
Corticosterone impairs dendritic cell maturation and function

Introduction

Immature dendritic cells (DC) are highly efficient at

sampling their antigenic environment but are inefficient

at T-cell priming and express low levels of surface major

histocompatibility complex (MHC) class II and costimu-

latory molecules B7.1 and B7.2.1–3 Upon encounter with

a pathogen or inflammatory signal, DC undergo matur-

ation, a process that is associated with a change in func-

tion from antigen uptake to antigen presentation.4,5

Maturing DC up-regulate surface expression of MHC

class II and costimulatory molecules.5 Maturation eventu-

ally results in a decrease in antigen uptake3,6 and is

accompanied by the production of pro-inflammatory

cytokines.7,8 The net result of these changes is that

mature DC possess a potent ability to prime naive T
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Summary

Dendritic cells (DC) play a critical role in initiating and directing adaptive

immune responses against pathogens and tumours. Immature DC are

thought to act as sentinels in peripheral tissues where their main function

is to capture antigen at sites of infection, whereas mature DC are highly

efficient at priming T-cell-mediated immune responses against infectious

pathogens. The DC maturation process is thought to be an important step

in the efficient generation of cytotoxic T lymphocytes (CTL). It is well

established that many aspects of immune function, including CTL-medi-

ated antiviral immunity, are modulated by neuroendocrine-derived prod-

ucts. Corticosterone (CORT), an adrenal hormone produced at increased

concentrations during a stress response, has been shown to play a role in

impaired CTL responses in stressed animals, leading to high mortality in

mice normally resistant to viral infection. While direct effects of neuro-

endocrine mediators on CTL have been studied, little is known about

their effects on DC that are critical for CTL priming. Here, we found that

physiologically relevant concentrations of CORT, acting via the glucocorti-

coid receptor, functionally compromise DC maturation. DC exposed to

CORT remained phenotypically and functionally immature after stimula-

tion with lipopolysaccharide and were impaired for the production of

interleukin (IL)-6, IL-12, and tumour necrosis factor-a. These effects

were biologically significant, as CORT treatment resulted in a marked

reduction in the ability of DC to prime naive CD8+ T cells in vivo. These

findings offer a potential mechanism underlying stress-associated immuno-

suppression.
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lymphocytes.1,2,5 The maturation process is likely to be

one of the earliest critical steps in the initiation of many

adaptive immune responses.

It is well established that products and processes of the

nervous and endocrine systems can have substantial

effects on both innate and adaptive immunity.9,10 In

humans and animals, external stimuli can initiate a ‘stress

response’ involving activation of the hypothalamic–pituit-

ary–adrenal axis, resulting in increased production of cor-

ticosterone (CORT, cortisol in humans) by the adrenal

glands, which is released into circulation.11 We and others

have shown that CORT plays an important role in the

stress-induced impairment of cytotoxic T lymphocyte

(CTL)-mediated antiviral immunity12–14 leading to a high

death rate from viral infection in normally resistant

mice.15 In addition to direct effects on T cells, stress-

induced CORT may modulate DC function. Because DC

play a crucial role in priming CTL-mediated immune

responses16,17 it is essential to understand the role and

mechanisms of neuroendocrine mediators in modulating

DC function.

Glucocorticoids, including endogenously produced

CORT, have long been known to possess immunosup-

pressive properties.18 Our previous studies have shown

that CORT, at physiologically relevant concentrations,

impairs the generation of antigenic peptide leading to a

functional decrease in antigen processing and presentation

on MHC class I by virus-infected DC.19,20 Here we extend

these studies to examine the effects of CORT on DC mat-

uration and function using primary bone marrow-derived

DC. We have determined that physiologically relevant

‘stress levels’ of CORT21,22 acting through the gluco-

corticoid receptor, significantly impeded or completely

blocked a number of phenotypic and functional changes

associated with lipopolysaccharide-induced maturation of

primary DC. These effects of CORT were functionally

relevant, as they resulted in impaired priming of naive

CD8+ T cells in vivo. Together, these findings demonstrate

that CORT impairs DC maturation and function, lending

new insights into potential mechanisms underlying

immunosuppression resulting from interactions of the

nervous, endocrine, and immune systems. Overall, these

studies further elucidate the complex role of endogen-

ously produced, stress-associated hormones in regulating

immune responses against infectious pathogens.

