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Adult dragonflies augment their compound eyes with three simple eyes known as the dorsal ocelli. While the ocellar
system is known to mediate stabilizing head reflexes during flight, the ability of the ocellar retina to dynamically
resolve the environment is unknown. For the first time, we directly measured the angular sensitivities of the
photoreceptors of the dragonfly median (middle) ocellus. We performed a second-order Wiener Kernel analysis
of intracellular recordings of light-adapted photoreceptors. These were stimulated with one-dimensional horizontal
or vertical patterns of concurrent UV and green light with different contrast levels and at different ambient
temperatures. The photoreceptors were found to have anisotropic receptive fields with vertical and horizontal
acceptance angles of 15° and 28°, respectively. The first-order (linear) temporal kernels contained significant
undershoots whose amplitudes are invariant under changes in the contrast of the stimulus but significantly reduced
at higher temperatures. The second-order kernels showed evidence of two distinct nonlinear components: a fast
acting self-facilitation, which is dominant in the UV, followed by delayed self- and cross-inhibition of UV and green
light responses. No facilitatory interactions between the UV and green light were found, indicating that facilitation
of the green and UV responses occurs in isolated compartments. Inhibition between UV and green stimuli was
present, indicating that inhibition occurs at a common point in the UV and green response pathways. We present
a nonlinear cascade model (NLN) with initial stages consisting of separate UV and green pathways. Each pathway
contains a fast facilitating nonlinearity coupled to a linear response. The linear response is described by an
extended log-normal model, accounting for the phasic component. The final nonlinearity is composed of self-
inhibition in the UV and green pathways and inhibition between these pathways. The model can largely predict
the response of the photoreceptors to UV and green light.

INTRODUCTION

The visual system of winged insects typically consists of
two distinct subsystems. The paired compound eyes
and their associated neuronal circuitry are functionally
analogous to the visual system of vertebrates, forming
well-resolved images and applying complex processing
such as movement detection and object recognition.
The dorsal ocelli are less prominent simple-lens eyes,
often occurring as a triplet.

The reasons for the presence of a supplementary set
of eyes are not well understood, but it is reasonable to
expect that the ocelli complement rather than duplicate
the compound eyes. The ocellar system is capable of
mediating a rapid response because the number of
synapses between receptors and descending neurons is
smaller than in the compound eyes. The ocellar system
has also developed receptor neurons with distinctive
peak spectral sensitivities in the UV and green ranges
(Ruck, 1965) and is therefore capable of processing
color information. However, it is unclear whether these
different spectral pathways are used concurrently or
separately during the different light levels afforded to
the dragonfly at daylight or dusk (Chappell and DeVoe,
1975; Klingman and Chappell, 1978).
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Also, the ocelli appear to have evolved to have poor
spatial resolution compared with the compound eyes
(Wilson, 1978), detecting overall illumination rather
than the detection of details. The optics of ocellar sys-
tems have been consistently found to be underfocused,
the receptor array is irregular, and there is a large
amount of convergence from receptors to second-order
neurons (Warrant and McIntyre, 1993; Mizunami, 1995).

The notion that ocelli lack spatial resolution has
recently been challenged by Stange et al. (2002), who
concluded that the median ocellus of the dragonfly
Hemicordulia tau is capable of image resolution. This
conclusion was based on anatomical measurements,
showing that the lens is unusually thick and that its
vertical curvature is sufficiently strong to form a focused
image on the retinal receptors. Ophthalmoscopy also
showed that an incident beam of parallel light evokes
tapetal reflections that originate from a small area.
Such measurements can only be indicative of a potential
for spatial resolution. There is currently no direct
measurement of the angular sensitivities of the median
ocellar receptors.

Abbreviations used in this paper: MSE, mean square error; MSPE,
mean square prediction error; NLN, nonlinear cascade model.
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The temporal responses of these cells to relatively
long (=200 ms) high contrast square impulses have
previously been measured (Chappell and Dowling,
1972; Dowling and Chappell, 1972; Simmons, 1982).
However, their linear responses or responses to
more ecologically realistic temporal sequences are not
known as they are for other invertebrate receptors
(Wong et al., 1980; Payne and Howard, 1981; Howard
et al., 1984; French et al., 1993; Anderson and Laugh-
lin, 2000; Juusola and Hardie, 2001a,b; Juusola and de
Polavieja, 2003).

The temperature sensitivity of the temporal re-
sponses is also of particular interest since flying dragon-
flies actively thermoregulate their heads to around
10°C above the corresponding thoracic temperature
(May, 1995). It is therefore likely that the ocellar recep-
tor speed is increased at increased temperatures as has
been demonstrated in receptor neurons of other inver-
tebrates (French and Jarvilehto, 1978; Tatler et al.,
2000) and that their ability to encode the light signal is
enhanced (Juusola and Hardie, 2001b).

In this paper we used a one-dimensional array of pairs
of individually controllable UV and green light emitting
diodes (LEDs) to concurrently stimulate the median
ocellar receptors. In vivo intracellular recordings of the
resulting membrane potential dynamics were analyzed
using system identification techniques with estimation
by multiple linear regression (James and Osorio, 1996;
James, 2003; James et al., 2005). This allows the efficient
and relatively assumption-free estimation of the spatial
receptive fields and temporal response characteristics of
the receptor neurons (Marmarelis and McCann, 1973;
Sakai et al., 1988). The technique provides significant
quantitative advantages over the methods that have pre-
viously been used to determine the receptor response
characteristics in the dragonfly median ocellus (Ruck,
1961; Chappell and DeVoe, 1975; Simmons, 1982); for
example, it can be used to detect nonlinear receptor re-
sponses (French et al., 1993).

We have made a quantitative analysis of the dynamic
response properties of light-adapted receptors exposed
to pseudorandom UV and green contrasts steps from
—0.82 to 0.82. These conditions are designed to mimic
those found by flying dragonflies in their natural envi-
ronment. We estimated first- and second-order Wiener
kernels for the light-adapted receptor responses. Tem-
poral modulation of the linear response, coupling of
the UV and green pathways, and spatial coupling be-
tween light signals from different angles are also in-
vestigated. The kernels and a parametric model are
fitted to experiments performed at different ambient
temperatures and contrast levels. The results are dis-
cussed in terms of the functionality of the ocellus and
the underlying mechanisms responsible for receptor
response.
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MATERIALS AND METHODS

Animal Preparation

Single electrode recordings were made from adults of Hemicor-
dulia tau (Odonata, Anisoptera, Corduliidae) that were either
netted locally or reared from nymphs in the laboratory. Once ob-
tained, animals were kept at 4°C in the dark and used within 3 d.
Prior to recordings, the animals were allowed to warm up to
room temperature (21-23°C) for at least 30 min. During that pe-
riod, the dorsal side of the animal was fixed to a wax-covered rod
of 6 mm diameter (Fig. 1 A) by first waxing its wings to the rod
and then wrapping insulation tape around the thorax such that
the legs were immobilized. Care was taken to allow free move-
ment of the abdomen to maintain ventilation. The neck was
slipped into an indentation in a yoke, mounted perpendicular to
the end of the rod, and the hemisphere-shaped head was waxed
to the yoke by its caudal rim. As the plane formed by the caudal
rim is perpendicular to the longitudinal axis; this assures that the
longitudinal axis is parallel to the axis of the rod, allowing pre-
cise alignment relative to the visual stimulus.

Exoskeleton and connective tissue that form part of the frons,
below the ocelli, were removed, exposing the orange-pigmented
capsule surrounding the retina. We further removed the esopha-
gus and mandibles together with their associated musculature in
order to reduce movement during the experiment.

Intracellular Recordings

Recording electrodes were pulled by a Flaming/Brown Micropi-
pette puller (model P-87, Sutter Instrument Co.) and had imped-
ances of 20-150 M{). A ground electrode made of chlorinated sil-
ver wire was placed firmly against an air sac adjoining the ocellus.
The recording electrode was connected to a preamplifier (model
5A, Getting Instruments). The thick membrane surrounding the
retina was penetrated with the recording electrode and the elec-
trode was advanced into the retina until a small hyperpolarizing
clectroretinogram was detected, and was further advanced, apply-
ing a combination of manual tapping and “buzzing” the pream-
plifier. The electrode was considered to be intracellular when
there was both a change in the light response from hyperpolariz-
ing to depolarizing and a drop in voltage of 30 mV or more.

