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Abstract
We have been developing a computer-aided diagnostic (CAD) scheme for lung nodule detection in
order to assist radiologists in the detection of lung cancer in thin-section computed tomography (CT)
images. Our database consisted of 117 thin-section CT scans with 153 nodules, obtained from a lung
cancer screening program at a Japanese university (85 scans, 91 nodules) and from clinical work at
an American university (32 scans, 62 nodules). The database included nodules of different sizes (4-28
mm, mean 10.2 mm), shapes, and patterns (solid and ground-glass opacity (GGO)). Our CAD scheme
consisted of modules for lung segmentation, selective nodule enhancement, initial nodule detection,
feature extraction, and classification. The selective nodule enhancement filter was a key technique
for significant enhancement of nodules and suppression of normal anatomic structures such as blood
vessels, which are the main sources of false positives. Use of an automated rule-based classifier for
reduction of false positives was another key technique; it resulted in a minimized overtraining effect
and an improved classification performance. We employed a case-based four-fold cross-validation
testing method for evaluation of the performance levels of our computerized detection scheme. Our
CAD scheme achieved an overall sensitivity of 86% (small: 76%, medium-sized: 94%, large: 95%;
solid: 86%, mixed GGO: 89%, pure GGO: 81%) with 6.6 false positives per scan; an overall
sensitivity of 81% (small: 69%, medium-sized: 91%, large: 91%; solid: 79%, mixed GGO: 88%,
pure GGO: 81%) with 3.3 false positives per scan; and an overall sensitivity of 75% (small: 60%,
medium-sized: 88%, large: 87%; solid: 70%, mixed GGO: 87%, pure GGO: 81%) with 1.6 false
positives per scan. The experimental results indicate that our CAD scheme with its two key techniques
can achieve a relatively high performance for nodules presenting large variations in size, shape, and
pattern.
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1. Introduction
Lung cancer is the leading cause of deaths among all types of cancer in the U.S [1]. The number
of deaths it causes is greater than the total number of deaths resulting from colon cancer, breast
cancer, and prostate cancer combined. Some evidence suggests that early detection of lung
cancer may allow for timely therapeutic intervention, which in turn results in a more favorable
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prognosis for the patients. Therefore, screening programs for early detection of lung cancer
have been attempted in the U.S. and Japan by use of computed tomography (CT) [2,3]. In a
screening program with CT, radiologists must read a large number of images, and they are
likely to overlook some lung cancers. Therefore, a computer-aided diagnostic (CAD) scheme
for nodule detection [4,5], which provides radiologists with the locations of nodule candidates,
would be particularly useful for reduction of detection errors in the early detection of cancer
in thoracic CT scans.

CAD schemes for lung nodule detection were developed first for chest radiographs [6] and
then for thick-section CT images [7-13]. The typical performance of current CAD schemes in
thick-section CT is an 80-90% sensitivity with 1-2 false positives per section, which translates
into tens of false positives per CT scan. The majority of false positives are caused by blood
vessels and other normal anatomic structures [10,12]. Because of the relatively large section
thickness (5-10 mm), CAD schemes for nodule detection in thick-section CT generally detect
nodules on a section-by-section basis. Since most of the processing steps, such as nodule
segmentation and feature extraction, are performed on two-dimensional (2D) section images,
they are considered to be 2D.

Since 2001, some investigators have reported their efforts in the development of CAD schemes
for lung nodule detection in thin-section CT images [14-22]. Because the section thickness in
thin-section CT is small, three-dimensional (3D) image processing and analysis techniques
become applicable. CAD schemes with good performance levels achieve a sensitivity of about
90% with 5-10 false positives per scan. As in thick-section CT, the majority of false positives
are caused by blood vessels and other normal anatomic structures [17]. A major disadvantage
of some current CAD schemes is the use of a relatively small database, with a small number
of nodules of ground-glass opacity (GGO).

