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Abstract

We describe a novel approach to sorting class averages of a structure in multiple conformational
states in order to generate 3D reconstructions that account for conformational variability present in
the sample. The method assumes that the relative Euler angles between class averages are known,
then uses a common lines approach to match any given class against a set of distinct conformations
from a selected view of the structure. We show the effectiveness of the method both on model data
and on an experimental dataset for which the conformational variability is limited to a defined region
within the structure. During our studies of hepatitis C virus (HCV) internal ribosome entry site (IRES)
interaction with the human translation initiation factor elF3, we observed that the IRES RNA included
a flexible region holding multiple conformations. While current classification methods were used to
produce two-dimensional averages of the complex showing these different conformations, no method
existed for relating these averages in three dimensions. Our approach overcame these limitations,
giving us structural insight that was previously not possible.
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Introduction

Single-particle electron microscopy relies on merging data from different views of the particle
of interest to produce a 3D model. There are a number of methods for calculating the spatial
relationship between different particle views (Harauz and Ottensmeyer 1984; Radermacher et
al. 1987; van Heel 1987), but most make the assumption that the particle views being averaged
are of molecules in the same conformation. A problem arises when macromolecular complexes
exhibit conformational flexibility and/or alternative assemblies (Staley and Guthrie 1998;
Orlova et al. 1999; Roseman et al. 2001; Saibil et al. 2001; Yang et al. 2002; Brink et al.
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2004; Leschziner and Nogales 2007). If this fact is not taken into account, the result is a low
resolution and/or incomplete structure with an averaged-out variable region. While sometimes
a biochemical approach can be used to isolate specific assemblies or trap conformational states,
structural heterogeneity cannot always be resolved this way. Classification of different particle
views is a common step in single-particle reconstructions in order to average 2D images and
improve the signal-to-noise ratio, thus making the subsequent assignment of Euler angles
easier. Multivariate statistical analysis and classification have been widely used to obtain these
2D class averages (van Heel 1984). These methods, given a large enough dataset, also have
the potential to classify particles that are in different structural states (Burgess et al. 2004;
White et al. 2004). Even if particle views can be classified into conformational states in 2D,
the problem of relating the 2D projections to consistent models in 3D space still exists. One
method of dealing with conformational flexibility is to use multiple models, which cover all
conformations, in a projection matching approach (Valle et al. 2002; Brink et al. 2004; Falke
et al. 2005). Although this can be successful, it is often the case that such models are not
available. Unsupervised methods using maximum likelihood (Scheres et al. 2007) or cluster
tracking in multidimensional space (Fu et al. 2007), have been shown to be successful, but are
limited by the need for very large datasets.

The requirement for a methodology to sort out different views of multiple conformations
coexisting in an EM sample became clear during our single-particle studies of the translation
initiation factor elF3 interaction with the hepatitis C viral (HCV) internal ribosome entry site
(IRES) (Siridechadilok et al. 2005). We observed a region of the IRES with multiple
conformations that protruded from the more stable body of the complex. We first used a model
of elF3 alone to assign Euler angles to our elF3-IRES images by projection matching. When
we then examined the variance of el F3-IRES class averages assigned to a given view, it became
obvious that the IRES was assuming a multiplicity of conformations. We therefore used
focused classification within regions of high variance to generate unique conformation
averages (subclasses) for each projection view (Burgess et al. 2004). The present work
describes how 2D subclass averages were related in 3D space using an approach based on
cross-correlation of common lines (CCCL). The principles of our method are demonstrated
here both for synthetic and real experimental data.