Materials and methods

Mice

Male C57BL/6 mice (Jackson Laboratories, Bar Harbor,

ME) were housed under specific pathogen-free conditions.

All experiments were performed according to the guide-

lines of the American Association for Laboratory Animal

Care International and the National Institutes of Health.

Generation of bone marrow-derived dendritic cells
(BMDC)

BMDC were generated as described previously, with mod-

ifications.23 Bone marrow was washed from the femurs

and tibiae of mice using sterile Hanks’ balanced salt solu-

tion. Approximately 107 bone marrow cells were plated in

Petri dishes containing Iscove’s modified Dulbecco’s med-

ium (IMDM) with 5% fetal bovine serum (FBS), 2 mM

glutamine, 200 U/ml penicillin, 100 lg/ml streptomycin

sulphate, 10 ng/ml granulocyte–macrophage colony-

stimulating factor (GM-CSF, PeproTech, Rocky Hill, NJ),

and 2 ng/ml interleukin (IL)-4 (Sigma, St. Louis, MO).

Every 2 days, cultures were gently swirled to dislodge

loosely adherent cells, and half of the media was replaced

with fresh media.

Corticosterone (CORT)/lipopolysaccharide (LPS)
treatment

Unless otherwise indicated, on day 6 of BMDC culture, at

which time dendritic cells (DC) were differentiated but

predominantly immature, CORT (98% pure; MP Bio-

medicals, Solon, OH) or vehicle (VEH, 0�1% ethanol)

was added to the culture media for 48 hr. During the

final 12 hr, cells were stimulated with 100 ng/ml Escheri-

chia coli 055:B5 LPS (Sigma).

Glucocorticoid receptor (GR) antagonist treatment

BMDC were generated as described above. On day 6, cells

were pretreated with 10)6
M RU-486 (Sigma) for 2 hr

prior to the addition of 10)6
M CORT. Thirty-six hr later,

cells were stimulated with 100 ng/ml LPS for 12 hr before

harvesting.

Analysis of protein expression by flow cytometry

BMDC were harvested, and Fc receptors and non-specific

binding sites were blocked with supernatant from the

anti-CD16/32 hybridoma (2.4G2)24 containing 20%

mouse serum. Cells were then stained with various com-

binations of directly labeled antibodies: fluorescein iso-

thiocyanate (FITC)-conjugated anti-I-Ab (AF6-120.1; BD

Biosciences, San Jose, CA), FITC-conjugated anti-CD40

(HM40-3; eBioscience, San Diego, CA), FITC-conjuga-

ted anti-B7.1 (CD80, 16-10A1; BD Biosciences), FITC-

conjugated anti-B7.2 (CD86, GL1; BD Biosciences),

phycoerythrin (PE)-Cy5-conjugated anti-CD11c (N418;

eBioscience), and PE-conjugated anti-Toll-like receptor

(TLR)-4 (MTS510; eBioscience). In some experiments,

cells were stained for surface CD11c prior to fixation with

2% paraformaldehyde and permeabilization with 0�5%

saponin (Sigma). These cells were then stained for I-Ab,

B7.1, or B7.2 to measure total (surface and intracellular)
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expression of each of these proteins. Flow cytometry was

performed on a FACSCanto (Becton Dickinson, San

Diego, CA), and data were analysed using FlowJo soft-

ware (TreeStar, Ashland, OR). DC were identified as

CD11c+ for analysis.

Detection of apoptosis

BMDC were harvested and stained with FITC-conjugated

anti-CD11c (N418; eBioscience), PE-annexin-V (BD Bio-

sciences), and 7-amino-actinomycin D (7-AAD; BD Bio-

sciences). Flow cytometry was performed on a FACScan

(Becton Dickinson), and data were analysed as described

above.