To achieve a high performance level for a computerized detection scheme for lung nodule, it
is important to employ new effective techniques in major steps of the detection scheme,
including initial nodule identification and false positive reduction; it is also important to use a
relatively large database including both solid nodules and nodules with GGO. In this study,
we utilized a selective nodule enhancement filter [23] for improving the detection sensitivity
in the initial nodule identification step; we used an automated rule-based classifier [24] for
substantial reduction of false positives in the false positive reduction step; and we employed a
relatively large database for reliable estimation of the performance level of our CAD scheme.
We believe that the two new techniques considerably improved the performance level of our
CAD scheme, and that the use of a relatively large database enabled us to estimate the
performance level of our CAD scheme reliably.

2. Materials
The IRB approval for this research project was obtained before it started. A nodule is defined
as a focal lesion inside lungs that is 30 mm and smaller. We employed two thin-section CT
databases obtained from an American university and a Japanese university. The first database
consisted of 32 cases with 62 lung nodules collected at the American university by use of a
multi-detector-row CT (MDCT) (LightSpeed QX/I, GE Medical Systems, Milwaukee, WI)
from June 2002 to February 2003. The nodule cases were identified based on the radiology
report and/or pathology report whenever available. We excluded cases with severe diffuse lung
disease because these cases were not targets of this study. We also excluded cases with more
than 6 nodules, because these nodules were very likely to be metastatic, and they generally had
characteristics that were similar. In addition, nodules that were too small (<4 mm) or too large
(>30 mm) were not included because these lung nodules are clinically non-significant [25].
Calcified nodules were also excluded from our database. For the MDCT examinations, various
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protocols were used for the CT scans. The exposure ranged from 40 to 360 mAs, and the tube
potential was either 120 or 140 kVp. Various collimation and various reconstruction intervals
were employed; the ranges of collimation and reconstruction intervals were 1.25 - 5.0 mm and
1.0 - 2.0 mm, respectively. Each section had a matrix size of 512×512, a pixel size between
0.50 and 0.75 mm, and 4096 gray levels in Hounsfield units (HU). An expert chest radiologist
(22 years of experience) identified the location of each nodule by use of software developed
in our laboratory. The locations of nodules were employed for evaluation of our nodule
detection scheme in MDCT scans.

The second database was obtained from an annual screening program for early detection of
lung cancer with CT at a Japanese university [1]. The nodules found in the screening program
had been confirmed either as malignant by biopsy or surgery, or as benign by biopsy, surgery,
or follow-up examinations showing no growth for 2 or more years. The database consisted of
76 CT studies with confirmed cancers and 160 studies with confirmed benign nodules. Among
them, we excluded calcified nodules; we also excluded CT scans that had either too few slices
(<10) or discontinuous slices. Finally, we retained 85 high-resolution CT (HRCT) scans with
41 confirmed cancers (mean size: 12.6 mm, range: 6-20 mm) and 50 confirmed benign nodules
(mean size: 9.5 mm, range: 4-21 mm). For these examinations, a HRCT scanner (HiSpeed
Advantage, GE Medical Systems, Milwaukee) was used with a standard tube current (200 mA),
a 1-mm collimation, and a 0.5-mm reconstruction interval. Each section had a matrix size of
512×512, a pixel size of 0.29 or 0.39 mm, and 4096 gray levels in HU. Unfortunately, each
HRCT examination in this database included only a portion of a lung containing nodules;
therefore, it was not appropriate to use cases in this database for calculating the false-positive
rate per scan. For this reason, the nodules in this database were employed for determining the
sensitivity of nodule detection for our CAD scheme, but the false positives reported from this
database were discarded and were not used for determining the rate of false positives. Thus,
only the false positives reported from the first database were employed to calculate the false-
positive rate.