Recordings were made from cells that had a peak response of
>b mV to the test stimulus (see Fig. 1 B). The range of peak re-
sponses to the test stimulus was 5-20 mV, consistent with previous
recordings from the ocellar receptor cells of dragonflies stimu-
lated with large steps in contrast (Chappell and Dowling, 1972;
Chappell and DeVoe, 1975; Simmons, 1982). This range of val-
ues can be attributed to the variability of response within differ-
ent spatial locations of single cells (see Stone and Chappell,
1981).

In total, 58 cells were recorded from. These included 5 cells
used for the temperature experiments, which were shown only
stimulus type II (see below), 38 cells that were presented both
stimulus types (I and II, see below), and 15 cells that were shown
only one of the stimuli types because the cell was lost before a full
set of measurements could be made. Cells were held on average
for 12 min (range 5-90 min). An example of a recorded re-
sponse to the pseudorandom stimulus type II and the difference
between two repeats is shown in Fig. 1 C. The power spectrum of
this response is shown in Fig. 1 D. Tissue was superfused with sa-
line (NaCl 7.5 g/liter, KCI 0.1 g/liter, CaCl, 0.2 g/liter, NaHCOq
0.2 g/liter) throughout the experiment, maintaining a thin me-
niscus over the retina. The electrical signal was displayed on an
oscilloscope and was recorded digitally, at a sampling rate of 5
kHz, on a PC using a 14-bit analogue to digital converter. Re-
corded data was later decimated (MATLAB) to reduce the effec-
tive sampling rate to the display refresh rate (625 Hz).



LED Display

The display consists of 16 pairs of green and UV LEDs (Roith-
ner Lasertechnik B5-433-B525, peak emission at \,,,, = 528 nm,
full width at half maximum 30 nm, and Roithner Lasertechnik
380D15, peak emission at A ,, = 383 nm, full width at half maxi-
mum 15 nm, respectively) arranged at 5° intervals on the circum-
ference of a circle. The dragonfly ocellus is positioned at the cen-
ter of this circle (Fig. 1 A). The arrangement is attached to a car-
dan arm, allowing manual rotation perpendicular to the optical
axes of the LEDs. This allows the display to be used as either a
vertical one-dimensional display at multiple azimuths, or as a
horizontal one-dimensional display at multiple elevations. The
LEDs are driven by individual voltage-to-current converting
driver amplifiers whose gains were set individually to match light
outputs to within 5%, using either a UV=sensitive photodiode
(Electro Optical Components, EPD-365-0/2.5) or a green-sensi-
tive one (Centronic, series 15-5T) as detectors. After calibration,
each of the UV LEDs produced a maximum flux of ~1.2 X 10
photons cm™2s7! at X = 383 nm and each green one produced a
maximum flux of ~0.9 X 10'* photons cm~2 s~ at A = 528 nm,
at the position of the ocellus.

Each driver amplifier is independently controlled via a 32-
channel D/A converter with 14-bit resolution (Analogue Devices
ADb5532HS). The converter features a digital sample-and-hold on
each channel so that pixels are only refreshed if they have
changed value. The converter is driven via a microcontroller
(Isopod, NewMicros Inc.) that, in turn, communicates with the
PC via a parallel port. Data from the PC are converted by the mi-
crocontroller into the serial format required by the D/A con-
verter. The display was refreshed at a rate of 625 Hz. The PC is
run on the Linux operating system (Debian), with a real-time
module (RTAI) for synchronous data acquisition and control, in-
terfaced with MATLAB for higher-level functions.

Stimulus

We generated pseudorandom sequences using MATLAB’s ran-
dom number generator. Two types of stimulus were produced.
In stimulus type I all 32 LEDs were driven by independent
sequences. Stimulus type II consisted of two independent se-
quences, one driving all UV LEDs simultaneously and one driv-
ing all green LEDs simultaneously. In both cases the time se-
quences consisted of 12,512 frames. Each channel was sampled
at 14-bit resolution with values uniformly distributed between
10% and 100% of maximum LED intensity. Mean intensity was
thus 55% of maximum, and the contrast of values relative to the
mean was uniformly distributed in the range *45/55, that is,
+0.82. The variance of stimulus contrast for this uniform distri-
bution is then 0.822/3 = 0.22, and standard deviation is 0.47, or
~50%, with values taken to be independent and identically dis-
tributed, subject to the quality of the random number generator.
An example stimulus is shown in Fig. 1 C and its power spectrum
is shown in Fig. 1 D. Sequences were displayed in a repeated loop
in synchrony with the data acquisition.

Temperature Experiments

Using the display in the vertical orientation, we repeated the
stimulus type II experiment at elevated ambient temperatures
in order to determine the effect this has on the cellular re-
sponse. Heat for these experiments was provided via an air cur-
rent from a small fan heater and temperature measurements
were made ~20-30 mm from the head of the animal, using a
thermocouple. The time taken for receptors to reach thermal
equilibrium with the air was experimentally determined to be
15 min, as further exposure did not increase the speed of the
cellular response. After making an initial recording at room
temperature the heater was turned on and 15 min allowed to
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Figure 1. (A) Schematic diagram of the experimental set-up.
Dragonflies were exposed to 20 s pseudorandom sequences
displayed on 16 UV and 16 green LEDs, refreshed at 625 Hz. The
display, shown in the vertical position, was also positioned hori-
zontally. Changes in membrane potential (mV) were recorded
intracellularly from an electrode inserted from the ventral surface.
(B) Receptor response to the 250-ms test stimulus of UV and
green. The response shown is an average of eight repeats. (C) The
top signal shows the response of the same receptor cell as in B
to the white noise stimulus type II. The noise in this response,
calculated as the difference between two experimental repeats
is shown below as well as the UV stimulus that produced the
response (green not shown). (D) Power spectra of the stimulus
and response shown in C plotted on an arbitrary (dB) scale.

clapse before further recordings were made at temperatures
7-10°C higher than the original recording. Subsequently the
ambient temperature was returned to its original value and 15
min allowed to elapse before further recordings made. Cells
were only considered for analysis if the time to peak of the lin-
ear response had returned to within 20% of its original value.
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The effect of temperature increases on the parameters was
gauged by the Q,, ratio defined as the fractional increase per
10°C (Tatler et al., 2000).

Kernel Analysis
Our analysis uses a model similar to other Wiener kernel analyses
of the insect visual system (Lee and Schetzen, 1965, Marmarelis
and McCann, 1973; McCann, 1974; James and Osorio, 1996; Juu-
sola and French, 1997) but with kernels estimated by multiple
linear regression (James, 2003; James et al., 2005). The contrast
level at each point of elevation or azimuth is defined as ¢ = (I —
Iy) /1y, where L is the intensity level at that point and I, is its mean
temporal intensity. Contrast is dimensionless, but for clarity it is
represented as having units C. Note that stimulus consists of in-
dependent identically distributed values with expected value
zero and variance V, = 0.22. We assume that the receptor re-
sponse y (mV) at sample steps t, running from 0, . .. , 12511, is de-
pendent on the UV contrast levels ¢, (0, t-1) and green contrast
levels cg(G, t) at either azimuth or elevation 0, for 8 = 0., 6, . . .,
016, and at preceding time steps t-7, and that the relationship is
described by the discrete Wiener series to second order, plus
hum and noise terms:

(1)

y(O) = £o+£,(0) + £5(0) + £, (1) + g (1) + £ (0) + £, (0) + (1)

The term £, produces a constant offset. The term £, (t), models
the first-order responses due to stimulation by UV contrast mod-
ulation, given by the convolution:

1, O
fu(t) = z z hu(e’TI) ) Cu(e7t_11)’ (2)
1,=00=0,

which sums values of the stimulus c, over preceding time steps
up to memory length 7, and over angle, weighted by the first-
order kernel h, (0, 7). The term f, is the corresponding compo-
nent for first-order response to green contrast, involving kernel
h, (0, 7).

The second-order (quadratic) term f,,(t) is given by

T T O

fuu(t) = 2 z z huu(e’Tl"C2)' (S)

1, =019=00=0,

[cu(8,t=11) - ¢ (0,t=Ty) = V.- 8(Ty - 1)1,

which sums product terms in the stimulus ¢, over pairs of preced-
ing time steps up to memory length 7,, and over angle, weighted
by the second-order kernel h, (0, 11, 7).

