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We propose a novel framework to reduce background electroencephalogram (EEG) artifacts from multitrial visual-evoked po-
tentials (VEPs) signals for use in brain-computer interface (BCI) design. An algorithm based on cyclostationary (CS) analysis is
introduced to locate the suitable frequency ranges that contain the stimulus-related VEP components. CS technique does not re-
quire VEP recordings to be phase locked and exploits the intertrial similarities of the VEP components in the frequency domain.
The obtained cyclic frequency spectrum enables detection of VEP frequency band. Next, bandpass or lowpass filtering is performed
to reduce the EEG artifacts using these identified frequency ranges. This is followed by overlapping band EEG artifact reduction
using genetic algorithm and independent component analysis (G-ICA) which uses mutual information (MI) criterion to separate
EEG artifacts from VEP. The CS and GA methods need to be applied only to the training data; for the test data, the knowledge of
the cyclic frequency bands and unmixing matrix would be sufficient for enhanced VEP detection. Hence, the framework could be
used for online VEP detection. This framework was tested with various datasets and it showed satisfactory results with very few
trials. Since the framework is general, it could be applied to the enhancement of evoked potential signals for any application.

Copyright © 2007 C. N. Gupta and R. Palaniappan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
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1. INTRODUCTION AND MOTIVATION

Oscillating potentials derived from the scalp surface using
electrodes and believed to originate from outer layer of brain
(neurons in the cortex) are called visual-evoked potential
(VEP) signals [1]. These signals are derived from the brain’s
response to visual stimulation and have applications in nu-
merous neuropsychological studies [1]. However, a major
hurdle in analysing VEP, which is considered as a subset of
event-related potential (ERP), is the extremely poor signal-
to-noise ratio (SNR) of the VEP signals embedded within
the ongoing background electroencephalogram (EEG). Av-
eraging is commonly used to reduce the effects of EEG be-
cause VEP signals are assumed to be loosely time-locked to
the stimulus, thereby adding up with averaging while EEG
will be reduced due to its random property [2]. It is known
that ERP is not a homogeneous signal, but instead a com-
bination of different components due to which variations in
amplitude and latency between trials are caused. Also, identi-

cal stimuli do not necessarily evoke identical responses [3, 4];
trial-to-trial variability can be appreciable, and ERP wave-
form, amplitude, and latency can change appreciably with
time [3, 4]. Therefore, average ERP does not elicit the valid
estimate of the VEP components amplitude and shape and
hence is usually considered biased [4]. Next, the assump-
tion that background EEG noise is random and uncorrelated
seems untrue. Research has shown that EEG is not entirely
uncorrelated with event-related activity [5]. Hence, the basic
assumptions underlying signal averaging is generally violated
with the above discussion.

ERPs consist of exogenous and endogenous components
[6]. Exogenous components are obligatory responses which
result on the presentation of physical stimuli. The endoge-
nous components (say P300 component of the ERP sig-
nal) manifest the processing activities which depend on the
stimuli’s role within the task being performed by the sub-
ject [7]. P300-based brain-computer interface (BCI) sys-
tems [8–10] usually control the variance of the endogenous
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components. However, latency jitters are likely to affect en-
dogenous VEP components more than exogenous compo-
nents because variations due to cognitive process will affect
the latencies of endogenous components that are less time
locked to the event onset and are more dependent on the task
[5]. It can, therefore, be problematic to compare the ampli-
tudes of ERPs computed over trials with varying latency jitter
[10]. These facts seem to question the validity of using the av-
erage ERP for clinical analysis; but however these issues are
the main motivations for this work.