The combined database with cases from both databases included 117 cases with 153 nodules,
and was utilized for training and testing of our CAD scheme for nodule detection in thin-section
CT. In order to assess the characteristics of nodules included in the combined database, an
expert chest radiologist measured the size of each nodule. The radiologist first measured the
lengths of a long axis and a short axis of each nodule in a “central” section, in which it appeared
with its largest size. The average of the lengths of the two axes was defined as being the size
of the nodule. Figure 1 shows the distribution of the nodule sizes in our database. There were
68 (44.4%) small (4 - 8 mm), 52 (34.0%) medium-sized (9 - 13 mm), and 33 (21.6%) large
nodules (14 mm and above). The mean and standard deviation of nodule size were 10.2 mm
and 4.7 mm, respectively; the sizes ranged from 4 mm to 28 mm. It is obvious that our database
contained nodules with a relatively wide range of sizes.

In addition to nodule size, the pattern of a lung nodule, such as pure GGO, mixed GGO, or
solid nodules, is another major characteristic; therefore, we also determined the fractions of
nodules with GGO in our database. Based on the consensus of three radiologists, our database
included 101 (66%) solid nodules and 52 (34%) nodules with GGO, including 36 (24%) with
mixed GGO and 16 (10%) with pure GGO.

3. Methods
3.1. Overall scheme of our computerized detection technique

Figure 2 is a diagram of our CAD scheme for nodule detection in thin-section CT. The first
step was to segment lung regions of interest from other regions, such as muscle, fat, bone,
mediastinum, and background (air) outside the body. All subsequent processing steps were
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applied to the interior of the segmented lung regions. We then employed a selective nodule
enhancement filter to simultaneously enhance nodules (spherical structures) and suppress
normal anatomic structures included in the lung regions, such as blood vessels and airway
walls. In this step, we also employed two other filters for selective enhancement of linear
structures such as blood vessels and planar structures such as airway walls. Because of the
unique characteristics of our selective nodule enhancement filter, we could then identify most
nodules together with many non-nodules (false positives) from the nodule-enhanced images
by use of a thresholding technique. Also included in this step was a constrained 3D region-
growing technique for accurate segmentation of each nodule in the original CT images. Next,
based on the initial region and the grown region, we determined 18 features from the original,
nodule-, vessel-, and airway-wall-enhanced images, as well as an image of the shape index and
an image of the curvedness. Finally, we developed and applied a fully automated rule-based
classifier for analyzing various features in order to remove most non-nodules while retaining
most true nodules. The nodule candidates that survived the rule-based classifier were used for
determining the sensitivity and false-positive rate of our CAD scheme.

3.2. Lung segmentation
First, for use of the 3D image-processing and analysis technique, we employed a tri-linear
interpolation technique to make the size of the voxels equal to 1 mm in each of three dimensions.
We then separated lung regions from other regions and background outside the body for each
of the CT sections by use of a thresholding technique. A pixel with a CT value between -400
HU and -1000 HU was considered to be located inside the lung region, and was thus assigned
a value of 1; otherwise, the pixel was assigned a value of 0. After the thresholding, the lung
regions, together with background (air) regions outside the body, were separated from other
regions inside the body. In each section, we removed air regions outside the body by discarding
regions of value 1 that were attached to image boundaries. The regions that survived this
processing were considered to be lung regions.

However, nodules connected to the pleura might have been excluded from the lung regions
since the CT values for the pixels inside the nodule were outside the range -400 HU and -1000
HU. To correct this type of segmentation error, we first tracked the contour of the lung region,
shown as a solid curve in Fig. 3. From a starting contour point, we then scanned counter-
clockwise all points on the entire contour one by one. For each current contour point ‘A’, we
then scanned clockwise all contour points between the starting point and point ‘A’ until we
found a point ‘B’ that satisfied the following conditions: (1) the distance between points ‘A’
and ‘B’ is less than 30 mm, (2) all the pixels on a straight line ‘AB’ connecting points ‘A’ and
‘B’, shown as a dotted line in Fig. 3, have a value of 0 in the lung-segmented image, and (3)
the maximum distance between the straight line ‘AB’ and all the contour points between points
‘A’ and ‘B’ on the contour is larger than 2/3 of the distance between points ‘A’ and ‘B’. When
such a point ‘B’ was found, we assumed that we had found a juxtapleural object and we replaced
all the contour points between points ‘A’ and ‘B’ by the dotted straight line ‘AB’. By doing
so, we included a juxtapleural object inside the lung region. If such a point ‘B’ could not be
found, we simply proceeded to the next contour point of ‘A’ and considered it as the new
current point. From the new current point, we repeated the above procedure until all contour
points were checked.