Values of the stimulus sequence c, are independent zero-mean
random variables. The term —V, - §(to — T;) subtracts the vari-
ance of the stimulus, V, = 0.22 at points in the summation where
T, = Ty and is otherwise zero. This ensures that the expected
value of the term f,,(t) is zero for our stimulus input statistics,
hence that the output is in expectation uncorrelated with the
zero-order term f,. It is this property that makes the series a
Wiener series relative to these input statistics. This formulation
makes the Wiener model a sum of dual pairings between the ker-
nels, and the members of a polynomial orthogonal basis in the
input values, as defined by Yasui (1979).

The terms fy, and f; give the corresponding components for
second-order response to green contrast and the interaction
component for UV and green input, although the interaction
component f,, does not require the correction term.

The term f,,,(t) fits a component due to 50 Hz mains hum,
which is modeled as a series of the first six terms in a harmonic
sine and cosine series with a fundamental frequency of 50 Hz.
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The contribution of intrinsic and other experimental noise to
the recorded signal is represented by e(t).

The receptor model considered here is therefore defined by
its Wiener kernels hy, hy, hyy, hye, and hy,. For each experimental
run, the raw experimental data were preprocessed by removing
low frequency drift observed in the signals over the 20-s record-
ing period. Low frequency drift was removed by fitting a fourth-
order polynomial to the raw data and removing it from the sig-
nal. The residual results were fitted to the model described by
Eq. 1 using multiple linear regression (James, 2003; James et al.,
2005), which produces the estimates of the kernels minimizing
the sum of squares of the residuals, e(t). Simulations with pre-
defined systems and multiple realizations of stimulus sequences
and experimental noise indicate that the least-squares estimates
have expected value equal to the true Wiener kernels of the sys-
tem, and that this is true even in the presence of higher-order
nonlinearity, which is not fitted in the model (unpublished
data). Detrended and hum corrected data for each experimental
run (yq) were obtained from the preprocessed data by removing
the fitted components f; + fj,,,.

Using multiple runs (2-9) we used a “leave one out” cross-vali-
dation method to calculate the prediction error. In this method,
a single detrended dataset is compared with the values predicted
by a model whose parameters are obtained from the mean of the
parameters fitted to each of the other datasets. The mean square
prediction error (%MSPE) is reported as a percentage of the sig-
nal power of the detrended data, defined as (Juusola et al.,
2003):

2
%MSPE = IOO-M,

1A (4)
(ya—va)

where the bar represents the temporal mean, f,, is the predicted

value, and vy, is the detrended hum-corrected signal. The re-

ported %MSPE is actually the mean of the %MSPE calculated for

different experimental runs.

To ascertain an optimal value of 7, (the memory of the sys-
tem), it was increased until the %MSPE for the corresponding
kernels either increased or if it decreased by <0.01%. The same
process was used to ascertain the validity of adding nonlinear
terms to the model.

Space-Time Separability
Separable models for the kernel h, are those written as the outer
product of a spatial profile (p,) and temporal waveform (i5,) of
the kernel such that the value of h, at time 7 and angle 6 is given
by h,(7, 8) = p,(0){, (1), with similar expressions for the green
kernel hy(T, 6). Note that 8 is the angle of elevation or azimuth
depending on whether the display was mounted vertically or hor-
izontally. Estimates of the spatial profiles and temporal wave-
forms were obtained using singular value decomposition (SVD),
which produces the space—time decomposition with least-square
deviation from the two-dimensional kernel. The absolute magni-
tude of the kernel was determined by the temporal component
with the spatial component set to have a maximum value of unity.
Kernels were deemed to be separable if the kernel recon-
structed from these components produced a percentage mean
squared error of <10% of the original kernel. The percentage
mean square error (%MSE) of the reconstructed kernel was cal-
culated as a percentage of the original kernel power in a similar
fashion to Eq. 4

%MSE = 100 x (h, - p,¥,)"/(h, - ,)",

with the mean taken over space and time, and similarly for
green.



Linear Parametric Model

An extended log-normal function (Payne and Howard, 1981) was
fitted to the first-order (linear) kernels in order to characterize
their temporal profiles. The log-normal model for the UV kernel
is defined as:

Gu(ty) = veexp(—{log(t,/t1)} /267), (5)

where tﬁ is the time to peak, o, determine the width, and v, is
the amplitude (units mV(C-ms)~!) of the UV response. By add-
ing a term proportional to the derivative of the G, we extended
Eq. 5 so that the extended model H, becomes:

1dG, (t,)

H,(t,) = Gu(t,) +71, (6)

n
where TZ (units ms) determines the relative proportion of the
derivative added to the log-normal model. Equivalent expres-
sions were used to describe the green response H, in terms of the
equivalent parameters tﬁ s Og, Vg, and ‘CZ .

NLN Sandwich Model

We fitted a nonlinear cascade model (NLN) to the data where
the first stage of the model consists of separate positive static
nonlinearities for the UV and green response. The resulting out-
puts for the static UV p,(t) and green p.(t) nonlinearities are
given by p,(t) = c,(t) + ajc,()? and p,(t) = c,(t) + axc,(t)?
where a; and ay are positive constants.

The middle linear filters for the UV and green pathways are
obtained from fitting the extended log-normal function (Eq. 6
and the green equivalent) to the UV and the green first-order
kernels. The outputs from the second stage of the UV pathway
are given by the discrete convolution:

t?rl
qu(t) = ¥ H (1) p,(t-1)dT, (7)
=0
and a similar expression describes the output from the second
stage of the green pathway, qg(t).

The third stage consists of a sum of the second stage outputs
qu(t) and qg(t) together with three delayed and inhibitory non-
linearities. These nonlinearities account for the inhibition of the
UV and green output from the second stage of the model. The fi-
nal output r(t) of the model is given by:

r(0) = (D) + qe() — 1y (t-1)° - (8)
€2t = T)q(t =) = €59, (t - T)°,

where ¢, ¢y, and c3 are positive constants and T; is the time delay
of the inhibition.

Simulated annealing (Press et al., 1993) was employed to
search for the parameters of the nonlinear model (Eq. 8) that
minimized the least squares difference between the model re-
sponse (r) and vy, the detrended experimental recording. This
was performed for each repeat and, using the same cross-valida-
tion technique used for the Wiener kernels, the %MSPE for the
NLN model was calculated.

Frequency Response

The power spectra of the detrended hum-corrected signals, and
signals reconstructed from the convolution of the kernels with
the input stimuli, were obtained by taking an 8192-point fast
fourier transform of their respective autocorrelation functions.
These calculations were performed in MATLAB using its xcorr
and fft functions. The resulting power spectra were smoothed by
taking an 80-point moving average.

RESULTS

Responses to Spatially Modulated Stimuli (Stimulus Type 1)
Using the spatiotemporal pseudorandom stimulus, where
each UV and green LED was independently modulated,
we were able to obtain first-order space-time kernels for
the UV and green response. We also fitted further mod-
els with second-order terms representing spatial inter-
actions between cells, coupling between UV and green
pathways and nonlinear temporal modulation of the re-
sponse, but found that the inclusion of any of these
terms did not reduce the mean %MSPE for any cells.
Thus, for stimulus type I patterns, the receptors are act-
ing linearly and we find no evidence for spatial interac-
tions between cells.

According to the cross-validation procedure (meth-
ods), under stimulus type I conditions the memory
(T) that produced optimal %MSPEs was 48 ms. Al-
though some cells benefited from fits to kernels with 7,
up to 64 ms, the reduction in %MSPE for these cells
was <0.01%. We therefore estimated all kernels for
stimulus type I using 7,, = 48 ms.

The linear Wiener kernel models gave an average
%MSPE of 9.7% (n = 18 cells) in the vertical plane and
7.8% (n = 25 cells) in the horizontal plane. The aver-
age root mean square (RMS) values of the detrended
signal (y,) and kernel fit were respectively: 0.30 mV
(SD = 0.11) and 0.28 mV (SD = 0.10), for the vertical
plane, and 0.22 mV (SD = 0.10) and 0.19 mV (SD =
0.06), for the horizontal plane.