Techniques to improve conventional averaging like the
Woody’s method [11] have been proposed. In Woody’s
method individuals, trials are time shifted to compensate for
latency shifts which are assumed to occur uniformly over the
entire trial. However, this time-consuming technique’s va-
lidity decreases when numerous iterations are used and it
might not be the optimal solution under conditions of very
low SNR [12]. A simple lowpass filter with a predetermined
passband may improve SNR but may not necessarily provide
an optimal separation of signal from noise in overlapping
spectral ranges for all subjects under different experimen-
tal conditions. Weiner filter may be considered but the ap-
proach was devised for uncorrelated stationary signals with
known spectra [4]. Also, the procedure for estimating filter
weights, when the entire ERP epoch is used, has to strike a
balance between short duration latency (i.e., sensory evoked)
and large long duration (i.e., P300) components [4]. The dif-
fering power spectra do not make the resulting filter optimal
for either type of components. Since these requirements are
not met in ERP analysis, the optimality of Wiener filter is
questionable.

Independent component analysis (ICA) has been exten-
sively used for removal of artifacts from EEG data [13] as well
as for analysis and detection of VEP signals [9, 14, 15]. How-
ever, [14, 15] also highlight the inherent limitations of ICA:
first, VEP is assumed to be completely independent of the
ongoing EEG. Temporal independence is not satisfied when
training dataset is too small. In [9], ICA was used to sep-
arate P300 source from background EEG and it required a
matched filter to be constructed uniquely for each subject.
It uses a scheme similar to averaging for the identification
of letters. ERP classification procedures proposed recently
[16–18] are unsuitable for online implementation because
none of them actually identify embedded variable ERP wave-
forms. In this paper, we present an alternative framework
to enhance VEP detection by first identifying the embedded
variable VEP frequency bands (which are highly masked by
the background EEG activity) using cyclostationary analysis
(CS). This allows us to remove the nonoverlapping frequency
bands between VEP and EEG which increases the indepen-
dence between background EEG artifacts and VEP signals for
the genetic algorithm and independent component analysis
module (G-ICA). Cyclostationary algorithm which is used
in this paper has applications in many areas, for example,
blind channel identification and equalisation [19], rotating
machine monitoring [20], filter bank optimisation [21], and
system identification [22]. This property has been used in the
past for many communication applications [23, 24] and is
the result of the implicit periodicity of these signals related to

the baud rate, carrier frequency, or any other periodic com-
ponent.

We then use a variation of our previous genetic algorithm
(GA) work [25] to remove in-band EEG artifacts. Basic prin-
ciples of ICA were used in the work. The G-ICA idea with
kurtosis maximisation proposed in [26] was applied to de-
noise heart (ECG) signals in our recent study [25]. GA is a
computational model inspired by evolution which may be
used to solve search and optimisation problems and is a form
of artificial intelligence. The basic approach creates a popu-
lation of chromosomes, which are a string of values repre-
senting potential solutions to a problem. Through the theory
of natural selection and genetic recombination, these solu-
tions evolve into future populations where only the impor-
tant combinations of chromosomes survive. The ability to in-
vestigate many possible solutions simultaneously is the main
advantage of GA [27]. GA minimises the mutual information
(MI) criterion [28], the fitness function used in this work to
separate EEG artifacts from VEP signals. MI measures gen-
eral statistical dependence between variables and is invariant
to monotonic transformations performed on the variables.
The G-ICA method is simpler when compared to the ICA be-
cause it does not require complex neural learning algorithms
[25]. We apply the proposed framework to enhance the de-
tection of P300 components for BCI design.

2. METHODOLOGY

The novel framework to reduce background EEG artifacts
from multitrial VEP signals for use in BCI design is shown
diagrammatically in Figure 1. This scheme exploits the in-
tertrial similarities of the VEP components in the frequency
domain using CS analysis and removes the in-band EEG ar-
tifacts using G-ICA. This scheme overcomes the latency dis-
tortions of the many techniques proposed so far to detect the
endogenous VEP components.

