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Abstract

A major challenge in the post-genome era is to reconstruct regulatory networks from the biological knowledge
accumulated up to date. The development of tools for identifying direct target genes of transcription factors (TFs) is critical
to this endeavor. Given a set of microarray experiments, a probabilistic model called TRANSMODIS has been developed
which can infer the direct targets of a TF by integrating sequence motif, gene expression and ChIP-chip data. The
performance of TRANSMODIS was first validated on a set of transcription factor perturbation experiments (TFPEs) involving
Pho4p, a well studied TF in Saccharomyces cerevisiae. TRANSMODIS removed elements of arbitrariness in manual target
gene selection process and produced results that concur with one’s intuition. TRANSMODIS was further validated on a
genome-wide scale by comparing it with two other methods in Saccharomyces cerevisiae. The usefulness of TRANSMODIS
was then demonstrated by applying it to the identification of direct targets of DAF-16, a critical TF regulating ageing in
Caenorhabditis elegans. We found that 189 genes were tightly regulated by DAF-16. In addition, DAF-16 has differential
preference for motifs when acting as an activator or repressor, which awaits experimental verification. TRANSMODIS is
computationally efficient and robust, making it a useful probabilistic framework for finding immediate targets.
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Introduction

One of the major goals in the post-genome era is to establish a

connectivity diagram of transcription network, which requires

identification of direct targets of transcription factors (TFs). One

commonly used approach to detect regulatory interactions

between TFs and genes is chromatin immunoprecipitation

followed by microarray hybridization (ChIP-chip)[1,2], which is

a binding assay. However binding of a TF to regulatory sequences

does not necessarily imply regulation of gene expression.

Furthermore, the applicability of ChIP-chip analysis is limited by

the availability of antibody against a TF of interest. Therefore,

ChIP-chip experiment is often complemented by functional assays

using gene microarray.

To determine genes that are regulated by a specific TF, the TF is

constitutively activated or inhibited such that the target genes of the

TF should have significant expression changes in most of these

experiments, which we call transcription factor perturbation

experiments (TFPEs)[3]. In TFPEs, a combination of thresholds,

e.g. the least amount of fold change considered to be significant and

the minimum number of experiments in which the gene expression

changes are required to be significant, need to be pre-specified.

However the choice of threshold values tends to be arbitrary.

Thresholds are usually hand-picked on a case-by-case basis,

depending on the data set. More importantly, direct and indirect

targets of the TF cannot be discriminated by expression alone.

In this paper, we present a probabilistic model called

TRANSMODIS (TRANScription MOdule DIScovery) which

integrates sequence and expression information in target identi-

fication. The parametric model can remove the arbitrariness

commonly associated with the selection of thresholds for gene

expression change. Consideration about the presence or absence

of a binding motif in promoters can help distinguish direct from

indirect targets. Many motif finding algorithms, for example

references [4–15], have been developed and the performance of

motif finding algorithms has been steadily improving. We thus

assume that the core binding motif of a TF of interest has been

determined a priori and is provided as an input to TRANSMODIS.

TRANSMODIS is not a motif finding algorithm rather it focuses

on determining direct targets of a TF.

Several computational methods had been developed previously

to identify direct targets of TFs. MARSMotif[16,17] fits splines to

gene expressions and determines motifs and genes regulated by the

motif simultaneously. Beyer et al.[18] applied a Bayesian method

to integrate various types of information to generate a list of

putative targets of TFs in yeast. Their approach was not designed

to identify targets of a TF in multiple microarray experiments.

ARACNe[19] is an approach for reconstructing regulatory

PLoS ONE | www.plosone.org 1 March 2008 | Volume 3 | Issue 3 | e1821



networks from a large number of expression profiles. It first

identifies statistically significant gene-gene coregulations, and then

eliminates indirect relationships, which are thought to be the

weakest interactions within three-gene loops. The idea is that the

remaining edges in the network should have a high probability of

representing either direct regulatory interactions or interactions

realized by post-transcriptional modifications. ARACNe is a novel

approach; however it does not make use of any sequence data and

its inferred gene-gene interactions are non-directional. Segal

et al.[20,21] built probabilistic models to search for genes showing

similar expression patterns and also sharing common motif

profiles. Their models were complex and the parameters of their

models were learned iteratively via greedy search. Compared with

the general scenario that Segal et al. were dealing with,

TRANSMODIS handles a much simpler situation. As the core

motif is given and the target genes of the TF of interest should

show significant expression changes in most of the experiments,

the search for optimal parameter values in TRANSMODIS is less

likely to be trapped in local optima.