3.3. Image enhancement by use of three selective filters
To achieve a high sensitivity and specificity for initial nodule detection, we applied a multi-
scale selective filter to the original image for simultaneous enhancement of nodules and
suppression of normal anatomic structures such as blood vessels in 3D image space [23]. Figure
4 shows the maximum intensity projection of (a) the original and (b) the nodule-enhanced
images for two cancers by use of our multi-scale enhancement filters. It is apparent in Fig. 4
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(b) that the low-contrast cancer and the blood vessel-attached cancer were enhanced, that the
second cancer was separated from the blood vessels, and that most of the blood vessels were
eliminated. It is thus much easier to detect nodules in the nodule-enhanced image than in the
original image. In fact, we also applied to the original image two selective filters for
enhancement of blood vessels and airway walls [23], which were employed for extracting
useful features for removal of non-nodules caused by blood vessels and airway walls.

3.4. Initial identification and region growing of nodule candidates
We then thresholded the nodule-enhanced images with a fixed, empirically selected value of
40 for separating nodule candidates from anatomic structures inside the lung regions. This
simple thresholding technique worked very well because our selective nodule enhancement
filter removed the majority of non-nodule objects with CT values similar to those of nodules.
A 3D connected-component labeling technique was then employed for identifying all of the
isolated objects. The labeling algorithm identified many small objects that were mainly due to
noise and other small non-nodule structures. Therefore, objects with an effective diameter
smaller than 2.5 mm were considered to be non-nodules and were eliminated hereafter. Other
objects were considered to be initial nodule candidates.

By comparing Figs. 4(a) and 4(b), it is apparent that the nodules appear slightly smaller in the
nodule-enhanced image than in the original image. Therefore, for each nodule candidate, we
developed a 3D constrained region-growing technique to segment it accurately in the original
CT images. First, the 3D region of each initial nodule candidate segmented from the nodule-
enhanced image was employed as a seed region for the constrained region growing in the
original CT images. We then calculated the mean and standard deviation of CT values for
voxels inside the seed region. Next, we added some voxels to the seed region if (a) these voxels
were adjacent to (in terms of 26-neighborhood in 3D image space) the seed region and (b) their
CT values were within a range defined by the mean CT value of the seed region plus or minus
two standard deviations. To prevent nodule regions from leaking into adjacent structures such
as blood vessels, the above region growing process was constrained to 5 repetitions, i.e., a
maximum of 5 mm growth. In each repetition, the mean and standard deviation of the current
grown region were re-calculated.

3.5. Feature determination
Based on the initial nodule region and the grown nodule region, we then extracted 18 features
for each of the nodule candidates from the original image, from the nodule-, blood vessel-, and
airway wall-enhanced images obtained with our selective enhancement filters [23], and from
the two images for the shape index and curvedness based on the differential characteristics of
the isointensity surface [26]. The 18 features extracted were:

1. Six features based on nodule shape: effective diameter, degree of compactness and
irregularity, determined in the initial and the grown nodule regions.

2. Twelve features based on voxel value: mean and standard deviation of voxel values
inside the grown region, each extracted from the original CT image, from the nodule-,
blood vessel-, and airway wall-enhanced images [23], and from the two images for
the shape index and curvedness [26].