2.1. Cyclostationary analysis for VEP band detection

2.1.1. Theory

We briefly discuss the theory of cyclostationary signals. A
discrete-time signal which has periodic mean and correlation
is said to be cyclostationary [29]. In particular, a signal x(t)
is called first-order cyclostationary [30] if its time-varying
mean mx(t) = E[x(t)] is periodic:

mx
(
t + lp1

) = mx(t) ∀t, l ∈ Z. (1)

Similarly, x is second-order cyclo-stationary [30] if its time-
varying correlation

Rxx(t; τ) = E
[
x(t)x(t + τ)

]
(2)

is periodic in t for any fixed τ:

Rxx
(
t + lp2; τ

) = Rxx(t; τ) ∀t, l ∈ Z. (3)

Here, p1 and p2 are the smallest positive integers such that (1)
and (3) hold, respectively. If p1 and p2 = 1, we observe from
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Figure 1: Block diagram of the proposed approach for use in VEP-based BCI design.

(1) and (3) that mean is time invariant and the correlation
depends on the time difference only. Then, x(t) is considered
as a stationary signal or in the given discussion context a cy-
clostationary signal with period of one.

In the frequency domain cyclostationary (CS) analysis, if
x(t) considered in the above discussion is cyclostationary and
has a time period To or fundamental frequency fo(= 1/To).
We can define cyclic autocorrelation function of the same sig-
nal as follows [23]:

Rxx(τ, f ) = E
{
x(t)x(t + τ) exp(− j2π f t)}. (4)

On averaging the various lags of the cyclic autocorrelation
in frequency domain (4), we obtain a cyclic spectrum. The
cyclic autocorrelation function (4) also satisfies the following
property:

Rxx(τ, f ) =
{

finite if f = n fo,

0, otherwise,
(5)

where n is a nonzero integer. In the frequency domain, cy-
clostationary processes are characterized by the cyclic spec-
trum, which represents the density of correlation between the
spectral components of a process which are separated by an
amount equal to the cycle frequency. The frequency compo-
nents in a stationary signal are not correlated with each other
so the cyclic autocorrelation of a stationary signal which is
not cyclostationary is zero for all values of f , except f = 0
[31].

2.1.2. Cyclo model for signal analysis

Based on the cyclostationary literature [23, 31], we discuss
the cyclo model for signal analysis. Consider any recorded
signal x(t) obtained by corrupting the clean signal s(t) with
an additive noise signal n(t) as below [31]:

x(t) = s(t) + n(t). (6)

The noise n(t) is assumed to be nonperiodic with any statis-
tical distribution.

Let Rx(τ, f ), Rs(τ, f ), Rn(τ, f ) be the cyclic autocorrela-
tion functions of x(t), s(t) and n(t), respectively. We can then
write (6) in cyclic autocorrelation domain as [31]:

Rx(τ, f ) = Rs(τ, f ) + Rn(τ, f ). (7)

Since n(t) is not cyclostationary, it means that Rn(τ, f ) = 0,
for f �= 0 and (7) becomes

Rx(τ, f ) = Rs(τ, f ) for f �= 0. (8)

This model suggests that, independent of noise statistics, the
cyclic autocorrelation function is insensitive to noise as long
as the noise is not periodic.

2.1.3. VEP signal band detection using
cyclostationary analysis

We present a scheme based on the above model for enhanced
detection of VEP band by exploiting the cyclostationarity
property. The salient feature of this technique is the fact that
trials are not required to be phase locked when recorded. To
exploit the intertrial similarities of the VEP signal compo-
nents in the frequency domain, cyclostationary is introduced
by concatenating the recorded trials. The periodic repetition
of the P300 components in the VEP trials for all trials (i.e.,
300–600 ms after the occurrence of stimuli) enables cyclic
analysis of the VEP signals.

To help study the cyclostationary property, we emulated
the VEP and EEG signals that were similar to real-signal
recordings. Gaussian waveforms were chosen to emulate the
real-VEP-signal components as in a previous study [32] due
to their suitability. The Gaussian waveform equation is given
below [32]:

G(n) =
[

A√
2πσ2

]
exp

(
− (n− μ)2

2σ2

)
, (9)

where μ is the mean, σ is the standard deviation, and A is the
amplitude of the signal. Variability between trials of the VEP
signals was achieved by varying μ, σ , and A for the Gaussian
waveforms. The simulated VEP signal and its cyclic spectrum
are shown in Figure 2. The cyclic spectrum which exploits
the inter trial similarities in the frequency domain depicts the
cyclic VEP components at 0–10 Hz as Figure 2. In the exper-
imental study section, similar fact is ascertained with other
datasets.