Real-time polymerase chain reaction (PCR)

The effects of CORT/LPS treatment on the transcription

of genes encoding I-Ab, B7.1, and B7.2 were analysed by

real-time PCR. DC were purified from BMDC cultures

using magnetic CD11c microbeads with an AutoMACS

cell sorter (Miltenyi Biotec, Auburn, CA) according to the

manufacturer’s instructions. RNA was isolated using TRI

reagent (Sigma), and cDNA was synthesized using Omni-

script reverse transcriptase (Qiagen, Valencia, CA). Real-

time PCR was performed on an Applied Biosystems 7900

HT Fast Real-Time PCR System (Applied Biosystems,

Foster City, CA) with TaqMan Universal PCR Master

Mix (Applied Biosystems) and prevalidated TaqMan

Gene Expression Assays Mm00439216_m1 (H2-Ab1),

Mm00444543_m1 (B7.1), Mm00711660_m1 (B7.2), and

Mm00446973_m1 (TATA-binding protein (TBP), all

Applied Biosystems). Relative changes in gene expression

were calculated using the DDCT method, computed by the

SDS software package v2.2.2 (Applied Biosystems) nor-

malizing to TBP expression as the endogenous control.

Fluorescence microscopy

DC in the same cultures were stained for both cell-surface

and intracellular ligands by indirect immunofluorescence.

DC were cultured from bone marrow on glass Lab-Tek II

eight-well chamber slides (Nalge Nunc International,

Naperville, IL) and treated with CORT and/or LPS as des-

cribed above. Non-specific binding sites were blocked with

10% goat serum (Sigma) in Hanks, balanced salt solution/

bovine serum albumin on ice for 20 min. For colocalizing

intracellular MHC class II (I-Ab) and lysosomes (lyso-

some-associated membrane protein (LAMP)-1), the cells

were first incubated with anti-CD11c antibody clone N418

(monoclonal antibody supernatant from the hamster

hybridoma) for 1–3 hr on ice. Following washes with

phosphate-buffered saline (PBS), FITC-conjugated anti-

hamster secondary antibody (diluted 1 : 200, eBioscience)

was applied for 30 min. This approach allowed for visual-

ization of surface CD11c to identify DC in the cultures.

The cells were washed, fixed with 4% paraformaldehyde,

then permeabilized with 0�05% saponin for 20 min at

room temperature. Following washes, intracellular staining

of the same cells was performed using a rat primary anti-

body against mouse LAMP-1 (CD107a, BD Pharmingen)

and primary anti-mouse I-Ab (Y3P monoclonal antibody

supernatant from mouse HB-183 hybridoma, American

Type Culture Collection, Rockville, MD) for 1 hr at room

temperature. Following washes, Alexa 546-conjugated

anti-rat and Alexa 647-conjugated anti-mouse secondary

antibodies (both diluted 1 : 200; Molecular Probes, Carls-

bad, CA) were applied for 30 min. The slides were moun-

ted with ProLong Gold antifade reagent (Molecular

Probes), and examined under an Olympus IX81 Deconvo-

lution microscope with Slidebook 4.0 software. All images

within a given experiment were acquired using identical

exposure times.

Antigen uptake

The uptake of soluble protein by BMDC was determined

by measuring the rates of uptake of FITC-conjugated

ovalbumin (FITC-OVA, Molecular Probes). DC were

purified from BMDC cultures using magnetic CD11c

microbeads with an AutoMACS cell sorter according to

the manufacturer’s instructions. CD11c+ cells were incu-

bated in prewarmed (37�) complete phenol red-free

IMDM (Invitrogen) for 30 min. FITC-OVA was added at

a final concentration of 10 lg/ml. Cells were incubated at

37�, and 3 · 105 cells were removed at 20 min intervals

and transferred to ice-cold PBS 1% FBS. Cells were trans-

ferred to black 96-well plates (Dynex Technologies,

Chantilly, VA), washed extensively, and lysed in PBS con-

taining 0�3% Triton-X-100. Lysates were analysed for

fluorescence using an XFluor4 Safire II plate reader

(Tecan, Research Triangle Park, NC). Samples were exci-

ted at a wavelength of 490 nm, and emissions were read

at 520 nm. Cells incubated with FITC-OVA on ice served

as negative controls.