The intuition behind TRANSMODIS is that genes containing

the consensus core motif of the TF as well as exhibiting consistent

expression changes in all TFPEs are likely to be true direct targets.

In TRANSMODIS, gene expressions are modeled by a two-

component Gaussian mixture model and the binding site

sequences are assumed to be generated from a multinomial

distribution which is represented by a position specific weight

matrix (PSWM). By maximizing the joint likelihood of sequence

and expression, TRANSMODIS identifies a set of genes that have

consistent and highly elevated expressions and high scoring

putative binding sites.

TRANSMODIS is a generalization of MODEM[22], a model

we developed previously that is applicable only to a single gene

expression microarray or ChIP-chip experiment. Compared with

MODEM, TRANSMODIS is less sensitive to noise in individual

experiments because of the consistency requirement on gene

expression level across multiple experiments. TRANSMODIS also

adds an additional step to score genes that do not contain a copy of

the consensus binding motif in their promoter regions.

Because consensus binding motif is not known for every TF and

sets of TFPEs are limited, a true genome-wide verification of

TRANSMODIS is not yet practical. Thus we validated the

performance of TRANSMODIS on Pho4p, a TF in budding yeast

Saccharomyces cerevisiae. A comparison with previously reported

target genes and the target genes selected by the original authors

who did the perturbation experiments showed that TRANSMO-

DIS is a promising method for direct target identification and is

expected to yield a low false discovery rate (FDR) in general. On a

larger scale, TRANSMODIS was applied to a set of ChIP-chip

data[8] and evaluated against two other methods. Since no

complete list of targets of any TF is known, the comparison was

based on positive prediction value (PPV), which is the portion of

true positives in all findings. TRANSMODIS demonstrated better

performance than the two other methods on a majority of the 81

TFs tested. We then applied TRANSMODIS to identify

immediate targets of DAF-16, which is a critical TF influencing

the lifespan of nematode Caenorhabditis elegans.

Results

1. Validation of TRANSMODIS by simulation
We first validated TRANSMODIS on simulated data where the

true targets were known. Each simulated data set consisted of 1000

genes and ten experiments. Out of the 1000 genes, ten were targets

and the other 990 genes were non-targets. The expression values

of non-target genes were identically and independently sampled

from the standard normal distribution N(0,1). And those of

targets were simulated from the normal distribution with a mean

of three and a variance of one N(3,1). To make the problem more

challenging, within each experiment, ten non-target genes were

randomly selected to have their expressions drawn from the N(3,1)

distribution of target genes and five target genes were randomly

selected to have their expressions reduced by half.

The consensus binding motif was chosen to be TGTTTAC. All

target genes had this core binding motif present in their upstream

sequences except for two of the ten target genes, which had

binding motifs that differed from the consensus binding motif in

two nucleotides, namely, TTTTAAC and AGTTTCC. The

upstream sequences of all non-targets were simply generated from

the uniform background. Each upstream sequence was 600-

nucleotide long.

A total of ten simulated data sets were generated and analyzed.

The results are listed in Table 1. TRANMODIS showed a clear

advantage over MODEM on the simulated data sets. With most

Table 1. TRANSMODIS and MODEM results on ten simulated data sets.