Synthetic Data

For development and testing purposes, the crystallographic structure of the Klenow fragment
of DNA polymerase | (1KFD) (Beese et al. 1993) was used to generate an artificial EM data
set (Leschziner and Nogales 2006). A domain of the Klenow fragment was moved to create
two new structures that, while not biologically relevant, were a reasonable model for a particle
with a larger stable region connected to a smaller flexible domain (Fig. 1a). The three pdb
structures of the Klenow fragment were filtered to ~20A resolution to model a typical cryo-
EM structure. The test dataset contained 150 random projections from each of the three models,
representing what would be class averages of different views of the particle in the experimental
case. Datasets with different signal-to-noise ratios were created by adding increasing amounts
of Gaussian noise (Fig. 1¢). The dataset in which the standard deviation of the noise matched
that of the original projection (1:1) most closely resembled what one might obtain after
classification and averaging of single-particle images (Fig. 1b). Euler angles were assigned to
these projections by projection matching using reprojections, at 15° angular step, of a model
that was reconstructed from 150 randomly selected projections from all conformations. The
initial reference model had no error in angular assignment, but was an average of all
conformations, and therefore had low density in the variable region. Alignment and assignment
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of Euler angles by projection matching to an averaged heterogeneous structure introduces
similar errors to what would be expected in real data.

Experimental elF3-IRES Data

Cryo-EM images of elF3-IRES were collected on a CM200 microscope (200keV) at 50,000
magnification using an electron exposure of 15—20e/A2 , with a defocus range of —3.2 to —4.5
um. Micrographs were scanned on a Nikon Coolscan 8000ED with a pixel size corresponding
to 2.45 A at the specimen. About 19,000 particles were manually picked, and the CTF was
corrected by phase flipping. All particles were aligned to reprojections of a previous elF3 model
taken at a 15° angular step (a total of 186 reprojections). Class averages were calculated for
all particles that aligned to a particular reprojection, resulting in ~100 particles per average.
For each class-average image, a variance image was also calculated to give an indication of
the conformational flexibility present in that view. Regions of high variance were used to
generate a mask so that the region could be further characterized by focused classification.
Multivariate statistical analysis (MSA) and hierarchical classification were used to “sub-
classify” the raw images assigned to a certain view (contributing to a certain class-average)
based on the masked region of high variance (van Heel 1984; Burgess et al. 2004). Of the total
dataset comprising 186 views, 64 (for which the variance was large and well-defined) were
further classified into six different conformations with between 10 and 20 raw images per
average (see Fig. 2). Six was initially chosen to be a large enough number to potentially cover
all conformational variability, while allowing enough particles per group to build up significant
signal in the 2D averages.

Conformational sorting: cross-correlation of common lines (CCCL) approach

The goal of our approach was to identify a subset of distinct views that corresponded to each
of the conformations, and could be used to generate consistent 3D reconstructions. These
reconstructions would then be used as multiple references for projection matching of the full
dataset.

Any two 2D projections of a 3D model share a common 1D projection, known as a common
line (van Heel 1987). This can be used to assign relative Euler angles to 2D projections by
calculating the cross-correlation between all 1D projections and finding the maximum. In
practise this is carried out with class averages, which have improved signal. For our problem,
the relative Euler angles of all 2D projections or class averages are estimated from projection
matching against a single initial model that describes the general structure of the sample but
not its conformational diversity; the common line between any two projections is therefore
known. When multiple conformations are apparent in a single view, it is expected that the
cross-correlation of common lines (CCCL) between any pair of distinct (corresponding to
different views) class averages will be higher when they correspond to the same conformers
than when they correspond to different ones. Our strategy is to identify reference images, from
the same view of a molecule, that represent the different conformations present in the sample.
Then, given these conformational references, of known Euler angles, we can determine the
conformation to which any other projections, with different, but still known Euler angles,
belongs, by finding the reference that results in the highest CCCL.