In vivo T-cell priming

DC were purified from BMDC cultures using magnetic

CD11c microbeads with an AutoMACS cell sorter as des-

cribed. Cells were incubated with the immunodominant

herpes simplex virus (HSV)-1 gB498)505 peptide (100 nM,

SSIEFARL) for 40 min, washed and resuspended in PBS

containing 1% FBS. Mice received 5 · 105 CORT-treated

or VEH-treated cells intravenously in a volume of 500 ll.

One week later, the mice were euthanized and their

spleens were removed. Spleens were homogenized by pas-

sage through 60-gauge stainless steel mesh screens. The

resulting cell suspension was purified using Lymphocyte

Separation Media (Cambrex Bio Science, Walkersville,
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MD). Cells were then used for intracellular cytokine stain-

ing or degranulation assays.

Intracellular cytokine staining

Splenocytes were incubated in 96-well plates (4 · 106

cells/well) in the presence of 10 lM HSV-1 gB498)505 or

an irrelevant peptide (OVA257)264) at 37�. After 2 hr,

5 lg/ml brefeldin A (Sigma) was added to the cells. After

an additional 4 hr, the cells were stained with PE-Cy5-

conjugated anti-CD8a (53–6�7; eBioscience). Cells were

then fixed with 2% paraformaldehyde, permeabilized with

0�5% saponin, and stained intracellularly with FITC-

conjugated anti-interferon (IFN)-c (XMG1.2; eBioscience)

and PE-conjugated antitumour necrosis factor (TNF)-a
(MP6-XT22; eBioscience).

BMDC were treated with CORT and/or LPS as described

above. Four hrs prior to harvesting, the cells were treated

with 5 lg/ml brefeldin A to inhibit cytokine secretion.

BMDC were harvested and stained with FITC-conjugated

anti-CD11c. Cells were fixed with 2% paraformaldehyde,

permeabilized with 0�5% saponin, and stained intracellu-

larly with PE-conjugated anti-IL-6 (MP5–20F3; eBiosci-

ence), PE-conjugated anti-IL-12 p40 (C17�8; eBioscience),

or PE-conjugated anti-TNF-a. Flow cytometry was per-

formed on splenocytes and BMDC as described above.

Degranulation assay

The regulated secretion of lytic granules from cytotoxic T

lymphocytes (CTL) is triggered by T-cell receptor recogni-

tion of a target cell. CD107a (LAMP-1) is found on lyso-

somal membranes. These membranes are transiently

exposed to the extracellular media during CTL degranula-

tion. By incubating cells with antibody against CD107a, we

were able to measure degranulation in response to a specific

peptide. Splenocytes were incubated in 96-well plates

(4 · 106 cells/well) in the presence of 10 lM HSV-1

gB498)505 or an irrelevant peptide (OVA257)264) at 37�.

Wells also contained FITC-conjugated anti-CD107a (1D4B;

BD Pharmingen). After 1 hr, 10 mM NH4Cl was added to

cells to prevent endosome acidification. Three hrs later, the

cells were stained with PE-conjugated anti-I-Ab (AF6-

120�1; BD Pharmingen) and PE-Cy5-conjugated anti-

CD8a. Flow cytometry was performed using a FACSCanto,

and data were analysed using FlowJo software. Cells were

stained for I-Ab to exclude CD8a+ DC that constitutively

undergo endocytosis and take up anti-CD107a. Analyses

were performed on the CD8+, I-Ab
dim population of cells.

Statistical analyses

Statistical analyses were performed by applying Student’s

t-test. Significance was determined as P < 0�05. Error bars

in all figures represent standard error of the mean.

Results

Generation of BMDC

Bone marrow-derived cells were cultured in the presence

of GM-CSF and IL-4 for 8 days. At the end of this time,

the cultures predominantly contained DC (80–90%) that

were CD11c+, CD11b+, CD8a–, resembling myeloid DC

described in vivo.25,26 Most of these cells (90%) were

immature, expressing low levels of MHC class II, B7.1,

and B7.2 as measured by mean fluorescence intensity

(MFI) of antibody staining (Fig. 1a, shaded histogram).