The stationarity of the background EEG noise has been
reported in the literature [33] for periods of several hun-
dred milliseconds. The EEG was constructed using whiten-
ing method and the AR model [34], which is as follows. Sev-
eral real-EEG-signals, extracted while the subjects are at rest,
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were first whitened to remove correlation between their com-
ponents to achieve unit variance and zero mean. Common
whitening method based on the eigenvalue decomposition
of the covariance matrix was used [32]. AR coefficients are
then obtained from the whitened EEG signal. These AR coef-
ficients are used for the generation of simulated background
EEG noise. The simulated EEG signal and its cyclic spectrum
are shown in Figure 3.

Since the background EEG noise is not cyclostationary,
the cyclic spectrum is approximately flat for f �= 0 as dis-
cussed in the above cyclo model signal analysis section, which
seems to justify the earlier assumed fact about the stationar-
ity of the background EEG. Also, an important fact that the
magnitude of cyclic VEP components is much more appre-
ciable in the 0–10 Hz range than that of the background EEG
is inferred from the cyclic spectrums of emulated VEP and
stimulated EEG signals.

Additive noise assumption is usually made by all VEP es-
timation algorithms since there is no clear evidence in liter-
ature to suggest the nonlinear interaction of the noise and
signal components. The cyclic spectrum of VEP signal with
EEG noise in Figure 4 clearly highlights the cyclic VEP com-
ponents. The similar magnitude spectra in the 0–10 Hz range
in Figures 2 and 4 along with the discussed model seems to
verify that cyclostationary model is suitable for VEP analysis.

To affirm the simulations and the discussed model, we
further tested the cyclostationary algorithm with the BCI
competition III (dataset IIb) provided by Wadsworth Cen-
tre, NYS Department of Health. Channel (Cz) of the train-
ing data from subject A was used to test the proposed al-
gorithm. Figure 5 depicts the obtained cyclic spectrum of
the VEP characterized by the P300 component for a charac-
ter. It clearly depicts the delta (0–4 Hz) and theta (4–10 Hz)
ranges as the main components of power in frequency do-
main for P300 waves [35, 36]. Thus, it is possible to iden-
tify the embedded endogenous components of the ERP sig-
nal with varying latency jitters in P300-based BCI systems.

A lowpass or bandpass filter can be designed based on the
observed cyclic spectrum to filter the nonoverlapping EEG
background noise from VEP signals for different experimen-
tal conditions and various subjects.

2.2. In-band denoising using genetic algorithm
and mutual information

This section explores an information-theory-based approach
using MI to remove the in-band EEG artifacts for VEP sig-
nal applications. It involves a variation of our previous work
which makes use of G-ICA [25]. Techniques to reduce noise
like adaptive filtering, ICA, and wavelets have been proposed
in literature [14, 15]. ICA is a statistical method which trans-
forms an observed multicomponent dataset into indepen-
dent components that are statistically as independent as pos-
sible. For better removal of artifacts, the estimated compo-
nents should be least dependent on each other. We can use
measures like kurtosis, negentropy, and MI to evaluate the
independence among the estimated sources [37]. In terms
of robustness, cumulant-based estimators (like kurtosis) are
not optimal. The main reasons are: higher-order cumulant
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Figure 2: Simulated VEP signal and its cyclic spectrum.
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measure the tails of the distributions, and are not influenced
by structure in the middle of the distribution; the estimators
of the higher order cumulants are very sensitive to outliers
[37]. Their value can depend on the outliers alone. Among
these various measures, MI seems to be the best choice to
measure the independence of the estimated sources. MI is a
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Figure 4: VEP with background EEG noise and its cyclic spectrum.