UV space-time kernels were well described by the
kernels reconstructed from their spatial and temporal
components obtained through singular value decom-
position. The percentage mean square error of the re-
constructed kernels, as a percentage of the original
kernel power, was in the range 0.1-5.0%. For green
kernels, we found that 15 out of 43 cells had green
space—-time kernels that were not separable (%MSE
range of 11.1-56.3%). The difference between the ker-
nel and the outer product of the spatial and temporal
components could be attributed to recording artifacts
and the amount of noise in the kernel estimate.

Angular Sensitivities (p, and p,)

Fig. 2 shows examples of the UV and green spatial com-
ponents of first-order kernels for three receptor neu-
rons, in the dimension of elevation. The LED array was
mounted vertically on a cardan arm that allowed man-
ual adjustment in azimuth. The recordings were ob-
tained after positioning it at the azimuth of maximum
sensitivity to brief flashes of light from all LEDs in the
array. We notice that those particular neurons had their
maximum responses at elevations of 20° (Fig. 2, A and
C) and at 2.5° (Fig. 2 B) above the horizon; on either
side of this maximum, the responses fall off rapidly.
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Figure 2. Normalized angular sensitivities in elevation to UV (p,)
and green (pg) light are shown for three cells A, B, and C. These
were obtained by performing a singular value decomposition of
the first-order spatiotemporal kernels estimated for these cells.
The UV to green ratio, at peak response, is given for each cell
(UV/GR), as well as the azimuthal position of the vertically
mounted display. Error bars indicate SEM.

Fig. 3 shows analogous measurements in azimuth, ob-
tained independently, on different animals. Here, the
array was mounted horizontally, allowing adjustment in
elevation. It is apparent that the responses extend over
a wider range of angles.

Elevation measurements were repeated for a total of
16 receptor neurons. The mean value of the accep-
tance angles, Ap (defined as the response’s full width at
half maximum, FWHM), is 14.7°, with a standard devia-
tion of 4.3°. To summarize results, angular sensitivities
were mapped against locations in azimuth, as shown in
Fig. 4 A. The dashed ellipse represents the outline of
the total field of view of the ocellus, of 120° X 60° as de-
termined in eyeshine measurements by Stange et al.
(2002).

A corresponding dataset was obtained for azimuth
measurements. A total of 21 neurons were tested; the
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Figure 3. Angular sensitivities in azimuth to UV (p,) and green
(pg) light are shown for three cells (A, B, and C). Details are the
same as in Fig. 2 but with the elevation of the horizontally
mounted display given for each cell.

mean acceptance angle was 27.6°, with a standard devi-
ation of 4.6°. To summarize results, angular sensitivities
were mapped against locations in elevation, as shown in
Fig. 4 B.

All responses occurred to the left of the vertical mid-
line, consistent with the fact that all recordings were
made from the right retina. There is a bias toward the
upper half of the receptive field, which we attribute to
bias in the recording procedure: the electrode was al-
ways inserted into the retina from its ventral side, with
the consequence that upwards-looking receptor neu-
rons were encountered first. We also noticed that 29 of
the 37 receptive fields are within *£15° of midline. We at-
tribute this to the fact that the receptor neurons at the
center of the retina are much larger than those at the
periphery (Stange et al., 2002), with the consequence
that recordings from those neurons are more likely.

As there is no evidence for any systematic variation of
angular sensitivities with position on the retina, we in-



-30°

Figure 4. (A) Elevation angular sensitivities of 16 receptor
neurons and (B) azimuthal angular sensitivities of 25 receptor
neurons. Lines represent the spans for which responses were
>50%. The dashed ellipses (width 120°, height 60°) represent
the total field of view of the ocellus, as determined by optical
measurements.

fer that a typical receptor neuron has a FWHM field of
view that is elliptical, covering 14.7° in elevation and
27.6° in azimuth. The total field of view of the median
ocellus is 60 X 120° as inferred from eyeshine mea-
surements. Therefore, that field could accommodate
four independent sampling stations or pixels in azi-
muth and four pixels in elevation. It needs to be con-
sidered, however, that the total number of receptor
neurons is ~~1,500, implying spatial oversampling by a
factor of 10 in each dimension. Such oversampling
could, for instance, improve signal-to-noise ratio at low
intensities or contrasts, or it could be relevant for fast
motion detection.

Temporal Responses ({5, and s,)

Time components of the linear response were charac-
terized by a latency of ~5 ms followed by a depolariza-
tion that peaked at ~14 ms. Temporal responses for
three cells are shown in Fig. 5 (A, C, and E). In all but
two cells, the tail of the transient included a distinctive
undershoot of the resting potential followed by a slow
return to the equilibrium value (seen in Fig. 5, A and
C, but not E).

There were no discernible differences in the shape of
the linear kernels for UV and green light in each cell.
The UV-green ratio, measured as the ratio of the peak
values of h, and h,, varied widely between cells, ranging
from ~0.9 to ~10.5. We also observed that the mean
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Figure 5. Time components of UV ({,) and green ({,) first-

order kernels (A, C, and E) and modified log-normal fits to these
functions for the same three cells (B, D, and F). The black and
gray lines indicate UV and green response, respectively. Error bars
indicating the SEM in the time component of the first-order
kernels are shown in (A, C, and E). The circles in B, D, and F
represent the kernel values fitted. Parameter values obtained from
fits to Eq. 6 are: B(a) UVv, = 0.034 mV(C-ms) !, t{: = 15.7 ms,
o, = 0.281, ‘E = 10.5 ms, and green v, = 0.032 mV(C-ms) !, tz =
15.4 ms, 0'g = 0.272, T:f = 8.8 ms; B(b) UV v, = 0.051

16.4 ms o, = 0.291, ‘C =109 ms, and green

mV(Cms)~1, ¢ =
vg = 0.034 mV(C-ms)~ Y t/) = 15.7 ms, o, = 0.283, ’c = 88ms

B(c) UV v, = 0.068 mV(C'ms)~", t! = l77ms0’—0‘300 ’t =
2.9 ms, dnd green v, = 0.002 mV((A ms) 1, t" 14.7 ms, gy =
0.396, ‘r = 1.1 ms.

UV-—green ratio was not significantly different for cells
illuminated with the horizontal display, where it was
0.27 (SD = 0.20), from what it was for those exposed to
the vertical setup, where it was 0.24 (SD = 0.18).

Parametric Modelling

Although the kernel model provides a description that
is capable of predicting, on average, 87.9% of the sig-
nal power in the receptor responses it requires 32
(LEDs) X 31 (timesteps) = 992 parameters in order to
achieve this accuracy. To obtain a more succinct de-
scription of the responses we attempted to fit a para-
metric model. The spatial profiles were kept as 16 dis-
crete values (see Figs. 2 and 3). This was because fitted
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Figure 6. First-order (A and B) and second-order (C-H) temporal
kernels together with the reconstructed signals of a receptor with a
small nonlinear component. Kernels were estimated using multiple
linear regression on the detrended data y4 (A, C, E, and G) or
produced from directly fitting the NLN sandwich model described
by Egs. 6 and 7 (B, D, F, and H). Percentages show the power
of the reconstructed signal of the kernels as a percentage of
detrended signal power. Maximum and minimum values are given
at the bottom of each figure and the negative regions of these
kernels, indicating inhibition, are shaded. Contours are at 10%
levels of the maximum value of the kernel in each case. (A and B)
Firstorder kernels h,, (solid line) and h,, (dashed line) that describe
the linear response of a receptor to UV and green contrasts,
respectively. Error bars in A indicate the SEM. (C and D) The
second-order kernels h,, that account for UV light potentiating
the response of the cell to UV light. (E and F) The second-order
kernels hg, that account for green potentiation of the green
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Gaussian functions did not provide adequate paramet-
ric descriptions.

We considered two temporal models that have pre-
viously been used to describe the linear receptor re-
sponse of invertebrates: the log-normal model (Payne
and Howard, 1981) and the gamma function model
(Wong et al., 1980). As these models describe a purely
tonic response to light and our measured first-order
kernels contained significant phasic components (see
Fig. 5, A and C), we extended them by adding a compo-
nent proportional to their time derivatives. This pro-
cess was not based on an understanding of the underly-
ing biophysical processes but nevertheless allowed us to
introduce a phasic component to the original models,
with the addition of only a single parameter: the con-
stant of proportionality.