CORT impairs LPS-induced up-regulation of
maturation-associated markers

DC maturation is associated with increased surface expres-

sion of MHC class II and the costimulatory molecules,

B7.1, B7.2 and CD40. To determine the effects of CORT

on DC maturation, we treated BMDC with CORT

(10)6
M) or VEH for 48 hr. This concentration of CORT is

similar to endogenous concentrations that we and others

have measured in mice undergoing a stress response

(1–3 · 10)6
M).21,22 During the final 12 hr of CORT treat-

ment, cells were also treated with LPS (100 ng/ml) to

induce maturation. After LPS stimulation, the cells were

harvested and stained for CD11c, MHC class II, B7.1, B7.2,

and CD40 for analysis by flow cytometry. On CD11c+ cells,

MHC class II, B7.1, B7.2, and CD40 each showed substan-

tial increases in surface expression after LPS stimulation

(averaging 46%, 90%, 102%, and 194% increases in MFI,

respectively, Fig. 1b, c). The effects of LPS on MHC class

II and B7.2 expression were completely blocked when the

cells were pretreated with CORT, while the effect on B7.1

was reduced by 50%, and CD40 up-regulation was only

slightly attenuated (Fig. 1b, c). These results suggest that

CORT impairs DC maturation. Although CORT treatment

alone slightly reduced the expression of each marker, this

treatment did not result in a substantial change of DC

staining profiles (Fig. 1a), because unstimulated cells were

mostly immature. Time-course studies demonstrated that

cells required 12 hr of exposure to CORT to maximally

impair DC maturation. CORT-treatment of DC for 6 hr

or less failed to substantially affect LPS-induced expression

of MHC class II, B7.1 or B7.2.

DC maturation is impaired by physiological
concentrations of CORT

CORT is constitutively produced in vivo at low levels but

is up-regulated under conditions of stress. At higher con-

centrations, CORT mediates its effects by binding the GR.

Because DC maturation was impaired by 10)6
M CORT,

we examined the effects of a range of concentrations of

CORT (10)9)10)6
M) on DC maturation. A low dose of
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CORT (10)9
M), as compared to no CORT (VEH),

slightly enhanced the effect of LPS on BMDC. However,

concentrations of CORT > 10)8
M, saturating the GR (GR

Kd ¼ 0�5–1 · 10)8
M), significantly impaired or blocked

the LPS-induced up-regulation of MHC class II (Fig. 2a),

B7.1 (Fig. 2b), and B7.2 (Fig. 2c).

Effects of CORT are mediated through the
glucocorticoid receptor (GR) and are not caused
by apoptosis

To determine whether the effects of CORT on DC matur-

ation were mediated through the GR, we used the GR

antagonist RU-486. BMDC were pretreated with RU-486

for 2 hr prior to treatment with CORT and/or LPS. While

RU-486 alone slightly reduced the LPS-induced up-regu-

lation of MHC class II, B7.1, and B7.2, the GR antagonist

completely prevented CORT from having any additional

effects on the LPS-induced up-regulation of these markers

(Fig. 2d). These results suggest that the impairment of

DC maturation by CORT is mediated through the GR.

Glucocorticoids have been reported to induce apoptosis

in DC under certain conditions.27 It was possible that

CORT had induced apoptosis in DC that otherwise would

have undergone maturation. To address this issue, we

stained CORT/LPS-treated BMDC with annexin-V and

7-AAD to detect early apoptotic and dead cells. However,

in three separate experiments, CORT did not increase
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the percentage of early apoptotic (annexin-V+, 7-AAD–)

or apoptotic/dead (annexin-V+, 7-AAD+) cells over the

48 hr treatment period examined (Fig. 3a), suggesting

that the observed CORT-induced impairment of DC

maturation was not caused by increased apoptosis or cell

death.

Because LPS induces DC maturation through binding

to TLR-428 it was possible that CORT reduced the surface

expression of TLR-4, which would make DC resistant to

LPS-induced maturation. However, we did not observe

any reduction in surface TLR-4 expression in CORT-

treated DC. Furthermore, LPS-induced TLR-4 down-

regulation was not modulated by CORT (Fig. 3b).