measure of general dependence between two random vari-
ables [38]. Given two random variables X and Y , the mutual
information I(X ;Y) is defined as follows:

I(X ;Y) = H(X) +H(Y)−H(X ,Y), (10)

where H(·) denotes the entropy of random variable and
measures the uncertainty associated with it. Since the EEG
data is discrete we can define H(X) as follows:

H(X) = −
∑

p(X) log2 p(X), (11)

where p(X) represents the marginal probability distribution
of the data. Mutual information has a maximum value when
two time series are exactly same. The MI between random
variables (here the components of the VEP signal with EEG
artifacts after ICA decomposition) was estimated.

ICA seems to be the most successful of all methods to ob-
tain independent components. Here, we present a variation
from our recent work [25] using GA that minimises the MI
of the extracted components to reduce the overlapping EEG
noise. The mixing matrix is iteratively improved for EEG ar-
tifact separation where MI is used as the fitness function to
be minimised by the GA. ICA aims at finding linear projec-
tions of the data that maximise their mutual independence
[39]. It is a technique which exploits higher-order statis-
tics and optimisation techniques for obtaining independent
sources, S from their linear mixtures, X , when neither the
original sources nor the actual mixing matrix A are known
as shown below in (12) [39]. The illustration of the mathe-
matical model is given as:

X = AS −→ Ŝ =WX. (12)
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To delve deep into the method, let us consider an example.
Assuming 5 trials of recordings as shown below:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1

X2

X3

X4

X5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

VEPsignal

EEGsignal

EEGsignal

EEGsignal

EEGsignal

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)

It is known that in ICA methods, the task is to obtain the
matrix [W] as in (12) to reconstruct the source matrix Ŝ as
below:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

VEP + EEG1

VEP + EEG2

VEP + EEG3

VEP + EEG4

VEP + EEG5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w11 w12 w13 w14 w15

w21 w22 w23 w24 w25

w31 w32 w33 w34 w35

w41 w42 w43 w44 w45

w51 w52 w53 w54 w55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1

X2

X3

X4

X5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(14)

We then have: Ŝ = Components of (VEP + EEG)

Component of (VEP + EEG1) signal

=W11X1 +W12X2 +W13X3 +W14X4 +W15X5

...

Component of (VEP + EEG5) signal

=W51X1 +W52X2 +W53X3 +W54X4 +W55X5.
(15)

G-ICA is an attractive alternative to current ICA techniques
and in this proposed method, the entire matrix [W], will be
reconstructed as GA iterates minimising the MI between the
VEP signals and EEG artifacts. MI was calculated based on
entropy estimates from k-nearest neighbour distances since
they are data efficient, adaptive, and have minimal bias [40].
The mixing matrix is iteratively improved for source sepa-
ration using decrements in MI which is used as the fitness
function to be minimised by the GA. GA is explained us-
ing (14) and (15). GA operates on the coding of parameters
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Table 1: Parameters for genetic algorithm.

Coding of genes Binary coding converted to real value [1, 0] for fitness computation

Fitness function Mutual information (MI)

Population size 20

no of genes 6 bits for each gene

Reproduction
Elitist selection (30% of population), tournament selection

(35% of population), and roulette selection (35% of population)

Crossover type and rate Uniform crossover, 0.5

Mutation type and rate Randomly mutate selected bits, 0.01

Inversion type and rate Inversion between 2 randomly selected points, 0.01

Convergence 100

Repetition 3

rather than the parameter itself. These parameters are called
chromosomes and are a string of values which represent po-
tential solutions to the given problem. Binary chromosomes
converted to realvalues represent the mixing matrix that it-
erates through the GA operators: selection, crossover, muta-
tion, and inversion minimising the fitness function given by
the MI between the components. Genes (bits) is used to rep-
resent each of the coefficients in [W]as in (15). Since 5 sig-
nals are assumedly observed as in (13) and 6 bits are used for
each coefficient, then each chromosome will have 150 bits. A
population will consist of a certain number of chromosomes;
say 20, as used for this study. The gene values in the chro-
mosomes of the initial population are randomly set for each
component. These bit-valued genes are converted to realval-
ued in the range of [0, 1]. Next, these 150 realvalued gene val-
ues are used in (15) to generate five components and then MI
between the components is computed which is minimised
over 100 generations to separate the in-band EEG artifacts
and VEP signals.