The extended models were then fitted to the tempo-
ral components of the first-order kernel estimations (s,
(1) and Y, (1)). We found that the extended log-nor-
mal model provided a marginally better description so
this model was used throughout the paper (Eq. 6). Ex-
amples of three fits to extended log-normal functions
are shown in Fig. 5 (B, D, and F) alongside the first-
order kernels they were fitted to (Fig. 5, A, C, and E).

The fits of Eq. 6 to the temporal profiles of UV, s (t),
and green, Y, (t), response were combined with their
corresponding spatial profiles p, and p, obtained from
singular value decomposition (SVD) (see MATERIALS
AND METHODS). The reconstructed spatiotemporal
kernels gave mean %MSE values of 11.0% (n = 18) for
the vertical display and 11.9% (n = 25) for the horizon-
tal display. Values for the parameters obtained from
these fits are given in Table II.

The mean value of the amplitude of the UV wave-
form v, was found to be significantly higher for cells
stimulated with the vertical setup than it was for
those stimulated with the horizontal setup: 0.098 mV
(CG'ms) ! compared with 0.054 mV(C-ms)~!, and the
distribution of values obtained was wider: SD = 0.043
mV(C-ms) ! compared with SD = 0.022 mV(C-ms) .
We found that in all cells there were no significant dif-
ferences between the shape of the responses to UV and
green light. For this reason we report the mean values

response. (G and H) The cross-kernels h,,, that account for the
interactions between UV and green response. The equivalent
kernels for A, C, E, and G were produced with linear UV param-
eters: v, = 0.193 mV(C-ms) !, L‘Z = 18.0 ms, o, = 0.281, ‘CZ =
11.2 ms, and linear green parameters: v, = 0.133 mV(C-ms) !,
tg =17.5 ms, 0,= 0.290, and I; = 9.2 ms. The nonlinear model
parameters for this model are: a; = 0.171 C™1, 2, = 0.0 C1, b, =
0.008 mV~!, by = 0.010 mV~!, by = 0.005 mV !, 7, = 4.9 ms. I. The
measured response of a receptor cell (thick gray line) is shown for
an interval of 200 ms together the predicted signals (dark lines)
from linear kernel alone (linear prediction) and combined linear
and nonlinear kernels (nonlinear prediction).



TABLE |
Prediction Error Residuals for the First- and Second-order Kernels and Linear and Nonlinear Parametric Models (% MSPEs)

Model fitted £, + £,

uu

£+ +

Ra P Eq. 6 Eqs. 6 and 7

Stimulus Type I
Vertical, n = 18
9.7, n=18

Nonlinear cells -

Linear cells

Horizontal, n = 25
7.8, n=25

Nonlinear cells -

Linear cells

Stimulus Type II
Vertical, n = 16
Linear cells 2.5, n=12
Nonlinear cells 18.0,n=4
Horizontal, n = 32
Linear cells 135, n=3
Nonlinear cells 18.1, n =29
Control, n=>5

Linear cells -
Nonlinear cells 21.2,n=15
Hot,n =15

Linear cells -

Nonlinear cells 13.0,n=15

11.7, n=4

12.9,n =29

127, n=15

71, n=5 13.4,n=5

- 11.2, n =18 -

- 12.1, n =25 -

- 14.2, n =12 -
19.1, n=4

- 154, n=3 -
18.5, n =29

22.6,n="5

d d » )
of o, and oy, 7, and 1,, and t, and t,, concurrently

(Table II). There were also no significant differences
between the values of these parameter values obtained
in cells stimulated with either a horizontal or vertical
stimulus (see Table II).

Responses to Ganzfeld Stimuli (Stimulus Type I1)

To probe the response dynamics at higher contrast lev-
els we modulated either of the rows of 16 UV LEDs and
16 green LEDs synchronously in two separate pseudo-
random sequences. The inclusion of second-order ker-
nels hy,, hy,, and h,, reduced the %MSPEs of 4 out of
16 cells stimulated with the display in the vertical posi-
tion (see %MSPEs in Table I). These cells are classified

as “nonlinear” cells. We found that a greater propor-

tion of cells stimulated with the display in the horizon-
tal position were found to be nonlinear (29/32). This
difference was not consistent with these cells being
driven further from their equilibrium into a nonlinear
range as the average root mean square (RMS) values of
the detrended signal and kernel fit were respectively:
0.70 mV (SD = 0.30) and 0.67 mV (SD = 0.28), for the
vertical stimulus, and 0.57 mV (SD = 0.27) and 0.55
mV (SD = 0.27), for the horizontal stimulus.

Linear and Nonlinear Temporal Response

The shapes of the first-order temporal kernels obtained
using stimulus type II were similar to those calculated
using the stimulus type I, however the amplitudes v,
and v, are larger (see Table II). This is attributable to

TABLE 11
Estimated Paramelers of the Extended Log-normal Model

Stimulus Type I

Stimulus Type II

Quantity, symbol, units Vertical Horizontal Vertical Horizontal 32°C-35°C Control
Time to peak, t;, and t;, ms 17.4 16.6 17.4 16.3 111 17.6
SD, n ‘ 1.6, 36 1.1, 50 0.5, 32 0.9, 64 1.0, 10 1.5, 10
Width parameter o, and o, 0.292 0.287 0.297 0.279 0.275 0.280
SD, n 0.026, 36 0.033, 50 0.012, 32 0.015, 64 0.009, 10 0.017, 10
UV amplitude, v,, mV(C-ms) ! 0.098 0.054 0.32 0.25 0.55 0.28
SD, n 0.043, 18 0.022, 25 0.12, 16 0.13, 32 0.30, 5 0.04,5
Green amplitude, v,, mV(C-ms) ! 0.017 0.012 0.09 0.08 0.15 0.07
SD, n 0.010, 18 0.007, 25 0.04, 16 0.05, 32 0.15,5 0.03, 5
Derivative coefficient, T, and Ty, ms 12.2 11.2 11.8 9.8 6.2 12.8
SD, n 7.8, 36 1.0, 50 3.0, 32 4.7, 64 0.9, 10 3.8,10
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the fact that the kernels obtained with stimulus type II
represent the response of the cell to all 16 UV or 16
green LEDs, whereas in the case of type I the kernels
represent the response to the modulation of a single
LED (UV or green).

Fig. 6 A and Fig. 7 A show examples of the linear ker-
nels for UV (h,) and green (h,) response of cells ex-
posed to stimulus type II. First-order UV kernels were
found, on average, to account for 80.9% (SD = 5.0%,
n = 4) of the detrended signal power when measured
with the vertically mounted stimulus and 81.5% (SD =
21.5%, n = 29) when measured with the horizontally
mounted display. First-order green kernels accounted
for much less of the signal power: 8.7%, SD = 6.5%,
n = 4 (vertically mounted display) and 8.4%, SD =
8.3%, n = 29 (horizontally mounted display).

The signal reconstructed from the convolution of UV
contrast inputs with the second-order kernel h,, con-
tained more power as a percentage of signal power
(mean = 8.3%, SD = 4.8%) than that reconstructed
from the kernels that describe green—green (mean =
2.5%, SD = 2.6%) or UV-green interactions (mean =
2.8%, SD = 2.8%).

In all cells where the addition of nonlinear terms im-
proved the fit, we found static UV facilitation of the re-
sponse to UV light. Fig. 6 C and Fig. 7 C show typical
UV-UV kernels demonstrating facilitation of the re-
sponse, represented by a narrow ridge along the diago-
nal. Although early positive diagonals were seen on all
UV-UV kernels and some green—green kernels they
were not observed in the cross-kernels, hug, in any of
the cells. If a common process did underlie nonlinear
summation of UV and green responses then we would
expect a positive ridge in the cross-kernel h,,. Thus,
separate processes within the cell must underlie the fa-
cilitation of the UV and green responses. These may
be of the same biochemical nature but if this were the
case they must occur in separate cells or subcellular
compartments.

The maximum facilitation seen in the UV-UV kernel
had a mean value 0.109 mV(C-ms)~2 (SD = 0.043
mV(C-ms) 2, n = 32), which was larger than that
seen in the green—green and UV-green kernels that
had mean values of 0.037 mV(C-ms)~2 (SD = 0.032
mV(C-ms)~2, n = 32) and 0.024 mV(C-ms) 2 (SD =
0.016 mV(C-ms) 2%, n = 32), respectively.