The compactness was defined as 36πV2/S3, where V and S represent, respectively, the volume
and the surface area of the segmented nodule region. The compactness achieves a maximum
value of 1 for a sphere, and a value between 0 and 1 for other shapes. The irregularity was
defined as 1-(πd2/S), where the effective diameter d was defined as the diameter of a sphere
whose volume is equal to that of a segmented nodule region. The irregularity achieves a
minimum value of 0 for a sphere, and a value between 0 and 1 for other shapes.
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3.6. False positive reduction by use of an automated rule-based classifier
The rule-based classifier probably has been the most frequently used one since the early days
of development of various CAD schemes, including the detection and diagnosis of breast
masses and microcalcifications [27], lung nodules [6], colonic polyps [28], melanoma [29],
heart disease [30], mesothelial lesions [31], and bone disease [32]. The existing rule-based
classifiers are generally designed manually, and therefore, they often lead to a large
overtraining effect, i.e., a large difference between the estimated performance levels of training
and testing [24].

A rule in CAD schemes typically consists of two steps, i.e., selection of a feature and selection
of a cutoff threshold. As most existing rule-based classifiers do, our previous prototypical rule-
based classifier employs for a rule only a simple feature, which is either a clinical parameter
or a feature directly determined from various medical images [24]. Composite features, which
are generally a linear combination of many simple features, may provide a higher performance
than does the sequential utilization of individual simple features. To create a linear composite
feature, a subset of simple features must be determined first for each rule. Starting from a single
feature that achieved maximum separation between the two classes, a new feature was added
to the currently selected feature subset if its addition was “optimal” among all available features
to be added, in terms of Wilks’ lambda and the corresponding F-value [33,34]. Similarly, a
feature was deleted from the currently selected feature subset if its deletion was “optimal”
among all features available for deletion. With this sequential iterative procedure, we selected
a feature subset for determining an optimal composite feature.

For a selected specific subset of simple features, we employed a separation metric as a criterion
for determining the “optimal” composite feature for separating nodules from non-nodules (a
separation metric is defined as the ratio of the between-class and the within-class scatter
matrices [35]). The optimal composite feature is the linear combination of simple features that
maximizes the separation metric.

For this optimal composite feature x, it has been proven that the cutoff threshold must pass
through one of the nodules if one wishes to eliminate overtraining in the process of threshold
selection [24]. By use of the gain defined below, we developed a technique for automatically
determining which nodule the threshold should pass through. When the threshold was set to
be the kth smallest feature value among all nodules (k=1,2,...,K, where K is the maximum
number of nodules allowed to be sacrificed), we calculated the ratio of the number of non-
nodules removed to the number of nodules sacrificed. Thus, for the K possible thresholds, we
determined K ratios, among which one achieved the maximum value. This maximum value
was defined as the gain of the feature, and the corresponding threshold was considered to be
the optimal threshold for the feature. The Appendix gives the pseudo-code for the automated
rule-based classifier with composite features. In each loop (steps 3-6) of the Appendix, a rule
is constructed. After a rule has been applied, the training dataset and the number K of nodules
allowed to be sacrificed are updated dynamically. The algorithm terminates when K=0, i.e.,
when it reaches a predetermined sensitivity. Nodule candidates surviving this rule-based
classifier were considered to be the final nodule candidates.

3.7. Evaluation of the CAD scheme for nodule detection
The overall performance of our CAD scheme for nodule detection was evaluated by comparing
the computer-identified locations with the pre-determined locations of the centers of nodules.
To verify whether a true nodule in a dataset was detected, we first determined a reported nodule
candidate that was nearest to the center of the true nodule identified by a radiologist. If the
distance between the center of the candidate and that of the true nodule was less than 12 mm,
the nodule was considered to be a detected one; otherwise, it was considered as one missed by
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the computerized detection scheme. The distance threshold of 12 mm was selected empirically
based on our experiences in nodule detection. In addition to the above criterion, we visually
confirmed for each true nodule that the center of the candidate found by our scheme was indeed
inside the region of the true nodule. We thus determined the detection sensitivity by use of the
detected nodules. All other nodule candidates were considered to be non-nodules, and they
were employed for calculation of the false-positive rate.