Next selection (reproduction) is performed based on
these fitness values, here, the MI between the components.
During this phase of GA, chromosomes are selected from
the population and recombined, producing offspring chro-
mosomes that form the population for next generation.
GA starts with an initial population and applies selection
randomly from the initial population using a scheme that
favours the more fit individuals (usually evaluated using the
fitness function) to create the intermediate population. Good
and fit chromosomes will probably be selected several times
in a generation while the poor ones may not be selected at
all. The common methods for performing the parent selec-
tion process are roulette wheel selection, elitist selection, and
rank-based methods such as tournament selection. All three
selection operators are used in this work. In tournament se-
lection, certain numbers of chromosomes are picked ran-
domly (in this case, 5) and the best chromosome (i.e., with
the highest fitness) is stored. Since 35% of the new popu-
lation will be selected using this method, this procedure is
repeated to obtain 7 chromosomes, where there maybe more
than one similar chromosome. Tournament selection is nat-
urally inspired and has advantages like: absence of premature
convergence and it also does not require explicit fitness func-
tion. Another 35% of the new population is selected using

the roulette-wheel method. In this method, the fitness values
of each chromosome are cumulatively added into a roulette
wheel and when the wheel spins, there are more chances for
chromosomes with higher fitness to get selected. A random
number is generated to represent the wheel spin and the par-
ticular chromosome with the cumulative fitness range de-
noted by the number will be selected. Like in tournament se-
lection, this is repeated 7 times to add to the existing 7 chro-
mosomes. Rest of the population (30%) is selected using the
elitist selection. In elitist selection, a number of best individ-
uals in the population are always passed onto the next gen-
eration and this type of selection has the advantage of guar-
anteed convergence. Even though reproduction increases the
percentage of better fitness chromosomes, the procedure is
considerably sterile; it cannot create new and better chro-
mosomes. This function is left over to crossover, mutation,
and inversion operators. These operations are performed in a
similar way as in our previous work [25]. Table 1 summarises
the used GA parameters for this study.

3. EXPERIMENTAL STUDY AND RESULTS

The proposed framework to reduce background EEG noise
from VEP signals was tested with BCI competition III
(dataset IIb) and the P300 datasets of a subject recorded at
BCI lab, University of Essex. Only a single channel (Cz) was
used with 5 trials to detect the target.

3.1. BCI competition III (dataset IIb)

This dataset allowed a subject to communicate one of the 36
symbols presented on a 6× 6 matrix. The dataset had speci-
fications of 36 classes, 64 EEG channels (0.1–60 Hz), 240 Hz
sampling rate, 85 training, and 100 test trials, recorded with
the BCI2000 system. It followed the standard procedure de-
veloped by Farwell and Donchin for P300-based BCIs. The
method assumes that the EEG epoch associated with the
relevant column and the relevant row will contain a de-
tectable P300 for a single intensification, while the other
epochs will not. The data presented to our framework were
obtained by averaging together each combination of row
and column single-trial epochs. Thus, there were 6 rows by
6 columns = 36 row-column intersection average (RCIA).



C. N. Gupta and R. Palaniappan 7

−30

−20

−10

0

10

20

30

A
m

pl
it

u
de

(m
ic

ro
V

)

0 200 400 600 800 1000 1200

Sample number

Concatenated five trials for the target RCIA

Figure 6: Signal trials for target RCIA from BCI competition III
(dataset IIb).
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Figure 7: Fifteen-trials cyclic spectrum for target RCIA (just to il-
lustrate similarity with five-trials).

