotypes (AAV1 and AAV8), which could greatly limit the
utility of alternate AAV serotypes in overcoming pre-existing
immunity to human AAV serotypes (147). Transient
immunosuppression offers the potential to overcome pre-
existing T cell immunity. However, finding immunologically
Borthogonal^ AAV serotypes that can evade pre-existing B
cell and T cell immunity, as well as offer the possibility for
repeat administration, remains a challenge.

Disruption of Epitopes

Progress has been made in engineering AAV to
overcome antibody neutralization, in particular by mutating
the viral capsid to alter neutralizing epitopes and thereby
reduce antibody affinity for the vector. However, rational
design of vector mutants for reduced neutralization requires
extensive knowledge of the locations of neutralizing epitopes,
as well as how to mutate the virus without compromising
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viral infectivity. Several studies have mapped epitopes of
AAV2 NABs. First, Moskalenko et al. identified seven
regions of the capsid as epitopes for human polyclonal
NABs, using enzyme-linked immunosorbent assay (ELISA)
and a capsid peptide scan library (44). Second, Wobus et al.
mapped several linear or conformational eptitopes of AAV2
for three AAV2-specific murine neutralizing monoclonal
antibodies by using a gene fragment phage display library,
ELISA, peptide scans, and peptide competition experiments
(47).

In order to circumvent antibody neutralization, AAV
must be mutated to disrupt these and likely other epitopes
while maintaining the numerous viral functions required for
cellular infection and gene delivery, including receptor
binding. Opie et al. found that residues 484, 487, 532, in
particular, 585, and 588 are important for AAV binding to its
primary receptor, HSPG, on surface of cells (148). Wu et al.
have also shown that HSPG binding is greatly affected by
peptide insertion or mutation at five regions of capsid
protein: positions 509, 522, 561–565, 585–588, and 591 (99).
These residues do not overlap with most of identified NAB
epitopes (44,47). Therefore, guided by knowledge of resides
to preserve to maintain receptor binding, several research
groups have attempted to disrupt epitopes via capsid
mutation, though such mutations may compromise other
aspects of AAV transduction. Recently, Lochrie et al. have
identified positions of AAV2 capsid proteins that affect
transduction and antibody neutralization by using site-
directed point mutagenesis (149). Two point mutations,
S264A and V708K, exhibited 60-, and 220-fold enhanced
resistance to neutralization by a monoclonal antibody,
respectively, with capsid formation and transduction efficien-
cy comparable to wild-type AAV2. Residues 264 and 708 are
inside or very close to epitopes previously implicated in
neutralization by the monoclonal antibody A20 (44,47), but
they are distant from the residues critical for HSPG binding
in primary capsid sequence (148). Huttner et al. found that
insertion of L14 peptide at position 534 and 573 of AAV2
capsid protein, variants previously generated for targeted
gene delivery (98), serendipitously also resulted in up to 70%
lower neutralization by AAV NAB as compared to wild-type
AAV (150). However, these mutant AAV2s exhibited
significantly lower infectious titers.

Library Selection and Directed Evolution Approaches

Epitope mapping and the determination of the AAV
crystal structure (44,47,97) could be very helpful to aid in
rational modification of capsid proteins to address the
problem of pre-exiting immunity. However, rational design
of capsid proteins is still challenging due to a) numerous
epitopes that must be modified, coupled with b) complex
mechanisms of viral infection that can readily be disrupted by
capsid modification. Therefore, high-throughput screening/
selection of capsid mutants from AAV library is a promising
strategy to address the issue of NAB evasion.

Maheshri et al. performed directed evolution of AAV to
create vectors that evade antibody neutralization (116).
Directed evolution is defined by iterative rounds of library
generation, selection, generation of a new library, selection,
etc. Directed evolution, unlike a single round of library

generation and selection, therefore allows for iterative
improvement of function, similar to the process by which
nature evolves new biological entities and functionalities. In
this report, large mutant AAV capsid library was prepared by
using error-prone PCR followed by the staggered extension
process. The AAV library was then incubated with pre-
immunized rabbit sera, and viruses that evaded serum
neutralization and were thus able to infect cells in culture
were amplified. After two rounds of mutagenesis and
selection, several resulting AAV capsid mutants packaged
at titers equal to wild-type AAV but exhibited 1–3 orders of
magnitude higher resistance to NABs in vivo compared to
the wild-type capsid (116). The most effective mutant r2.15
has five mutations: E12A, K258N, T567S, N587I, and T716A.
K258 and T716 overlap with epitopes for polyclonal anti-
bodies directed against AAV2 (44). T567 is inside an epitope
for the neutralizing monoclonal antibody A20 (47), and N587
lies in the HSPG binding domain, into which insertion of L14
peptide previously provided moderate resistance to antibody
neutralization (150).

Perabo et al. also constructed a AAV capsid mutant
library, which was subjected to selection against human sera
neutralizing AAV2 (151). They performed a single round of
library generation and selection and yielded a clone carrying
two mutations (R459D and N551D) that exhibited 5.5-fold
higher resistance against pre-immunized human sera com-
pared to the wild-type AAV capsid. Residues 459 and 551 are
located in close proximity in the three-dimensional structure
of the viral particle and are exposed on the capsid surface.
Residue 459 overlaps with a NAB epitope. Interestingly, the
N551D mutation may be related to the T550K mutation,
which was found by site-directed mutations on capsid surface
and results in 3-fold resistance to intravenous IgG neutrali-
zation compared to wild-type AAV2 (149). These
approaches show promise for the creation of Fdesigner_ gene
delivery vectors with enhanced properties via directed
evolution (116) or single round library selection (151).

FUTURE DIRECTIONS

AAV has been extensively investigated as a promising
gene delivery vector. In this review, we focused on recent
advances in designing AAV vectors to change tropism,
enhance delivery efficiency, and evade antibody neutraliza-
tion. However, there are still several problems to be
addressed. First, targeted gene delivery to specific cell types
or even organs is still challenging. Recently, targeted gene
delivery to vascular tissue in vivo was attempted via insertion
of vascular endothelial cell targeting ligands into the AAV
capsid (108,152). More recently, AAV2 libraries displaying
random peptides were intravenously injected into mice, and
the resulting distribution of AAV variants in the vasculature
of different organs was evaluated (107). In the future, further
molecular engineering of more selective and efficient AAV
vectors to target organs or cell types can be anticipated.
Second, the transgene carrying capacity of AAV vector is
limited. Dong et al. reported that the optimum size of AAV2
vector genomes is between 4.1 and 4.9 kb (48), which restricts
delivery of larger transgenes. Grieger et al. found out that
proteasomal degradation after cell entry is responsible for
poor infectivity of AAV carrying larger genomes (153).
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Therefore, addition of proteasome inhibitors led to efficient
transduction of AAVs containing genomes as large as 6 kb.
As an alternative approach, trans-splicing of AAV vectors
have been developed (154–156). This approach requires
splitting a large gene up to 10 kb into two segments that
contain either intron donor or acceptor and coadministration
of two vectors into target cells, ultimately leading to
functional mRNA formation inside cells. Although this
approach shows promise for doubling transgene packaging
capacity, it suffers from low trans-splicing efficiency (157).
Finally, directed evolution promises to provide novel
approaches to overcome many challenges with AAV. It can
address the problem of antibody neutralization; however, the
challenge of pre-existing T cell immunity remains (147).
However, advances in knowledge of AAV infection mecha-
nisms and in novel molecular engineering approaches for
AAV vectors promise to yield new, enhanced AAV gene
delivery vectors.
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