An example of hg, is shown in Fig. 6 E. Overall
the self-facilitation of the green light response was
smaller than it was for UV light. However, the mean
value of maximal inhibition for hg (—0.051 mV
(C'ms)™2, SD = 0.037 mV(C'ms)™%, n = 32) was
closer to that of h,, (—0.067 mV(C-ms)~2 (SD =
0.043 mV(C-ms) 2, n = 32), while the mean mini-
mum of h,, was —0.021 mV(C-ms)~2 (SD = 0.0134

ug
mV(C-ms) 2%, n = 32). Examples of the cross-kernel,
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Figure 7. First-order (A and B) and second-order (C-H) temporal

kernels estimated directly from the data (A, C, E, and G) or from
the NLN model (B, D, F, and H) are shown for a receptor with a
larger nonlinear component of response. The full and linear
kernel predictions of the response are shown separately in I.
Details are the same as Fig. 6, however contours are at 20% levels.
The linear UV parameters used are: v, = 0.030 mV(C-ms) !, tﬁ =
16.4 ms, o, = 0.259, T‘f, = 41.5 ms, and linear green parameters
are: v, = 0.076 mV(C-ms) 1, tﬁ. = 15.8 ms, o, = 0.259, and Tg =
13.1 ms. The nonlinear model parameters obtained from fit are:
a; = 0.226 G a, = 0.042C 1, b; = 0.037 mV~!, by, = 0.039 mV~1,
by = 0.019 mV~1, 7, = 5.5 ms.

h,,, are shown in Fig. 6 G, Fig. 7 G, Fig. 8 (G and H),

and Fig. 9 (G and H). Note the absence of any facilita-
tion along the diagonal.
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Figure 8. First-order kernels for UV (h,), green (h,) (A and B),
together with their second-order kernels h,, (Cand D), hg, (E and
F), and h,, (G and H) for a cell at 22°C (A, C, E, and G) and 33°C
(B, D, F, and H). Details for both columns are the same as the left
hand side of Fig. 6 (A, G, E, and G). In this cell, the relative UV to
green ratio of the cell is reduced at the elevated temperature.

Timing of Facilitation

In 87/38 cells the maximum self-facilitation of UV was
observed along the diagonal and at a time that closely
followed the peak linear UV response. The peak oc-
curred along the diagonal in h,, on average at t = 12.8
ms (SD = 2.3, n = 31). The peak UV linear response
occurred, on average, 0.5 ms (SD = 0.8, n = 37) before
the peak UV-UV facilitation.

The maximum self-facilitation of the green response
also occurred mostly along the diagonal (36/38) cells.
The green—green second-order kernels contained higher
levels of noise. This reduced the number of cells whose
peak green—green facilitation could be reliably compa-
rable to their linear green response from 38 to 22. The
peak green—green interaction for these cells occurred
at a mean of 12.0 ms (SD = 1.3, n = 22), which was, on
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Figure 9. Firstorder kernels for UV (h,), green (h,) (A and B),
together with their second-order kernels h,, (Cand D), hg, (E and
F), and h,, (G and H) for a cell at 22°C (A, C, E, and G) and 32°C
(B, D, F, and H). Details are the same as for Fig. 8. In this case the
relative UV to green ratio of the maximal cell response is increased
at the elevated temperature and the power in the nonlinear
kernels is reduced.

average 0.9 ms (SD = 1.3, n = 22) after the peak linear
green response.

Timing of Inhibition

Peak facilitation occurred at the time of maximal linear
response so we may have expected that similarly maxi-
mal inhibition would coincide with minimum linear re-
sponse. Instead the maximal inhibition was delayed
against the peak response and preceded the minimum
response.

The maximal inhibition found in h,, occurred off
the diagonal at mean times t; = 16.0 ms (SD = 1.6, n =
38) and t, = 18.2 ms (SD = 1.6, n = 38). Although the
second of these times is closer to the time of minimum
UV linear response, in all cells, it was found to be signif-
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TABLE I11
NLN Sandwich Model Parameters

Quantity, symbol Units Vertical, n = 4

Horizontal, n = 29 33°C-35°C, n =15 Control, n =5

First nonlinearity

UV-UV facilitation, a, c! 0.158
SD 0.049
Green-green facilitation, a, Cc! 0.026
SD 0.033
Second nonlinearity

UV-UV inhibition, b, mV-! 0.005
SD 0.001
Green—-green inhibition, by mV-~! 0.009
SD 0.006
UV—green inhibition, by mV-! 0.010
SD 0.007
Inhibitory delay, ; ms 4.8
SD 0.2

0.174 0.176 0.153
0.043 0.030 0.022
0.037 0.064 0.027
0.047 0.067 0.037
0.009 0.005 0.006
0.009 0.002 0.001
0.012 0.029 0.009
0.014 0.053 0.008
0.014 0.010 0.011
0.013 0.003 0.004
4.0 2.0 5.0

0.8 0.9 1.3

icantly different, preceding it by a mean of 5.3 ms
(SD = 2.0, n = 38).

Similarly, maximal inhibition in the green—green and
UV-green kernels peaked after the maximum linear re-
sponse but before the minimum linear response.

Parametric Modelling

The presence of the narrow ridge along the diagonal
indicated that the second-order kernels were not con-
sistent with an LNL cascade model, since any signifi-
cant smoothing before the first significant nonlinearity
would produce a second-order kernel with interactions
at nonzero relative lags, hence with a ridge not limited
to the main diagonal. An NLN model was found to pro-
vide fits that were significantly better than the linear
kernels alone. The relative dynamics of facilitation, in-
hibition, and linear response seen in the second-order
kernels suggested that facilitation can be represented
by a static, or zero-memory, nonlinearity and that the
inhibition occurring after the center linear stage of the
NLN model is delayed with respect to the linear re-
sponse. These terms are represented in Eq. 8, which
was fitted to the three second-order kernels (UV-UV,
green—green, and UV—green) in order to quantify their
differences. The %MSPEs for these models are given in
Table I, and the parameter values obtained are summa-
rized in Table III. In the case of the vertical stimulus we
were able to improve the mean %MSPE of the nonlin-
ear cells from 19.1% using a linear parametric model,
to 15.8% using both linear and nonlinear terms for n =
4 cells. In the experimental setup where the horizon-
tally mounted stimulus was used, the addition of sec-
ond-order terms produced smaller residuals for n = 29
cells, reducing the mean %MSPE for these cells from
18.5% to 15.7%. Given that these models contain only
14 parameters, they represent a large gain in efficiency
from the full second-order kernel models, which con-
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tain 2015 parameters, and had an average %MSPE of
12.9% for these sets of cells.

Effects of Temperature

In five of the six cells tested, temperature effects were
sufficiently reversible for inclusion in the dataset (see
MATERIALS AND METHODS). We found that in gen-
eral, the linear and nonlinear receptor response be-
came faster and larger, but that the effects on the rela-
tive contribution of nonlinear kernels, and on UV/
green ratio were variable. The mean time to peak re-
sponse was 8.5 ms (SD = 0.8, n = 10) at elevated tem-
peratures (28°C-33°C) compared with 13.5 ms (SD =
1.1, n = 10) for the same cells at lower temperatures
(22°C-24°C). Fig. 8 shows an example of the first- and
second-order kernels for a cell at 22°C, where the peak
response occurred at 12.8 ms, and at 33°C when it oc-
curred at 8.0 ms. This cell shows an increase in both
UV and green amplitudes. Three of five cells had simi-
lar increases in UV amplitude; increasing, on average,
to 210% of their original value, however two cells had
small decreases in the amplitudes of their linear UV re-
sponse (decreased to 97% and 92% of their original
values). Green response amplitudes increased in mag-
nitude for four cells (mean increase to 267% of origi-
nal value, SD = 264%) and decreased for one to 37%
of its original value (as shown in Fig. 9).

The effect of temperature on the magnitude of the
linear and nonlinear response was variable. Only one
cell showed a larger amount of power in its linear UV
kernel from 44.3%, at 22°C, to 84.4%, at 32°C. The rel-
ative power in the linear green kernels increased for
four out of five cells (mean increase of 186%) and de-
creased for the remaining cell to 94% of its original
value. Three out of five cells had a reduction in power
of the total component of nonlinear response (mean
reduction of 44% [SD = 16%]) at higher tempera-



tures. However, for two cells it was increased to 158%
and 111% of the original value.