We employed a four-fold case-based cross-validation method for evaluating our CAD scheme.
The entire database was first randomly partitioned into four folds, each of which contained
about 29 cases, including 8 (1/4 of 32) cases from the first database and about 21 (1/4 of 85)
cases from the second database. Each fold was then employed for testing, and the other three
folds were employed for training our CAD scheme. When all four folds were used for testing
our CAD scheme, a four-fold cross-validation was completed, and a sensitivity and a false-
positive rate per case were calculated based on the testing results of the four folds. For reducing
the variability in the estimated performance levels, the case-based cross-validation method was
repeated 10 times. Because our classifier is fully automated, we specified in each trial four
design sensitivities {80%, 85%, 90%, 95%} for training the automated rule-based classifier.
Consequently, in each trial, we determined four operating points (the pairs of sensitivity and
false-positive rate) for training and testing. At each operating point, we then calculated the
mean values of sensitivity and false-positive rate in 10 trials, and we employed the mean
sensitivity and false-positive rate for generating an empirical free-response receiver operating
characteristic (FROC) curve [36] by connecting consecutive mean operating points with
straight lines.

4. Results
4.1. Results of initial nodule detection

The results of initial nodule detection usually demonstrate how effective the steps of
preprocessing, enhancement, and initial nodule identification methods are. Of the existing
publications on computerized detection schemes in thin-section CT, only one, by Zhao et al.
[18], provided such an initial detection result, although their study was based on simulated
instead of real nodules. Zhao et al. detected 94.4% of nodules (251 out of 266 nodules) with
906 false positives per scan, whereas in our scheme, we detected 98.7% of nodules (151 of
153) with 140.2 false positives per scan (4486 false positives for 32 CT scans in the Chicago
database). Figure 5 shows (a) three low-contrast nodules with GGO that were successfully
identified by our initial nodule detection technique and (b) the only two nodules that our initial
detection technique failed to detect. The two missed nodules were approximately 11 mm and
12 mm in diameter and both were low-contrast nodules with pure GGO.

4.2. Results of final nodule detection
Figure 6 shows the mean FROC curves for training and testing the CAD scheme. For clarity,
the maximum number of false positives per scan in Fig. 6 was set to 25 rather than 140 (the
number of false positives per scan after initial nodule detection). Please note that the FROC
curve for training is located above that for testing, which indicates that overtraining bias
occurred in our CAD scheme for nodule detection. However, the extent of overtraining bias in
the automated rule-based classifier appears limited because the overtraining bias in the step of
cutoff threshold selection was completely eliminated for the automated rule-based classifier
[24].

Figure 7 shows the mean FROC curves obtained by testing our CAD scheme for the nodules
in the American dataset and the Japanese dataset, and for all nodules. All three curves were
obtained from the same testing experiments by use of the four-fold cross-validation evaluation
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method; however, in FROC curves for the nodules in the American dataset and the Japanese
dataset, the sensitivities were determined by use of the nodules in the American dataset and
the Japanese dataset only. Please also note that only the false positives in the American dataset
were employed to calculate the false positive rates in the three FROC curves. The performance
level for the nodules in the American dataset was lower than that in the Japanese dataset, since
the American dataset contained many subtle small nodules, which were more difficult to detect
than the medium-sized and large nodules.

Figure 8 shows the mean FROC curves obtained by testing our CAD scheme for the small
nodules (4-8 mm), the medium-sized ones (9-13 mm), the large ones (>14 mm), and all nodules.
It is obvious that the performance level for small nodules was considerably lower than those
for medium-sized and large nodules.

Figure 9 shows the respective mean FROC curves obtained for the solid nodules, the mixed
GGO nodules, the pure GGO nodules, and for all nodules. The sensitivity for solid nodules
was quite low, since 82.4% (56 out of 68) of the small nodules were solid; the other ones
(17.6%) were those with GGO.