Simulated data set #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

TRANMODIS 10/10* 10/10 10/10 10/10 9/9 10/10 10/10 10/10 10/10 10/10

MODEM on array 1 1/33 0/57 2/59 1/40 2/26 0/24 0/55 2/67 4/72 0/55

MODEM on array 2 0/31 1/22 1/27 2/32 0/48 2/41 0/38 2/46 2/37 0/19

MODEM on array 3 0/37 2/45 1/35 0/36 0/19 2/38 3/41 0/28 0/23 0/58

MODEM on array 4 2/50 0/38 2/26 0/38 1/34 0/54 2/47 0/23 2/41 0/50

MODEM on array 5 2/43 0/17 0/38 1/32 3/30 3/50 1/73 1/63 0/29 1/80

MODEM on array 6 1/28 1/29 1/40 2/30 1/71 1/29 0/38 1/26 3/46 2/42

MODEM on array 7 1/33 0/40 0/38 0/53 3/36 0/45 2/35 6/41 0/33 2/34

MODEM on array 8 3/32 0/58 1/39 0/29 2/32 0/36 0/56 0/30 2/50 0/31

MODEM on array 9 0/22 1/45 1/94 1/25 0/52 0/45 3/69 0/30 0/19 0/26

MODEM on array 10 1/26 1/43 0/43 2/32 0/58 0/32 1/33 1/32 1/61 0/57

MODEM (majority voting) 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

*The ratio A/B indicates that the method predicted a total of B genes as direct targets and out of these B genes, A genes were true targets.
doi:10.1371/journal.pone.0001821.t001

Target Gene Identification
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data sets (9 out of 10), TRANSMODIS identified the complete set

of true targets except for the fifth simulated data set, where

TRANSMODIS missed one true target. TRANSMODIS had no

false positives in all cases. MODEM, on the other hand, failed to

find any target genes by the majority voting rule. Note that when

MODEM was applied to an individual array, it did identify a list

of targets; however since most of the genes on the lists were false

positives, no gene (including true targets) made half of the lists.

The number of true targets on most lists was between zero and

two. Thus the simulation study showed that the gain of using

information from all arrays all at once by TRANSMODIS was

substantial.

2. Validation of TRANSMODIS in Saccharomyces cerevisiae
To further validate the model, TRANSMODIS was applied to

identify immediate targets of Pho4p, a TF in model organism

Saccharomyces cerevisiae. Multiple perturbation microarray experi-

ments were done for Pho4p. The PHO regulatory system is one of

the most well studied pathways in Saccharomyces cerevisiae. In a low

phosphate (Pi) concentration medium, the cyclin-dependent kinase

(CDK) inhibitor Pho81p inactivates the Pho80p-Pho85p complex,

leading to an accumulation of hypophosphorylated form of Pho4p

in the nucleus and subsequent activation of phosphate responsive

genes. In order to identify all genes involved in the phosphate

response, Ogawa et al.[23] carried out eight microarray experi-

ments, namely, low Pi vs. high Pi in WT (NBW7) exp 1, low Pi vs.

high Pi in WT (NBW7) exp 2, low Pi vs. high Pi in WT (DBY7286),

PHO4c vs. WT, pho80D vs. WT, pho85D vs. WT, PHO81c vs.

WT exp 1 and PHO81c vs. WT exp 2. Pho4p was active in each of

these experiments and up-regulated expressions of its target genes.

Ogawa et al. considered a set of 20 genes that showed at least a

two-fold increase of expression in at least five out of the eight

experiments as Pho4p targets. In contrast to the somewhat

arbitrary criterion used by Ogawa et al., TRANSMODIS provides

a parametric model to remove this arbitrariness.

Using the known binding motif CACGTGG of Pho4p and the

eight microarray experiments of Ogawa et al. as inputs,

TRANSMODIS found 19 genes from the entire Saccharomyces

cerevisiae genome (about 6000 genes) as Pho4p targets (Table 2 and

Table S1). The 19-gene TRANSMODIS target list was nearly

identical to the 20 genes identified by Ogawa et al. except for

YER038C, which was dropped by TRANSMODIS. The YER038C

gene is unlikely to be PHO-regulated because it does not contain

the consensus Pho4-binding motif or variants in its promoter.

There were nine genes reported to be PHO-regulated prior to

the study of Ogawa et al. These nine genes were PHO11, PHO5,

PHO89, PHO8, SPL2, PHO12, PHO86, PHO84 and PHO81[23–

28]. All of them except PHO81 were correctly identified as targets

by both Ogawa et al. and TRANSMODIS. A heatmap of the

expression profiles of PHO81 and its two homologs YPL110C and

SPL2 is shown in Figure 1. The heatmap reveals that SPL2 had a

consistently higher differential expression in all experiments (an

average increase of 16-fold) than PHO81 and YPL110C (an

average increase of 1.6-fold and 2-fold respectively) (p-value =

0.015 from two-sample t-test) (Figure 1). Indeed, both Ogawa et al.

and TRANSMODIS identified SPL2 as a Pho4p target. Based on

the gene expression data, the selection of SPL2 and the omission of

PHO81 and YPL110C by TRANSMODIS are consistent with

one’s intuition.