The relative changes in UV and green response were
also not uniform: four cells decreased their UV/green
ratio at elevated temperatures from a mean of 4.1
(SD = 0.5, n = 5) to a mean of 3.0 (SD = 0.8, n = 5),
and one increased its UV/green ratio at elevated tem-
peratures from 9.3 to 38.0. Fig. 8 shows an example of
the first- and second-order kernels for a cell that re-
duced its UV/green ratio from 3.9 at 22°C to 2.2 at
33°C, and Fig. 9 shows the kernels for the cell that in-
creased its UV/green ratio.

Parametric fits were made of the receptor kernels at
higher temperatures in order to ascertain the effect of
elevated temperature on the shape of response. Results
of these fits for the cells at elevated temperatures to-
gether with the control values can be found in Tables II
and III. The mean estimate of the parameter t’, the
time to peak of the underlying log-normal process de-
creased from 17.6 ms (SD = 1.5 ms) to 11.1 ms (SD =
1.0 ms). If the temperature change of each experiment
was taken into account, this converted to a mean Q,
for 2 of 1.9 (SD = 0.3). A Qy, value of 2.4 (SD = 0.5)
was found for ‘CZ and TZ that decreased in mean value
from 12.8 ms (SD = 3.7 ms) to 6.2 ms (SD = 1.1 ms).

Unlike the parameters v, Vgs tﬁ, tz, TZ, and ‘CZ, we
found that o, and o,, which describe the relative width
of the underlying log-normal processes, did not signifi-
cantly change with an increase in temperature, nor did
the parameters of the nonlinear model describing the
interaction of UV with itself (a; and b;) or between UV
and green (by). However, the mean green—green facili-
tation (ay) and green—green inhibition (bs) were signif-
icantly increased at higher temperatures (Table III).
The latency of the inhibition that was assumed to be
the same for all inhibitory effects (7;) also markedly de-
creased from 5.0 ms to 2.0 ms, which resulted in a
mean Q, for 7; of 3.1.

DISCUSSION

Spatial Resolution

The electrophysiologically determined values of Ap =
15° in elevation and Ap = 28° in azimuth are much
smaller than the total field of view of the ocellus, of
120° X 60°, showing that the median ocellus of H. tau is
not just a single sensor that can only detect intensity
changes in time, but, rather, that it is capable of some
resolution in space. However, the spatial resolution is at
the low end when compared with electrophysiological
data from other arthropod eyes, including simple eyes
as well as compound eyes of both the apposition and
superposition type (Warrant and McIntyre, 1993). Con-
sequently, we need to consider the possibility that ac-
tual resolution is better and that the optics of the ocel-
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Figure 10. (A) A comparison of the log-normal and modified

log-normal models with the same parameters values for (v,, t/,
0,). The parameters were obtained by fitting the extended
log-normal model (Eq. 6) to the first-order kernel of a receptor
neuron. The peak response is larger and the time at which peak
response actually occurs is earlier for the extended log-normal
function. (B) Comparison of the response power spectra for the
linear models seen in A: the extended log-normal model (middle
line) and log-normal model with equivalent parameters (bottom
line). The top line indicates the power spectrum of the recorded
signal.

lus were degraded by the dissection procedure. This is
unlikely. In earlier work (Stange et al., 2002), the spa-
tial resolution of the median ocellus of H. tau was inves-
tigated by an entirely noninvasive ophthalmoscopic
procedure, examining the angular extent of a patch of
light (eyeshine) reflected from the fundus of the eye
(tapetum), for illumination by a beam of parallel light.
As the tapetum is located at the same distance from the
lens as the bulk of the photopigment in the receptor
neurons, this method provides a relevant estimate of
angular sensitivity. Relative to the direction of incident
light, a given eyeshine patch is visible over no more
than 12° in elevation and 24° in azimuth, and the num-
ber of separate eyeshine patches that can be accommo-
dated within the whole visual field is ~5 X 5. Those val-
ues are consistent with the present observations.

The finding that the angular sensitivity functions are
anisotropic, with an aspect ratio of 2, is also consistent
with eyeshine measurements and is easily reconcilable
with geometry of the ocellar lens (Stange et al., 2002).
This is distinct from the situation in apposition com-
pound eyes: although differences between horizontal
and vertical interommatidial angles (Ag) are not un-
common, differences for Ap remain to be observed.
There does not seem to be an optical way to achieve a
deformed acceptance angle (Zeil et al., 1986).

Regarding the question as to what the underlying
functional adaptation of this anisotropy might be,
Stange et al. (2002) suggested that reduced acuity in az-
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imuth constitutes a spatial low-pass filter that averages
out unwanted information about local irregularities
in horizontally extended features such as the skyline.
They also suggested that a high acuity in elevation en-
ables local intensity comparisons, allowing the detec-
tion of horizontal edges or even movements. As an al-
ternative, we suggest that the adaptive feature consists
of maximizing the field of view in azimuth, rather than
maximizing resolution in elevation: the presence of a
panoramic field of view could enable the ocellus to de-
tect roll, because the rotation of the horizon associated
with roll will lead to an imbalance of illumination from
opposite sides.

Temporal Linear Response

Almost all cells (56/58) exhibited linear responses to
both UV and green stimuli, and although the relative
amplitudes varied from cell to cell, the UV and green
temporal responses were indistinguishable. These re-
ceptors are therefore not capable of distinguishing be-
tween UV and green stimuli on the basis of their linear
response alone. Since these components make up the
largest component of the response of these cells it
seems unlikely that the ocellar retina is capable of color
discrimination.

Small signal or linear responses within the receptors
of other invertebrate compound eyes have been found
to be well described by the log-normal function:
locusts, crickets, flies, mantids, blowflies, dragon-
flies (Howard et al., 1984), and Drosophila (Juusola and
Hardie, 2001b). Here we find that the linear response
of the dragonfly ocellar receptor has a form that con-
tains a distinctive undershoot as the membrane poten-
tial returns to equilibrium (Fig. 5, A and C). The range
of mean estimates for the time to peak of the underly-
ing log-normal process for both UV and green receptor
response was found to be 16.3-17.6 ms. This is compa-
rable to that of the dragonfly compound eye receptors
at comparable temperatures where it was estimated to
be 17.5 ms (SD = 0.4) (Howard et al., 1984). Similarly,
the range of widths (o) of the underlying log-normal
processes measured here was 0.275-0.297, which is
comparable to that found in dragonfly compound eye
receptors, where it was 0.277 (SD = 0.015) (Howard et
al., 1984). Given the similarity in fundamental wave-
forms, it seems likely that the phototransduction ma-
chinery is conserved between dragonfly ocellar and
compound eye receptors.

To account for the distinctive biphasic form of
the temporal responses, we extended the log-nor-
mal model to include a component proportional to the
derivative of the log-normal. Similar dynamics have
been seen in receptor neurons of other insects (Juusola
and Weckstrom, 1993; Matic, 1983; James and Osorio,
1996). In blowfly, the amplitude of the undershoot in-
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creases with the adapting background (Juusola and
Weckstrom, 1993). Although we did not observe differ-
ent undershoot amplitudes between the cells stimu-
lated at different adapting levels, this was possibly be-
cause we did not modulate the background through a
large enough range in this study. In butterflies the bi-
phasic response of receptors is thought to occur as a re-
sult of electrically mediated inhibition between recep-
tors with different spectral sensitivities (Matic, 1983).
This is not the case for some of the cells in this study,
which show the distinct phasic components even when
they respond exclusively to UV stimulus.

We found that the amplitudes of the undershoot for
both UV (‘CZ) and green (TZ) are temperature sensi-
tive, in all cells decreasing with a Q;, ~ 2. The reduc-
tion in the contribution of this component means the
linear response is smaller in amplitude and slower.
These changes partially offset the effects of tempera-
ture on the underlying log-normal response, which is
larger and faster.

The function of the extra phasic component in the
dragonfly ocellar receptors could lie in the fact that
its addition enhances the cellular response to high
frequency signals (Fig. 10 B) and decreases the rela-
tive contribution of the tonic response, thus removing
some of the redundant receptor signal that is corre-
lated in time (van Hateren, 1997). Therefore, in the
dragonfly ocellus, receptors appear to perform some
early linear processing of the light signal, unlike other
invertebrates where the tonic response of the receptors
is removed during the transfer of the signal to the next
cells in the visual pathway (van Hateren, 1997).