Table 1 lists the means and standard deviations of sensitivities and false-positive rates per case
for different groups of nodules at four operating points, obtained with ten trials of the four-fold
case-based cross-validation method. At the first operating point, our CAD scheme achieved
an overall sensitivity of 75% (small: 60%, medium-sized: 88%, large: 87%; solid: 70%, mixed
GGO: 87%, pure GGO: 81%) with 1.6 false positives per scan. At the second operating point,
the CAD scheme achieved an overall sensitivity of 81% (small: 69%, medium-sized: 91%,
large: 91%; solid: 79%, mixed GGO: 88%, pure GGO: 81%) with 3.3 false positives per scan.
At the third operating point, the CAD scheme achieved an overall sensitivity of 86% (small:
76%, medium-sized: 94%, large: 95%; solid: 86%, mixed GGO: 89%, pure GGO: 81%) with
6.6 false positives per scan.

5. Discussion
CAD schemes for lung nodule detection in thin-section CT images have been developed by
some investigators [14-22]. A major disadvantage of some current CAD schemes is the use of
a relatively small database. The maximum number of cases in the current CAD schemes was
56, employed in a CAD scheme developed by Ge et al. [22]. Another problem with the current
CAD schemes is the use of a small number of GGO nodules. Most current CAD schemes
employed solid nodules only. Only McCulloch et al. [18] clearly stated that their database
included 8 GGO nodules.

In this study, we employed a significantly larger database (117 cases) than the databases used
in other CAD schemes. Our database contained 52 GGO nodules, which is also significantly
larger than those used in other CAD schemes. We believe that the use of a relatively large
database with more GGO nodules enables us to evaluate the performance levels of our CAD
scheme more reliably. In addition, we employed a combined database collected from two
universities. Such combination of datasets from different sites is advantageous because it
makes our CAD scheme more robust and stable.

In terms of techniques, we attempted to develop a CAD scheme for lung nodule detection in
thin-section CT by use of two key techniques, i.e., a selective nodule enhancement filter [23]
and an automated rule-based classifier with composite features [24]. The selective nodule
enhancement filter is very useful for simultaneously enhancing low-contrast spherical nodules
and suppressing linear and planar anatomic structures such as blood vessels and airway walls
[23], which are the main sources of false positives in our CAD scheme. This technique allowed
us to detect low-contrast nodules and blood vessel-attaching nodules with a high sensitivity
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and a low false-positive rate, which is evidenced by our high performance level for initial
nodule identification. The other key technique is an automated rule-based classifier with
composite features, which provides a high performance in distinguishing between nodules and
non-nodules by minimizing the overtraining biases [24]. With the application of these two
techniques, our CAD scheme achieved a good performance for our relatively large database
including not only solid nodules, but also nodules with GGO.

Generally it is very difficult to compare the performance levels of different CAD schemes
because they may use different databases with different sizes and different levels of difficulty.
In spite of this, we tried to carefully compare the performance levels of our CAD scheme with
those of other CAD schemes, and we ask the readers to cautiously interpret the comparison
results. We found that some current CAD schemes employed CT scans with only simulated
nodules [18]. Some employed CT scans with only partial lungs and used the number of false
positive per slice (instead of per scan) as their false positive rate [17,22]. Some did not describe
how their CAD schemes were evaluated with certain testing methods such as resubstitution,
leave-one-out, or cross-validation [16,21]. We believe that comparison of our CAD scheme
with these CAD schemes is inappropriate. In the remaining two studies, Paik et al. [20] used
a leave-one-out method to evaluate the performance levels of their CAD scheme based on a
database of 8 CT scans with an unknown number of solid nodules, and they achieved a
sensitivity of 80% with 1.3 false positives per scan or a sensitivity of 90% with 5.6 false
positives per scan; McCulloch et al. [19] used a cross-validation method to evaluate the
performance levels of their CAD scheme based on a database of 50 CT scans with 43 nodules
(35 solid and 8 GGO nodules), and they achieved a sensitivity of 70% with 8.3 false positives
per scan. In this study, we employed a cross-validation method to evaluate the performance
levels of our CAD scheme based on a database of 117 CT scans with 153 nodules (101 solid
and 52 GGO nodules), and we achieved a sensitivity of 81% with 3.3 false positive per scan,
or a sensitivity of 86% with 6.6 false positive per scan. Considering the size and the complexity
of our database, we believe that our CAD scheme achieved relatively high performance levels
compared with other CAD schemes.