The starting point for the approach is a set of 2D images in which heterogeneity is apparent.
For the test data these 2-D images consisted of reprojections of three distinct models with added
noise. For the real data sub-classified class averages were used. All images had Euler angles
assigned by projection matching to a model that does not account for heterogeneity. The
IMAGIC suit of programs (van Heel et al. 1996) was used for all image processing procedures.
To start the approach a projection view was selected that clearly showed the conformational
heterogeneity (Fig. 3a). Sub-classes or projections of this view that clearly show
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conformational heterogeneity were then used as conformational reference images. The angle
of the common line between these reference images and all other images corresponding to
different views was calculated from the assigned Euler angles using the
‘PREDICT_SINECORR_PEAKS’ function in the angular reconstitution program within
IMAGIC. Using the sinogram program in IMAGIC, 1D projections were then calculated for
all images and references over a 15° range, at a 1° step, around the determined common line
angle. A 15° range was used because of the expected error in Euler angles assignment due to
projection matching against reprojecions of a structure at 15° angular step. These sinograms
(van Heel 1987) were used to find the CCCL. A sinogram correlation function (van Heel
1987) was calculated between each reference sinogram and all other sinograms. From this
sinogram correlation function, the maximum CCCL for each comparison can be found, i.e. the
highest CCCL within a 15° range of the estimated common line. An image was said to be in
the same conformation as the reference to which its CCCL was highest (Fig. 3).

Synthetic data

For the test data the input to the approach were 450 images, corresponding to 150 projections
from each conformation of the model, with increasing amount of added noise. The Euler angle
for each image was assigned by projection matching using a model that was an average of all
conformations. From one particular view of the molecule three images were chosen for which
conformational flexibility was clearly visible (Fig. 3a). These served as conformational
reference images for further analysis. Common line cross-correlations were calculated for all
common lines, using a 1° step within a 15° range, between the three conformational reference
images and each one of the 450 images. For each comparison the value of the cross-correlation
used was taken as being the maximum within the 15° range (Fig. 3b). An image was designated
as being in the same conformation as that of the reference with which the highest cross-
correlation coefficient was obtained (Fig. 3c). This procedure was carried out for data sets with
different noise levels (see materials and methods section). For the noise level that most closely
matched the real data (1:1), reconstructions were calculated for each of the three groups (Fig,
4 a,b,c).

For the test data, the correct assignment of each image to its corresponding conformation is
known a priori. Therefore, a true measure of how well the sorting has worked can be obtained
for each different noise level dataset (Fig. 5a). From figure 5a it can be seen that at high noise
levels (1:5 — 1:3) the percentage of correct assignment is close to what would be expected from
randomly grouping images (33%). Accuracy of assignment increases between noise levels of
1:2and 2:1. For anoise level of 3:1 the accuracy plateaus at ~80%. The accuracy of assignment
may have been expected to increase up to 100%. However Gaussian noise added to the images
is not the only noise having an effect on the accuracy of CCCL. The initial alignment and
projection matching of images to the starting structure with an undefined variable region
introduces errors for both in plane alignment and Euler angle assignment. Searching CCCL
over a 15° range should overcome some of the uncertainty in the Euler angle assignment, but
no correction is made for any in plane alignment errors. Further analysis of the results was
restricted to the noise level that most closely matched the real data (1:1). The percentage of
correctly assigned projections for the whole dataset was observed to be 67%, (Table 1a)
whereas randomly selecting images would have resulted in 33% correct assignment.

If the group of correctly assigned images showed a preference for Euler angles closed to those
of the reference images, the newly generated conformer structures will be poorly defined. To
be more precise, in the 3D reconstruction for each conformer the heterogeneous region may
only be well defined when looking along the view from which the reference was selected. For
our test data it is possible to plot the CCCL together with the angular distance between the
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reference and the image (Fig. 5b). From this plot it is apparent that although there is a certain
bias to higher CCCL when the reference is close in Euler space to the image being assigned,
there is a good distribution of correct assignments across the whole range of angular distances.
In spite of the modest success rate, the approach was successful at producing three
reconstructions that clearly reflected the conformational flexibility of the whole dataset. This
conclusion was further proved when these three reconstructions were used for further
refinement of the whole data set using multi-reference projection matching (Brink et al.
2004;Falke et al. 2005). This final procedure resulted in a final misassignment of only 9%
(Table 1b). As a control, a random selection of 150 images was taken from the mixed dataset
and used to generate a reconstruction (Fig. 4d). This conformationally heterogeneous
reconstruction had poorly defined density in the variable region, making any further refinement
unfeasible.