CORT impairs transcription of B7.1 and B7.2 and
causes intracellular retention of MHC class II

To determine the mechanism by which CORT impaired

the up-regulation of DC maturation markers, we exam-

ined mRNA and total protein levels of MHC class II,

B7.1, and B7.2 in CORT/LPS-treated DC. Total protein

expression (surface and intracellular) for each of these

molecules was determined by staining permeabilized cells

for flow cytometry. Staining profiles for total B7.1 and

B7.2 (Fig. 4a, b) were similar to those obtained from sur-

face-stained cells (Fig. 1a, b). LPS-treated DC contained

significantly more B7.1 and B7.2 than VEH-treated cells
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(average of 2�0- and 2�4-fold increases, respectively),

and these increases were partially (B7.1) or completely

(B7.2) inhibited in cells that were pretreated with CORT

(Fig. 4b, c).

Quantitative real-time PCR was used to measure the

transcripts encoding these proteins. LPS treatment resul-

ted in significantly increased transcription of B7.1 and

B7.2 (average of 4�3- and 3�8-fold, respectively, Fig. 4d).

Furthermore, CORT-treatment significantly impaired this

increase, with a greater effect on B7.2 than on B7.1. These

results correlate well with our observations that CORT

impairs the LPS-induced expression of B7.1 and B7.2 pro-

tein (Figs 1c and 4c), demonstrating that CORT modula-

ted the expression of B7.1 and B7.2 through effects on

the transcription or stability of RNA.

Although total protein staining for B7.1 and B7.2 resul-

ted in expression profiles similar to those of non-permea-

bilized cells, intracellular staining of MHC class II did not

resemble MHC class II surface expression. Recall that sur-

face expression of MHC class II was low in VEH-treated

cells and increased upon LPS-stimulation, but remained

low when cells were pretreated with CORT (Fig. 1b). Per-

meabilized DC stained strongly for MHC class II, regard-

less of whether they were treated with CORT and/or LPS

(Fig. 4a–c). When MHC class II transcripts were meas-

ured, the amounts of mRNA did not change in DC that

had been treated with CORT and/or LPS (Fig. 4d). These

data indicate that CORT did not have substantial effects

on MHC class II at the transcriptional or translational

levels, indicating that the effect of CORT on MHC class

II was post-translational.

Besides transcriptional and translational regulation, cell

surface proteins can be regulated at the level of traffick-

ing. The localization of MHC class II in CORT/LPS-

treated cells was examined by deconvolution microscopy

(Fig. 5). In VEH- and CORT-treated cells, MHC class II

was retained intracellularly and colocalized with the lyso-

somal marker LAMP-1. Upon LPS treatment, MHC class

II was expressed predominantly at the cell surface. How-

ever, when cells were treated with CORT prior to LPS sti-

mulation, MHC class II was retained intracellularly and

colocalized with LAMP-1. These studies indicate that the

effects of CORT on surface expression of MHC class II

are mediated by inhibiting LPS-induced trafficking to the

plasma membrane.

CORT prevents LPS-induced down-regulation
of endocytosis

The above studies show that CORT impaired the surface

expression of maturation-associated phenotypic markers,

including the LPS-induced up-regulation of MHC class II,

B7.1 and B7.2. Next, we determined the effects of

CORT on DC function, beginning with antigen uptake.

Immature DC continuously sample their antigenic
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environment. Upon encounter with a maturation-

inducing stimulus, DC transiently increase their rate of

antigen uptake before strongly down-regulating endocyto-

sis.3,6 Rates of uptake of soluble protein (FITC-OVA)

were measured in DC that had been treated with CORT

and/or LPS. As expected, LPS treatment significantly

reduced (47 ± 6%) the rate of antigen uptake compared

to VEH-treated cells (Fig. 6). However, cells that were

treated with CORT prior to LPS-stimulation endocytosed

antigen at a rate similar to VEH-treated cells. Cells treated

with CORT alone were also similar to VEH-treated cells.

This assay specifically measured active uptake, as control

cells incubated on ice did not take up FITC-OVA

(Fig. 6a).

CORT impairs cytokine production by DC

Activated DC produce cytokines that regulate the initi-

ation of immune responses.29,30 We determined the

effects of CORT on LPS-induced cytokine production by

DC using intracellular cytokine staining. LPS stimula-

tion induced the synthesis of IL-6, IL-12, and TNF-a.