The relationship between the number of trials required and
the speed of communication is direct. If detection could be
achieved using just less trials, the system would allow com-
munication at a better rate. We tested the framework using
only 5 trials from channel Cz to detect “I” which is the cho-
sen target character in the above chosen dataset. With respect
to the target character “I” detection, we discuss the proposed
framework’s performance diagrammatically below. Figures
6 and 9 show the concatenated trials (target and nontarget
RCIA) used for cyclostationary analysis while Figures 7-8 and
10-11 show their corresponding cyclic spectrums for varying
number of trials.

The cyclic spectrum which exploits the inter trial similar-
ities in the frequency domain depicts the cyclic VEP compo-
nents at 0–10 Hz as in Figure 2. It can also be inferred that
enhanced and better spectrum is obtained for more number
of trials. The lag parameter for cyclostationary analysis was
set to length of data to obtain a better spectrum. After some
preliminary experimentation, five-trial cyclic spectrum was
selected as optimum for analysis as it seemed to highlight
the VEP signal band appreciably. A threshold for the mag-
nitude of the cyclic spectra was used to obtain the VEP sig-
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Figure 8: Five-trials cyclic spectrum for target RCIA.
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Figure 9: Signal trials for nontarget RCIA from BCI competition
III (dataset IIb).

nal frequency band of (0–10 Hz) for lowpass filtering. Based
on this obtained band from cyclostationary analysis, the five-
trials are lowpassed-filtered using an 11th-order Chebyshev
digital filter with a 3-dB cut-off frequency at 10 Hz because
P300 responses are limited to this frequency range. Order 11
was used since it was sufficient to give a minimum attenu-
ation of 60 dB in the stop band. To avoid phase distortion
forward, and reverse filtering were performed since Cheby-
shev is a nonlinear filter. The out of band EEG artifacts is
thus removed using cyclostationary analysis.

The lowpass filtered five-trials (target and nontarget
RCIA) are then passed to the G-ICA fusion module to sep-
arate the in-band EEG artifacts. As discussed before, the
G-ICA module works by minimising the MI of the ex-
tracted components (for 100 generations) to reduce overlap-
ping EEG artifacts. The obtained denoised P300 response for
target and nontarget cases is shown in Figures 12-13. The
P300 amplitudes for target RCIA trials were found to have
a higher-peak amplitude value than that for the nontarget
RCIA trials. The single trial with maximum P300 amplitude
(in the range 300–600 ms) is highlighted with an increased
line width in both figures.
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Figure 10: Fifteen-trial cyclic spectrum for nontarget RCIA.
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Figure 11: Five-trials cyclic spectrum for nontarget RCIA.
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Figure 12: Detected P300 component for target RCIA showing
higher peak amplitude.

3.2. BCI labs, Essex dataset

The presented framework was also tested offline from a
dataset for a biometric application. Similar to the Donchin
paradigm, the application had seven blocks of colours which
were flashed to evoke P300 components. Sequences were
block randomised, which means, after seven flashes each
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Figure 13: Detected P300 component for nontarget RCIA showing
lower peak amplitude.
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Figure 14: Trials for target colour block and its cyclic spectrum.

colour was flashed once, after fourteen flashes each colour
was flashed twice. Forty trials were recorded (each trial had
7 flashes of the colour block). The subject was asked to fo-
cus on a single-colour block (say red) and also keep a count
of the number of times it flashed, which enabled monitor-
ing the performance of the subject. The colour blocks were
flashed for 100 millisecond with an interstimulus interval
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Figure 15: Trials for nontarget colour block and its cyclic spectrum.