elF3-IRES data

~19,000 raw particle images of elF3-IRES were assigned Euler angles and aligned using 186
reprojections from a structure of elF3. All the raw images that aligned to a particular view were
averaged, resulting in 186 class averages. The variance was calculated for each of the 186
averages. 64 showed significant areas of variance and were used for further subclassification.
A mask was created for each class-average based on the area of high variance, and classification
was then used for the area within the mask. These selected 64 classes corresponded to
projections views that were particularly sensitive to the conformational flexibility in the sample
and included sufficient coverage of Euler space to to provide reasonably isotropic 3D
reconstructions. The remaining projections, in which no conformational flexibility was clearly
discernable, likely because differences lie along the projection direction, were initially ignored.
As in the calculation with the model data, three subclass averages from one projection view
were chosen as conformational references, as they appeared to represent the three major
conformations of the IRES based on relative abundance (Fig. 6a). For each of these three
conformational references, the CCCL was calculated with each of the other 378 subclass
averages (63 projection views x 6 subclasses). A given subclass-average was taken to be in
the same structural conformation as the reference to which it had the highest cross-correlation
of common lines, using a 15° angular range to account for the initial Euler angle assignment
error. 3D reconstructions were then calculated for each of the three conformations using the
assigned subclass averages for each of the projection views (Fig. 6b). These reconstructions
were in turn used for further sorting of the full dataset using multi-reference projection
matching of individual particle images (Fig. 6). The reconstruction coloured blue in figure 6b
corresponds to a conformation of IRES that is almost identical to that observed when bound
to the 40S ribosomal subunit (Spahn et al. 2001). This allowed the IRES density in our study
to be used for alignment and the generation of a 40S-IRES-elF3 model (Siridechadilok et al.
2005).

Discussion

We have developed a method for sorting average projections of a structure in multiple
conformational states in order to generate 3D reconstructions that account for conformational
variability present in the sample. Preceding the application of our 3D sorting method, a number
of conventional steps need to be carried out. First, angular assignment of individual particles
or class averages must be obtained. This could have been done through projection matching
to a reference structure that lacked the variable region (like for our experimental case), or to a
reference that is the average of the whole population (as in our test with synthetic data).
Conformational variability is then detected and sorted by subclassification within each class-
average corresponding to a certain view. For our experimental data set, subclass averages were
obtained using focused classification within a mask generated using the region of high 2D
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variance for each class (i.e. for each projection view). Alternatively, focused classification
could use a mask generated by reprojection of a 3D mask generated using a 3D variance map,
as recently proposed by Penzcek and co-workers (Penczek et al. 2006). The final, novel step
is then the cross-correlation of common lines (CCCL) proposed here to relate the new 2D
subclass averages in 3D space. For this last step, a projection view is selected for which the
subclass averages are particularly distinct. These subclass averages, corresponding to a single
view, but representing the conformers existent in the data, are used as conformational
references for conformational assignment of the subclass averages in all other orientations.
The subclasses for each orientation are then sorted based on the highest CCCL with one of the
conformational references. It is important to remember that the common line between any two
class averages is approximately known , as Euler angle assignments preceded our analysis.
Particle images corresponding to different conformations of the macromolecular complex are
sorted into distinct 3D reconstructions by means of 1) having an assigned relative angle, and
2) by conformational assignment across different projection views. Once a significant part of
the data set has been assigned both Euler angles and conformation, multiple reconstructions
that reflect the variability in the data set can be generated, then used for multi-reference
refinement of all the images.