CORT treatment significantly reduced the percentage of

LPS-stimulated cells that produced IL-6 (29 ± 2% versus

45 ± 3%) and IL-12 (21 ± 1% versus 46 ± 2%) (Fig. 7a).

In addition, CORT/LPS-treated cells produced signifi-

cantly less IL-6, IL-12, and TNF-a (averaging 55 ± 0�4%,

58 ± 4%, and 74 ± 3%) decreases in the MFI of cytoki-

ne-positive cells, respectively on a per cell basis than cells

treated with LPS alone (Fig. 7b).

CORT renders DC inefficient at priming CD8+ T-cell
responses

One of the most critical functions of DC is their role in

priming T cells to mount an immune response against

viral infection. We determined the effects of CORT on

the ability of DC to prime CD8+ T-cell responses in vivo
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Figure 5. Effects of CORT/LPS on cellular

localization of MHC class II. DC cultures were

treated with CORT and/or LPS as described

and stained for surface CD11c (green), intra-

cellular LAMP-1 (red), and MHC class II

(blue). Deconvolution microscopy was used to

visualize cells.
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by measuring peptide-specific CD8+ T-cell responses. The

use of an adoptive transfer strategy enabled us to separate

the effects of CORT on the DC from the T cells in vivo.

Mice were injected intravenously with DC pulsed with the

HSV-1 gB498)505 peptide, resulting in an antigen-specific

CD8+ T-cell response as measured by intracellular cyto-

kine staining for IFN-c and TNF-a. CTL-mediated cyto-

toxicity was also assessed by measuring degranulation in

response to specific peptide. Degranulation of CTL is trig-

gered upon T-cell receptor recognition of a target cell.

However, when mice received DC that were treated with

CORT prior to peptide-pulsing, the resulting peptide-

specific CD8+ T-cell responses were reduced significantly,

as measured by IFN-c (Fig. 8a), TNF-a (Fig. 8b) and

degranulation (Fig. 8c). These responses were antigen-

specific, as they did not occur when splenocytes were

pulsed with an irrelevant peptide (OVA257)264). Mice

injected with DC in the absence of peptide resulted in

responses similar to naive mice (data not shown).

Discussion

Many studies have demonstrated that animals under-

going a stress response exhibit reduced CTL function,12–14

which can lead to a high death rate following viral

infection in normally resistant mice.15 An important

component of this response involves the activation of

the hypothalamic–pituitary–adrenal axis resulting in the

production of CORT that, in addition to directly

impairing T lymphocyte function, may interfere with the

ability of DC to prime naive T cells. Most of the studies

examining the effects of glucocorticoids on DC function

have used the synthetic pharmacological glucocorticoid,
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dexamethasone.31–35 In our previous work19,20 and cur-

rent studies, we used the naturally produced glucocorti-

coid, CORT, which is more appropriate for examining

effects of neuroendocrine interactions on immune

function.

DC maturation is important for efficient priming of

naive T lymphocytes36 and has been shown to be critical

in the initiation of an adaptive immune response against

viral infection.37 In our studies, the CORT-mediated

impairment of DC maturation was associated with a defi-

ciency in priming antigen-specific CD8+ T-cell responses

(Fig. 8). Mice receiving CORT-treated DC generated fewer

cytokine-producing CD8+ T cells and fewer degranulating

cytotoxic CD8+ T cells than mice receiving VEH-treated

DC. These data suggest that elevated CORT concen-

trations found in vivo during a stress-response likely con-

tribute to the inefficient generation of CTL-mediated

immunity. A delay or failure to efficiently prime CTL can

compromise the successful control of an infection.15

Here, we have demonstrated that CORT-treated DC

were deficient in the up-regulation of the costimulatory

molecules, B7.1 and B7.2 (Fig. 1). Immature DC express

low levels of costimulatory molecules, making them

inefficient for T-cell priming.36 Upon maturation, DC

normally up-regulate B7.1 and B7.2 to provide the

necessary costimulatory signal to naive T cells through

CD28. A lack of costimulation can lead to T-cell

anergy38 and could contribute to our observed defici-

ency in T-cell priming in mice that received CORT-

treated DC.