TRANSMODIS is an extension to MODEM, which was

developed for analyzing a single microarray experiment. To

compare the performance of TRANSMODIS with that of

MODEM, we applied MODEM in two different ways on this

data set. The first approach was to calculate the average

expression of each gene in all experiments and apply MODEM

to this ‘‘single’’ array of averaged expressions. The second

approach was to apply MODEM on all eight expression data

separately and then select target genes using majority voting

(Table 2). We have also listed the MODEM result on a single

PHO4 mutation experiment PHO4c vs. WT, in which the Pho4p

was constitutively active in Table 2.

One of the known targets, PHO81, was missed by all approaches

because of the weak evidence in the expression data (Figure 1). The

eight other earlier known targets were successfully identified by all

approaches. Only PHO86 was missed when MODEM was run on

the averaged expression profile of all arrays. It is not surprising that

TRANSMODIS was more stringent than MODEM, identifying

fewer targets than MODEM. The average number of target genes

found by MODEM from an individual experiment of Ogawa et al.

was 32. By requiring consistent up-regulation in all experiments,

TRANSMODIS can filter out non-targets that would otherwise be

erroneously identified from a single array analysis. At the same time,

being less sensitive to random noise in individual experiments,

TRANSMODIS can recover some of the true targets that would

otherwise be missed by MODEM.

Different from MODEM, TRANSMODIS has an additional step

of scoring promoter sequences that do not contain the consensus

core motif (up to a certain number of allowed mismatches). Upon

evaluation of such a gene without the core motif, if the probability of

being a true target using the learned model parameters is greater

than 0.5, TRANSMODIS will tag this gene as a target as well. For

example, TRANSMODIS identified PHM7 as a Pho4p target; the

putative binding site in PHM7 was found to be CAAGTGC, which

differs from the consensus binding motif in two nucleotides and

therefore was not evaluated by MODEM.

3. Comparative assessment of TRANSMODIS
There is only a limited number of multiple perturbation

experiments publicly available for the same TFs. In order to assess

the performance of TRANSMODIS on a genomic data set, we

applied it to the ChIP-chip data of 204 TFs[8]. The ChIP-chip

experiments were done under different conditions for a portion of

the 204 TFs. There are 26 and 15 TFs for which ChIP-chip

experiments were done under 3 and .3 conditions respectively.

Since the TFs were not necessarily active under each of these

conditions and the number of experiments was small, we could not

blindly apply TRANSMODIS to experiments available for a TF.

We therefore analyzed each ChIP-chip experiment separately and

manually selected the experiment that satisfied the following two

criteria: there is a significant motif identified by REDUCE[11] in

the experiment and the enriched functions of the identified target

genes are consistent with those of the TFs.

We compared the performance of TRANSMODIS with two

other methods for identifying TF binding. The first one is a

Bayesian method that integrates diverse information to predict TF

binding in yeast[18] and the second one is an error model

developed by Young and colleagues[2]. Since no complete list of

targets for any TF is available, sensitivity and specificity cannot be

calculated for any of these methods. Therefore, we computed

PPV, the portion of true positives in the total predictions. The true

positives were taken from three databases: TRANSFAC, SCPD

and YPD. We compared the results of the three methods on 81

TFs that had at least one target gene known in the literature and

on which the Bayesian method made predictions (Table 3).

On average, the Bayesian method had the most predictions

while the error model had the least. The average PPV for the

TRANSMODIS, the Bayesian method and the error model were

8.58%, 6.57% and 6.32%. More specifically, TRANSMODIS

Target Gene Identification
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performed better than the Bayesian method and the error model

on 44 and 46 TFs respectively, and TRANSMODIS performed

worse than the other two methods on 22 and 13 TFs respectively.