Here we demonstrate that the method works on model data as well as experimental images. A
mixed set of projections (equivalent to experimental class averages) from models of Klenow
fragment with a domain in different positions were sorted using three conformational
references corresponding to a projection view for which the different conformations appeared
most distinct. While conformational assignment was not 100% accurate, the resulting 3D
reconstructions showed clear conformational differences, and could be used as starting models
for further refinement and classification using projection matching.

We have shown that the method also works with real data. An elF3-IRES structure in which
conformational variability in the IRES RNA was clear from inspection of the 2D variance
associated with class averages of different views of the complex, was subjected to the same
processing as the model data. The structures of three IRES conformations bound to elF3 were
generated and subjected to further refinement. In one of these structures, the conformation of
IRES corresponded to that seen in the 40S-IRES structure from Spahn et al. 2001. This enabled
a model of the 40S-IRES-elF3 complex to be proposed that provided new insight into the role
of the initiation factor elF3 (Siridechadilok et al. 2005).

Our approach should be applicable to other reconstruction problems involving heterogeneity,
provided that a reasonable assignment of angles can be given to the projections before
classification, and that the conformational states are distinctive enough to allow conformational
sorting by CCCL. The first point requires the existence of a 3D structure similar enough to the
one under study that can be used as a reference for Euler angle assignment. In the case of elF3-
IRES, where the major conformational variability was in the IRES RNA, the structure of elF3
alone was used for this purpose. An alternative possibility would have been to generate an
average 3D structure of the elF3-IRES complex, for which the IRES will appeared smeared in
the region of flexibility, but that would otherwise be a true representation of the invariable
core. In cases of large, global structural changes, initial assignment of angles may be too
inaccurate (either by matching to an existing reference or by pooling all the data together into
an incorrect structure) to make our approach feasible.

In our experimental and test cases the variable area was small enough that angular assignments
could be done relatively accurately, but large enough that the signal in the cross-correlation
analysis was sufficient for conformational sorting. For elF3-IRES this was facilitated by the
high-contrast of RNA. For more subtle differences among conformers, the noise in the cross-
correlation analysis may hamper our approach. A number of techniques could be used in future
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implementations to address this problem. One would involve the use of weights for the
conformational assignments based on the relative values of the cross-correlation to the
references. The other would be to use a maximum likelihood implementation of our method
altogether, which is likely to be more robust when facing low signal-to-noise limitations.

A recent approach for detecting and characterizing conformational/biochemical heterogeneity
in an EM sample is the use of bootstrap 3D variance calculation followed by focused
classification (Penczek et al. 2006). This strategy would provide all the a priori requirements
for the use of our CCCL approach, which would then be used to do the final 3D conformational
sorting of the subclassified views. Thus, we believe that 3D variance and focused classification,
followed by CCCL should prove a powerful and generally applicable scheme to generate
multiple 3D references reflecting the heterogeneity of most EM samples.

Many macromolecular complexes are intrinsically flexible and exist in multiple conformations
in solution. While cryo-EM and single-particle reconstruction are uniquely suited to visualize
this native conformational flexibility, detection and sorting of heterogeneity is still an important
challenge in this field (see Leschziner and Nogales, 2007 for a review of recent methodological
efforts to analyze macromolecular flexibility and their application to a number of biological
systems). The goal of this work was to develop a method that would allow heterogeneous cryo-
EM single-particle data to be sorted when a model for the conformational flexibility does not
exist a priori. As long as the conformational flexibility of the structure can be used for the
subclassification of 2D class averages, the method described here makes it possible to build
consistent 3D reconstructions.

Development of methods such as this will allow single-particle cryo-EM to overcome the
problems associated with structural heterogeneity and will be crucial in understanding the
dynamics of large macromolecular structures.
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Figure 1.