Underlying Linear Mechanisms

In our model of the linear response, we have used the
derivative of the original log-normal signal to produce
the phasic component (Fig. 10 A). It is not difficult to
see how the cell could produce this derivative electri-
cally. For example, the equation that describes the full
linear response, Eq. 6, is analogous to the circuit equa-
tion that describes the voltage G,(t) across a capacitor
(capacitance, C) in parallel with a resistor (resistance,
R) and light-induced voltage supply, H,(t), in series. In
that case, T, = RC. This type of model could explain
the observed shape of the linear impulse response and
would be consistent with the observation that decreases
in the time constants ’EZ and TZ with a Q;, ~ 2 are con-
sistent with similar changes in the membrane time con-
stant of previous studies (French and Jarvilehto, 1978;
Juusola and Hardie, 2001b).

Temporal Nonlinear Response

The differences in horizontal and vertical receptive
fields (Figs. 2 and 3) mean that more light is integrated
spatially by the receptor when the display is mounted



horizontally than vertically. This means that the cell ob-
serves greater mean intensities when the display was
mounted horizontally and could explain why we found
a greater number of “nonlinear” cells in this case. In-
creasing the stimulus contrast also increases the nonlin-
ear component of the reconstructed receptor response
but this effect is significantly reduced at lower mean
light intensities.

The larger component of UV self-facilitation than
green self-facilitation is not due to the system being
driven by UV stimuli to a larger linear response, as the
amplitude of linear temporal response (for stimulus
type II) was similar in both horizontal and vertical ex-
periments. This is also reflected in the parameter val-
ues representing the magnitudes of facilitation (a; and
ay). These are fitted taking into account the magnitude
of the linear response and are therefore indicative of a
cell’s capacity to amplify signals regardless of their size.
These parameters can be used to test the possibility
that the smaller levels of self-facilitation seen in the
green kernels than those seen in the UV kernels are a
direct result of a smaller green linear response than the
UV linear response. For almost all cells this is the not
the case (Table III), as is shown in Fig. 7. Thus, the fact
that the linear green response is smaller than the linear
UV response does not account for UV self-facilitation
being larger than green self-facilitation.

A possible function of the nonlinear responses seen
in the receptor neurons seen here is to maintain a
higher gain at higher frequencies. For example, the
amplitude response of the nonlinear kernel model is
able to maintain its amplitude response at higher fre-
quencies than the linear model alone (Fig. 10 B). Non-
linear summation may also be used to discriminate
between UV and green illumination if differential am-
plification of these responses occurs. While it is also
possible that the inhibition observed between UV and
green pathways could also be used for enhancing color
discrimination (analogous to lateral inhibition enhanc-
ing spatial resolution), it seems more likely that any
functionality of this process would be superseded by
the fact that the linear responses of these cells to UV
and green light, which dominate their response, are
indistinguishable.

Temperature Effects

A change of temperature from 23°C to 31°C has several
distinguishable effects on the responses. The temporal
response to green and UV light becomes markedly
faster and its amplitude increases. The decrease in the
times to peak (t! and tz) and increase in amplitudes
(v, and v,) without significant changes in width of the
response waveform (o, and o) are consistent with re-
sults from other insect sensory systems: in blowfly (Cal-
liphora vicina) the Qy, for ti:, vy, and o, have been esti-

mated to be 0.67, 1.28, and 0.8, respectively (Tatler et
al.,, 2000), and in Drosophila the Q;, for the time to peak
has been estimated to be 2.5 (Juusola and Hardie,
2001b). Like other studies, we find that the width of the
log-normal response is much less temperature sensitive
than the time to peak.

The relative sensitivities to green and UV also change,
albeit by different amounts and with different signs in
different receptor neurons. This could indicate two dif-
ferent subpopulations of cells, as described in the drag-
onfly compound eye (Laughlin, 1976), or it could be
the result of the pupil mechanism demonstrated in the
median ocellus of other dragonflies (Stavenga et al.,
1979, Sympetrum and Anax junius). In that case, the ex-
posure of dark-adapted ocelli to light induced a UV-
sensitive pigment to migrate over distinct pathways on
the retina. Pigment migration has also been shown to
be temperature induced (Nordstrom and Warrant,
2000). Cells that are screened by the pigment would be
expected to have a reduced UV sensitivity compared
with those that are not.

The lower limit for the ecologically relevant tempera-
ture range for H. tau is around 20°C (see also Corbet,
1999), and furthermore, dragonflies are capable of ac-
tive temperature regulation. May (1995) measured
body temperatures in Anax junius immediately after
capturing flying animals from the field, at ambient tem-
peratures between 21°C and 38°C, and found that head
temperature was maintained above 30°C. Therefore,
our measurements at the higher temperature are more
representative of natural conditions, including the UV/
green ratio.

Underlying Nonlinear Mechanisms

The lightinduced current of receptor neurons has
been found to be linear in most receptors of inverte-
brates. However, the light-induced response can be dy-
namically modulated by intracellular processes (Weck-
strom et al., 1992) and by the electrical properties of its
membrane (Juusola and Weckstrom, 1993; Laughlin,
1996). Furthermore, synaptic and electrical coupling
between adjacent receptors and between receptors and
second-order neurons may provide feedback mecha-
nisms that modify the response properties of these cells
(Klingman and Chappell, 1978; Laughlin, 1981; Stone
and Chappell, 1981; Simmons, 1982).

A number of cellular mechanisms could underlie the
self-facilitation of the UV and green response in the re-
ceptor neurons we studied. Juusola et al. (2003) found
that Shaker K* channels contribute to a similar static
nonlinearity. However, our results are not consistent
with this type of mechanism since voltage-sensitive
channels act to modulate the lightinduced voltage
changes and would therefore act downstream of the
linear process. Only a fast acting process early in the
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transduction process could explain the static facilita-
tion seen here.

The fast reconversion of rhodopsin through the pho-
toisomerization of metarhodopsin to rhodopsin is a
possible candidate. This process occurs on a fast time
scale in the order of 100 ps (Kirschfeld et al., 1971),
which is consistent with our results. However, it is also
thought to underlie paired-pulse inhibition between
pulses of short (blue) and long (red) wavelength light
(Hamdorf and Kirschfeld, 1980). We observed no fast
static interactions (only delayed) of any kind between
UV stimuli and green stimuli.

Another possibility is that the fast facilitation seen
here is the result of a sensitizing pigment. Evidence
from fly receptors indicates that the purported sensitiz-
ing pigment can transfer absorbed energy to both the
rhodopsin and metarhodopsin molecules (Minke and
Kirschfeld, 1979). Evidence from fly ocelli suggests the
presence of a sensitizing pigment (Kirschfeld et al,
1988). While there is no similar data for dragonfly ocelli,
a concurrent decrease in relative UV sensitivity with a
decrease in temperature was found in Calliphora com-
pound eye receptors (Jarvilehto et al., 1984; Weckstrom
et al,, 1985), and suggested as evidence of the existence
of a sensitizing pigment. In our case, four out of the five
receptors that were tested showed the same behavior.

Inhibition in these receptor cells occurs after the
transduction process. It could originate from a variety
of sources including calcium inactivation of the light-
induced current (Hardie and Minke, 1994), delayed
rectifying K* channels (Juusola et al., 2003), synaptic
feedback from other receptors or L-neurons (Laughlin,
1981), and electrically mediated lateral inhibition be-
tween cells (Shaw, 1975). Although we could not rule
out the influence of any of these mechanisms, the last
of these is unlikely to have the ~4-ms delay we ob-
served between peak linear response and peak inhibi-
tion. This delay would be consistent with synaptic feed-
back from the L-neurons, and evidence from electrode
studies combined with pharmacological blockade indi-
cates that this feedback is negative, consistent with the
inhibition seen here (Stone and Chappell, 1981). The
large decrease in the latency of the inhibition (7;) with
temperature (Q;,~ 3.1) is also consistent with the idea
that synaptic feedback underlies the inhibition seen
here, as results from another invertebrate (Limulus)
have shown synaptic latency to be strongly temperature
dependent (Q,, ~ 5; Adolph, 1973).
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