The PPVs are small for all three methods, which is probably due

to the fact that only a small set of conditions was tested in the

ChIP-chip experiments. It also highlights the need to continuously

improve target identification methods.

4. Identification of genes involved in ageing
Encouraged by the success of TRANSMODIS on finding direct

targets of TFs in Saccharomyces cerevisiae, we applied it to tackle a

more challenging problem, namely the identification of direct

targets of DAF-16 in nematode Caenorhabditis elegans. DAF-16 is a

TF playing critical roles in worm ageing. The mechanism of

ageing remains to be an important and unsolved mystery. Whereas

the normal lifespan of an adult worm is only two to three weeks,

individuals carrying mutations that decrease insulin/insulin-like

growth factor 1 (IGF-1) signaling can live twice as long[29].

Mutations in gene daf-2, which is predicted to encode an insulin/

IGF receptor ortholog, together with a downstream TF, daf-16,

can increase lifespan significantly. DAF-2 negatively regulates the

activity of DAF-16, a FOXO-family TF.

Table 2. Target genes selected using different approaches.

Gene ORF Ogawa et al. TRANSMODIS
MODEM (average
expression profile)

MODEM (individual
arrays; majority rule)

MODEM
(PHO4c vs. WT)

PHO11* YAR071W ! ! ! ! !

PHO5* YBR093C ! ! ! ! !

PHO89* YBR296C ! ! ! ! !

PHM6 YDR281C ! ! ! ! !

PPN1 YDR452W ! ! ! !

PHO8* YDR481C ! ! ! ! !

PHM8 YER037W ! ! !

HIS1 YER055C ! !

HOR2 YER062C ! ! ! !

VTC1 YER072W ! ! ! !

VTC2 YFL004W ! ! ! !

SPL2* YHR136C ! ! ! ! !

PHO12* YHR215W ! ! ! ! !

VTC4 YJL012C ! ! ! ! !

PHO86* YJL117W ! ! ! !

PHO84* YML123C ! ! ! ! !

PHM7 YOL084W ! !

CTF19 YPL018W ! ! ! ! !

VTC3 YPL019C ! ! ! ! !

KRE29 YER038C !

SWC3 YAL011W !

YAR069C YAR069C !

YAR070C YAR070C ! ! !

KRE2 YDR483W ! !

MNN1 YER001W !

ARO9 YHR137W ! ! !

REC107 YJR021C !

YJR039W YJR039W !

NUP85 YJR042W !

PTK2 YJR059W !

CDA1 YLR307W !

YLR402W YLR402W !

YML089C YML089C !

YMR291W YMR291W !

YPL110C YPL110C !

CTF4 YPR135W !

PHO81* YGR233C

*The nine genes that were previously reported to be under PHO regulation prior to the study of Ogawa et al.[23]
doi:10.1371/journal.pone.0001821.t002
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Identifying direct targets of DAF-16 can shed light on the

functional mechanism of DAF-16 at influencing lifespan. Lee

et al.[30] took a comparative genomics approach to identify

orthologous genes containing the conserved DAF-16 binding sites

in their promoter sequences and Oh et al.[31] used chromatin

immunoprecipitation (ChIP) followed by cloning to search for

direct downstream targets of DAF-16. Lee et al. found that the

expression of 7 genes were controlled by DAF-16 while Oh et al.

chose to study 33 genes out of 103 candidates and 18 genes

showed significant (either up or down) expression changes in a daf-

16 dependent manner. The results of these studies were useful but

the number of direct targets identified was limited. To identify

genes that are regulated by the DAF-2 pathway and investigate

their roles in the ageing process, Murphy et al.[32] deduced the daf-

2 and daf-16 activity using RNAi and analyzed the resultant gene

expression profiles using cDNA microarrays. First, genes with a

minimum of fourfold expression change were selected by

hierarchical clustering of 60 arrays (5 mutant arrays plus 55 time

course arrays); in addition, genes showing highly consistent

expressions, regardless of the amount of fold change, were also

included. Then based upon the p-values obtained from SAM[33]

and a visual inspection of genes for genes that were more overly

expressed than the others, a top group of 58 genes was chosen to

be further validated for their influence on lifespan[32].