The up-regulation of costimulatory molecules alone is

insufficient for T-cell priming.39 Mature DC also secrete

many cytokines, including IL-6, IL-12, and TNF-a. IL-6

and TNF-a are generally proinflammatory, and IL-6

renders effector T cells resistant to suppression by regu-

latory T cells.40 IL-12 is important for promoting cell-

mediated T helper 1 (Th1) polarization in CD4+ helper

T cells.41 We observed that fewer CORT-treated DC

were able to produce IL-6 and IL-12 in response to sti-

mulation with LPS, and that CORT reduced the amount

of IL-6, IL-12, and TNF-a on a per cell basis (Fig. 7).

The observed reduction in T-cell priming in vivo could

be caused by reduced costimulatory molecule expression,

cytokine production, or a combination of these factors.

In addition, it is possible that these effects could also

interfere with priming of CD4+ T cells. Others have pre-

viously reported that mice undergoing a stress response

exhibit strong Th2 polarization.42,43 These effects could

be the result, in part, of reduced production of IL-12 or

other cytokines by DC.

The effect of CORT on antigen uptake is further evi-

dence that CORT interferes with DC maturation. While

immature DC are efficient at antigen uptake, LPS-stimu-

lation transiently increases endocytosis before strongly

inhibiting it.6 This increase is thought to ‘load up’ the

DC with the antigen in its immediate environment prior

to migration to a lymph node for presentation to T cells.

We observed that antigen uptake was reduced after 12 hr
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of LPS stimulation, as expected. However, CORT treat-

ment prevented this down-regulation (Fig. 6). Although

antigen uptake remained high in CORT-treated DC, our

previous findings have shown that antigen processing

and presentation are impaired in CORT-treated DC.19

Together, these results have significant implications for

the effect of CORT on cross-presentation, suggesting that

the rate of antigen uptake may not be able to compensate

for the effect of CORT on antigen processing and presen-

tation. The effects of CORT and stress on cross-presenta-

tion, both in vitro and in vivo, are currently being studied

in our laboratory.

Our data suggest that the mechanism of action of

CORT is to directly oppose LPS as a DC maturation-

inducing stimulus. In LPS-stimulated DC, transcription

and expression of B7.1 and B7.2 are increased, while pre-

formed MHC class II is transported from intracellular

vesicles to the plasma membrane without any changes in

MHC class II transcription.44 CORT treatment impaired

both transcription and protein expression of B7.1 and

B7.2 in LPS-stimulated cells (Fig. 4). In contrast, surface

MHC class II expression is reduced in CORT-treated cells

via retention of pre-existing MHC class II molecules

within intracellular compartments. (Fig. 5). These results

demonstrate that CORT rendered DC resistant to the

maturation-inducing effects of LPS. However, the surface

expression of TLR-4 did not decrease upon CORT treat-

ment, indicating CORT was not simply reducing the

ability of DC to detect LPS. Furthermore, we found

that CORT also prevented DC maturation induced by

poly (I:C) or CpG DNA (data not shown), which induce

maturation through TLR-3 and TLR-9, respectively,

suggesting that the effects of CORT are not limited to

LPS-induced maturation. Because DC maturation and

cytokine production are mediated by distinct pathways

downstream of TLR-445 and both were modulated by

CORT, it is likely that CORT acts on multiple intracellu-

lar targets in DC. Because the effect of CORT on DC

maturation was blocked by a GR antagonist (Fig. 2d), it

is also likely these effects are mediated via the GR.

We have shown that CORT, a physiologically produced

glucocorticoid, functionally impaired DC maturation and

cytokine production and reduced the ability of DC

to prime naive CD8+ T cells in vivo. This inhibition

occurred via the GR with concentrations of CORT similar

to those observed in animals undergoing a stress

response.22 The deficiencies in DC function we have

observed represent a potential mechanism underlying the

inefficient generation of antiviral CTL responses observed

in stress-associated immunosuppression. These findings

illustrate the substantial effect that products of the ner-

vous and endocrine systems have on immune function,

and underscore the importance of considering neuro-

endocrine processes that can influence the outcome of an

immune response.
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