Our CAD scheme has its disadvantages. For instance, the Japanese dataset included only
confirmed malignant and confirmed benign nodules. Such confirmed nodules are generally
larger than nodules to be encountered in screening program for lung cancer. The use of these
larger nodules would artificially increase the sensitivity for nodule detection, and thus
introduce an optimistic bias in the estimated sensitivity. The CT scans in the Japanese dataset
included only part of lungs, thus the false positives in the Japanese dataset were not employed
to calculate the false positive rate per CT scan. Therefore, we do not know the false positive
rate for the Japanese dataset. In addition, we excluded CT scans with severe diffuse lung
diseases in the American dataset, which would also introduce an optimistic bias in the estimated
false positive rate.

6. Conclusion
We have developed a CAD scheme for nodule detection in thin-section CT images that employs
two key techniques, i.e., a multi-scale, selective nodule enhancement filter and an automated
rule-based classifier. The selective nodule enhancement filter enhanced nodules and
considerably suppressed normal anatomic structures such as blood vessels and airway walls;
as a result, it significantly improved the performance of the initial nodule detection. The
automated rule-based classifier was “optimal” in terms of overtraining effects, and it achieved
good classification results, due to the use of composite features. Our CAD scheme for nodule
detection achieved good results for a relatively large database of thin-section CT scans.
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Appendix: Optimal rule-based classifier based on linear composite features

Input: A training dataset including N nodules and a design sensitivity S to be achieved.
Output: A list of rules based on composite features.

1. Determine the maximum number of nodules allowed to be sacrificed by using K=int[(1-S)(N+1)], where int[z] represents a function to round off z to
the nearest integer.
2. Do 3-6 below until K=0.
3. Determine a feature subset based on Wilks’ lambda and the corresponding F-value.
4. Transform the feature subset into a single linear composite feature by maximizing the separation metric.
5. For the composite feature, use gain to determine an optimal threshold for the construction of a rule.
6. Use the rule to update the training dataset by removing non-nodules and sacrificing k nodules, and update K by letting K = K-k.
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Fig. 1.
Distribution of nodule sizes in our database. The database contained nodules with a relatively
wide range of sizes. There were 68 (44.4%) small (4 - 8 mm), 52 (34.0%) medium-sized (9 -
13 mm), and 33 (21.6%) large nodules (14 mm and above) in the database.
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Fig. 2.
Overall scheme of the computerized detection technique.
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Fig. 3.
Schemetic illustration for inclusion of a juxtapleural object.
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Fig. 4.
Maximum intensity projection of (a) two 3D original images with nodules identified by arrows
and (b) nodule-enhanced images.
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Fig. 5.
(a) Three low-contrast nodules with GGO that were successfully identified, and (b) the only
two nodules that were missed by our initial nodule detection technique.
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Fig. 6.
Mean FROC curves for training and testing of our CAD scheme.
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Fig. 7.
Mean FROC curves obtained from the testing of our CAD scheme for the nodules in the
American dataset and the Japanese dataset.
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Fig. 8.
Mean FROC curves obtained from the testing of our CAD scheme for the small nodules (<9
mm), the medium-sized nodules (9-13 mm), the large nodules (>13 mm), and all nodules.
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Fig. 9.
Mean FROC curves obtained from the testing of our CAD scheme for the solid nodules, the
mixed GGO nodules, the pure GGO nodules, and all nodules.
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