The gene expression microarray experiments conducted by

Murphy et al.[32] were functional assays and had multiple time

points. We re-analyzed the data using TRANSMODIS to

automatically identify the direct targets of DAF-16 without

arbitrary thresholds and human involvement. We pooled together

the time course data, which consisted of an early adult time course

(ten time points from 0–48 h of adulthood) and a longer time

course (ten time points from 0–192 h of adulthood), on worms

exposed to daf-2 RNAi and worms exposed to daf-16 and daf-2

RNAi. Arrays at 0h time point were left out of the analyses and we

also discarded eight arrays with a high percentage of missing data.

It left us with a set of twenty eight arrays. The numbers of daf-

2(RNAi) treatments and daf-2(RNAi);daf-16(RNAi) treatments

were approximately equal (15 versus 13). We retrieved 1kb

upstream sequence of the translational start site of each ORF from

WormBase[34].

Using the twenty eight time course gene expression arrays, the

upstream sequence data, and the binding motif TRTTTAC defined

by Murphy et al.[32], TRANSMODIS was run twice to the same

data set with signs inverted in the second run, giving two classes of

genes. Following the nomenclature defined in Murphy et al., class 1

genes are genes that were induced in daf-2(RNAi) animals but

repressed in daf-2(RNAi);daf-16(RNAi) animals, and class 2 genes

are the opposite genes which were repressed in daf-2(RNAi)

animals but induced in daf-2(RNAi);daf-16(RNAi) animals. Class 1

and class 2 genes are candidate genes that extend and shorten

worm lifespan respectively.

TRANSMODIS identified 39 class 1 genes and 150 class 2

genes (Figure 2, Table S2 and Table S3), compared with 263 class

1 genes and 251 class 2 genes that were found by Murphy et al.[32]

using hierarchical clustering. Twenty of the TRANSMODIS

predictions are in common with the 58 genes in Murphy et al.

Furthermore the two lists of class 1 genes share 34 genes and the

two class 2 gene lists overlap with 44 genes. The amount of overlap

is statistically significant. Hierarchical clustering by itself cannot

distinguish between direct and indirect targets. That was why

Murphy et al.[32] used other criteria to prioritize their target list.

TRANSMODIS provided a systematic and automatic target

selection procedure that can be used in place of the original

authors’ method which needed human involvement.

There was no significant overlap between the targets found by

TRANSMODIS and the two previous studies of Lee et al.[30]

and Oh et al.[31]. The target genes identified by Lee et al. and Oh

et al. did not have consistent significant expression changes in the

time course experiments of Murphy et al. It could be that those

genes are regulated by DAF-16 transiently or only at a specific

temporal stage. For example, the expression of ZK593.4 was

significantly upregulated in the short time course experiments of

daf-2 RNAi at 1, 3, 4, 6, 8 and 12 hour time points, but showed

almost no change in the long time course experiments of daf-2

Figure 1. Comparison between the expression profiles of PHO81 and its two homologs SPL2 and YPL110C in the eight TFPE
experiments of Pho4p. Red and green colors represent up- and down-regulation, respectively. The brightness of the color is proportional to the
absolute expression ratio.
doi:10.1371/journal.pone.0001821.g001
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Table 3. Comparison between TRANSMODIS and two other methods for target gene identification on the set of ChIP-chip data by
Harbison et al.[8].

TF
Known
targets Total number of predictions Number of predictions known to be true PPV

TRANSMODIS Bayesian Error model TRANSMODIS Bayesian Error model TRANSMODIS Bayesian Error model