Model structures used for testing. a, Three test models showing a distinct conformational
difference in the position of a single domain. b, Projections of the test models at random Euler
angles with sufficient added Gaussian noise to simulate the appearance of typical class-average
images. ¢, Projections of the test model with increasing noise added, indicated is the ratio
between the standard deviation of the added Gaussian noise and that of the initial projection
image.
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Figure 2.

Classifying heterogeneity in experimental 2D projections of elF3-IRES. a and b show an
example of the reclassification for two distinct 2D projections (views). The calculated variance
for the initial average shows a distinct region of high variability. By masking this region and
subclassifying the particles assigned to this view based on the density within the mask, a further
set of class averages is created. This second classification allows multiple conformations of
the variable region to be distinguished. The calculated variance for the reclassified averages
shows more consistent low values across the image. Variance within the region of the image
corresponding to the protein complex appears to be above background. This is likely the result
of small alignment errors and/or remaining conformational heterogeneity within the protein
complex itself.

J Struct Biol. Author manuscript; available in PMC 2008 September 1.




1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Hall et al.
a
References
b ] T 3 T i T
= 1 . i
3 2 -'l':II 24 1 2 |
—_lE Hlil ! i '-i.; A 1-'l
Comparison of ¢ ' f-'Jﬁ' ) " M 1 et/
t i § I 1 I i | (] 1
common lines 3 "I'*'-. [V ) fr_fl.'al alh [ W sk [l P a
3 "\ FiL iy F B
B -1 I|| ] il pd k I . ¥
o " co=0B4 L cos 57 ! o= B3
3 . 1 ir 2 . -
10 20 30 40 50 &) 10 20 30 40 50 &0 10 20 33 40 50 80
Pl

& A

Projechion commen e |
Aaleranoe commman -Il'l-ll

Cenddian &f céxsrman

Unknown projecton i i

Figure 3.

Cross-correlation of common lines to distinguish conformational states. a. Reference

Page 11

v

projections. All candidate projections will be designated as corresponding to one of the three
conformations based on the highest cross-correlation of common lines with these references.
b. Cross-correlation of common lines (CCCL), between each of the reference projections and
the candidate, for the maximum CCCL within the known 15° angular range. c. Candidate
projection, designated as being in the same conformational state as reference 1, due to its

highest cross-correlation of common lines.
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d
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Figure 4.

Model reconstructions. a, b and c, reconstructions of the sorted synthetic dataset, showing three
distinct conformations of the variable domain (see Figure 1 for the original starting structures).
d, reconstruction using a third of the total projections, randomly selected from the entire dataset.

J Struct Biol. Author manuscript; available in PMC 2008 September 1.



1duasnuely Joyiny Vd-HIN 1duosnuey JoyIny vd-HIN

1duasnuely Joyiny vd-HIN

Hall et al. Page 13

Figure 5.

Model data assignment results. a, graph showing the percentage accuracy of assignment within
each classified group across various noise levels. b, graph showing the value of the maximum
CCCL and success of assignment in relation to the distance between the Euler angles of the
reference and the assigned view.
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Figure 6.

3D conformational sorting of elF3-IRES

(@) Conformational variability in 2D averages of elF3-IRES described by three distinct
conformations of IRES bound to elF3 in a single projection view.

(b) Corresponding 3D reconstructions resulting from the application of the CCCL approach.
The blue conformer corresponds closely to that of IRES bound to the 40S ribosome (Spahn et
al. 2001).
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Assignment results using model data. For each group the number of individual projections for each confirmation
is shown together with the overall correct sassignment. a, Initial results after CCCL. b, Results from multi

reference alignment to the models built from the initial assignment.

a

Number of projections Group 1 Group 2| Group 3
Conformation 1 100 35 13
Conformation 2 41 88 19
Conformation 3 22 17 110
Assignment 61% 63% 77%

b

Number of projections Group 1 Group 2| Group 3
Conformation 1 127 19 4
Conformation 2 7 137 6
Conformation 3 2 2 146

Assignment

93%

87%

94%
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