of 300 millisecond. EEG recordings were carried out on a
Biosemi Active Two system using 34 channels (32 on a scalp
and 2 on either mastoids); however, only channel Cz was
used. Data was sampled at 256 Hz with no filtering. The sub-
ject was a male aged 27 who had experience of using the
BCIs before, with no known neurological disorders. The per-
formance of the framework for target and nontarget color
blocks is discussed below diagrammatically. It can be seen
from Figure 14 that the target-trial data is cyclic in time do-
main and also that the magnitude of the cyclic spectrum is
much higher than that of the nontarget data as in Figure 15.
The lag parameter for cyclostationary analysis was set to
length of data. After some preliminary experimentation, five-
trial cyclic spectrums were again found to be optimum for
analysis as it seemed to highlight the VEP signal band appre-
ciably. A threshold for the magnitude of the cyclic spectra was
used to obtain the VEP signal frequency band of (0–10 Hz)
for lowpass filtering. Based on this obtained band from cy-
clostationary analysis, a lowpass filter for (target colour block
and nontarget colour block) was used as in Section 3.1 to re-
move nonoverlapping EEG artifacts and the output is shown
in Figures 16-17.

The five-trials (target colour block and nontarget colour
block) are then passed to G-ICA fusion module. Investigating
Figures 18-19 clearly shows that the P300 component ampli-
tude in the 300–600 millisecond range is higher for target-
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Figure 16: Lowpassed-filtered trials for target colour block.
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Figure 17: Lowpassed-filtered trials for nontarget colour block.
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Figure 18: P300 components of the five-trials for target colour
block using G-ICA.

colour block than the nontarget colour block. The single trial
with maximum P300 amplitude is highlighted with an in-
creased line width in both the figures. It was also observed
that the frequency band (CS analysis) and the unmixing ma-
trix (G-ICA) do not change over trials.
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Figure 19: P300 components of the five-trials for nontarget colour
block using G-ICA.

Table 2: Runtime comparison between G-ICA and ICA.

G-ICA ICA

Target color block 97.23 s 96.16 s

Nontarget color block 98.03 s 97.05 s

We also compared the performance of G-ICA with ICA
(fixed point-ICA). The five-trials (target colour block and
nontarget colour block) after lowpass filtering, when passed
through ICA module gave the outputs as depicted in Figures
20-21. Again, the single trial with maximum P300 amplitude
(300–600 ms) is highlighted with an increased line width in
both the figures. It can be observed from Figures 18–21 that
the threshold of difference between target and nontarget for
G-ICA is higher than that obtained using ICA. Comparison
in terms of runtime in seconds is indicated in Table 2 and it
was found to be comparable.

4. DISCUSSION AND CONCLUSION

A new framework for enhanced VEP signal detection is pre-
sented. The two-stage framework makes use of cyclostation-
ary and G-ICA techniques to separate VEP signals from EEG
artifacts. Brain signals were emulated using VEP contami-
nated with EEG in the simulation study to analyse the cyclo
model for brain signal analysis. Studies from this work seem
to suggest that cyclostationary model might be suitable for
VEP signal analysis. To validate the method, further the algo-
rithms were tested to identify an arbitrarily chosen character
“I” from the BCI competition III challenge (dataset IIb) and
also with datasets recorded at BCI lab, University of Essex
which gave satisfactory results with very few trials (5 trials).
The G-ICA fusion module does not assume any property of
noise hence it can be used to separate any type of linear ad-
ditive noise. The runtime performance of G-ICA and ICA
was similar and comparable. It was also observed that the
frequency bands and unmixing matrix do not change over
trials for a given subject; hence the CS and G-ICA methods
need to be applied only to training data. It is known that in
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Figure 20: P300 components of the five-trials for target colour
block using ICA.

−4

−2

0

2
A

m
pl

it
u

de
(m

ic
ro

V
)

0 200 400 600 800 1000

Time (ms)

Five trials of non target color
block obtained after ICA module

Figure 21: P300 components of the five-trials for nontarget colour
block using ICA.

a P300-based BCI system the communication speed of char-
acters is dependent on the number of trials. Hence, this pro-
posed signal preprocessing framework may be used to reduce
the number of trials and thereby increase the rate of commu-
nication.
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