ABF1 30 240 176 267 9 5 5 0.038 0.028 0.019

ACE2 8 85 335 92 2 2 2 0.024 0.006 0.022

ADR1 10 189 20 35 1 0 0 0.005 0 0

ARG80 8 16 7 16 3 2 3 0.188 0.286 0.188

ARG81 8 17 20 28 3 4 4 0.176 0.200 0.143

ARO80 2 12 32 27 2 2 2 0.167 0.063 0.074

ASH1 1 21 10 0 0 0 0 0 0 NA

BAS1 13 41 147 41 8 10 8 0.195 0.068 0.195

CBF1 11 86 252 281 3 7 5 0.035 0.028 0.018

CIN5 1 117 169 153 0 0 0 0 0 0

CUP9 2 35 6 21 1 1 1 0.029 0.167 0.048

DAL80 22 49 8 13 0 0 0 0 0 0

DAL81 10 114 79 96 7 5 7 0.061 0.063 0.073

DAL82 8 54 93 59 6 8 6 0.111 0.086 0.102

FKH1 1 167 116 142 0 0 0 0 0 0

FKH2 2 121 353 122 2 2 2 0.017 0.006 0.016

FZF1 1 35 5 17 0 0 0 0 0 0

GAT1 4 124 41 27 3 1 1 0.024 0.024 0.037

GCN4 57 68 169 75 23 32 22 0.338 0.189 0.293

GCR1 20 42 55 15 0 5 2 0 0.091 0.133

GCR2 9 47 43 56 4 5 4 0.085 0.116 0.071

GLN3 31 118 141 68 16 16 11 0.136 0.113 0.162

HAC1 5 10 56 15 1 3 1 0.100 0.054 0.067

HAL9 1 33 15 28 0 0 0 0 0 0

HAP1 14 149 189 151 10 9 10 0.067 0.048 0.066

HAP2 30 23 54 21 2 2 2 0.087 0.037 0.095

HAP3 27 10 19 30 1 2 2 0.100 0.105 0.067

HAP4 27 74 170 77 7 9 7 0.095 0.053 0.091

HAP5 25 13 24 12 1 0 0 0.077 0 0

HSF1 16 71 122 102 12 12 13 0.169 0.098 0.127

IME1 15 20 1 0 0 0 0 0 0 NA

INO2 20 33 62 48 5 10 7 0.152 0.161 0.146

INO4 18 31 64 37 9 13 9 0.290 0.203 0.243

IXR1 1 9 2 28 0 0 0 0 0 0

LEU3 7 19 61 24 6 6 4 0.316 0.098 0.167

MAC1 8 8 47 18 3 4 4 0.375 0.085 0.222

MBP1 38 121 394 61 15 25 8 0.124 0.063 0.131

MCM1 32 92 240 107 18 20 16 0.196 0.083 0.150

MET28 1 20 1 17 0 0 0 0 0 0

MET4 9 25 76 28 4 5 1 0.160 0.066 0.036

MIG1 29 10 67 22 1 8 2 0.100 0.119 0.091

MOT3 4 22 11 8 0 0 0 0 0 0

MSN1 1 114 1 5 0 0 0 0 0 0

MSN2 36 154 199 47 11 17 4 0.071 0.085 0.085

MSN4 33 115 163 71 8 13 4 0.070 0.080 0.056

PDR1 15 323 108 8 4 4 0 0.012 0.037 0.000

PDR3 9 8 39 21 1 2 1 0.125 0.051 0.048
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RNAi. In the double daf-2;daf-16 RNAi knock-down experiments,

ZK593.4 had significant down-regulation only at the first three

time points. Such a pattern was not unique to ZK593.4 and was

observed for thousands of genes and hence it is hard, if not

impossible, to pick out direct targets of DAF-16 exhibiting this

particular pattern. The targets identified by TRANSMODIS

could be complementary to the previous studies of Lee et al.[30]

and Oh et al.[31].

The extended motifs (the core motif plus immediate flanking

regions) of the TRANSMODIS targets are shown in Figure 3

and the extended motifs of the two classes differ significantly at

the flanking regions. The class 1 genes seem to prefer

GSGAGNNTRTTTACTBCANCG (the core motif is underlined)

while the class 2 genes seem to prefer STCGACRTRTTTAC-

AGNTSGS. It was suggested that DAF-16 can function both as an

activator and a repressor[30,32]. The direction of regulation by

DAF-16 may depend on cooperation between DAF-16 and other

TFs binding to the same promoter[30,32]. Our finding suggests

the possibility that the binding sites of the other TFs may partially

overlap with that of DAF-16. We therefore hypothesize that the

extended motifs of the two target classes are recognized by TFs

that function side by side with DAF-16 in a competitive or

cooperative manner. This hypothesis can be tested experimentally

by using immobilized DNA segments to pull down the co-factors.

Table 3. cont.

TF
Known
targets Total number of predictions Number of predictions known to be true PPV

TRANSMODIS Bayesian Error model TRANSMODIS Bayesian Error model TRANSMODIS Bayesian Error model

PHO2 19 33 2 33 1 0 1 0.030 0 0.030

PHO4 24 72 82 31 4 8 7 0.056 0.098 0.226

PPR1 4 15 24 28 0 2 0 0 0.083 0

PUT3 2 14 66 90 1 2 0 0.071 0.030 0

RAP1 35 291 196 0 17 13 0 0.058 0.066 N/A

RCS1 11 39 183 261 7 10 0 0.179 0.055 0

REB1 21 278 313 0 4 4 0 0.014 0.013 N/A

RFX1 5 12 57 25 2 4 2 0.167 0.070 0.080

RGT1 6 9 1 0 1 1 0 0.111 1.000 N/A

RIM101 4 115 27 7 0 0 0 0 0 0

RME1 2 29 66 40 1 1 0 0.034 0.015 0

ROX1 13 104 94 6 1 2 0 0.010 0.021 0

RPH1 1 25 68 8 0 1 0 0 0.015 0

RPN4 7 144 212 101 4 7 4 0.028 0.033 0.040

RTG3 5 26 47 37 4 4 4 0.154 0.085 0.108

SIP4 2 9 69 21 1 2 1 0.111 0.029 0.048

SKN7 21 187 201 190 8 6 6 0.043 0.030 0.032

STE12 78 60 567 63 24 34 25 0.400 0.060 0.397

STP1 1 60 117 72 1 1 0 0.017 0.009 0

SUM1 2 81 110 60 1 0 1 0.012 0 0.017

SUT1 1 95 73 69 0 0 0 0 0 0

SWI4 14 105 271 161 5 6 4 0.048 0.022 0.025

SWI5 11 46 203 120 3 7 5 0.065 0.034 0.042

SWI6 44 118 430 158 10 19 10 0.085 0.044 0.063

TEC1 44 62 46 43 3 0 0 0.048 0 0

THI2 8 34 67 47 5 8 7 0.147 0.119 0.149

UGA3 3 9 42 32 2 2 0 0.222 0.048 0.000

UME6 40 286 239 134 18 18 10 0.063 0.075 0.075

XBP1 5 65 50 77 1 1 1 0.015 0.020 0.013

YAP1 39 25 314 72 5 11 7 0.200 0.035 0.097

YAP6 1 15 242 60 1 0 1 0.067 0 0.017

YHP1 1 42 9 20 0 0 0 0 0 0

YRR1 4 66 3 23 0 0 0 0 0 0

ZAP1 12 22 62 22 4 9 4 0.182 0.145 0.182

Average 14.4 72.8 111.3 58.6 4.3 5.6 3.5 0.086 0.066 0.063

The cutoff of the error model is set to 0.001, as suggested by the original authors[2].
doi:10.1371/journal.pone.0001821.t003
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We searched for enriched motifs in the 1 kb upstream sequences

of TRANSMODIS targets using MobyDick[35], a dictionary

motif finding algorithm. The MobyDick algorithm found approx-

imately 300 motifs in each class of targets. We clustered these

motifs based on their similarities and evaluated the significance of

their occurrences using bootstrap. Among the class 1 targets,

AGTTCC, CTCCACC, CTGATAAG and CTTATCA were signifi-

cantly enriched (p-values,0.01, unadjusted for multiple testing).

The p-value of a motif was computed as the probability of

observing the same or larger number of occurrences of that motif

in a random set of genes, which was a bootstrap sample without

replacement from the entire Caenorhabditis elegans genome. We took

10,000 bootstrap samples to compute the p-values. The motif

CTTACTA matched the binding motif of GATA family of TFs

documented in WormBase[34] and was also identified as an

enriched motif by Murphy et al.[32]. Murphy et al. pointed out in

their paper that the motif cttatca might be bound by a TF that

cooperates with DAF-16. Among the TRANSMODIS class 2

genes, the following motifs were significantly enriched: AGAT-

KAGR, CTGATAAG and CTTATCA. We then scanned the 2000 bp

upstream region of translational start site of TRANSMODIS class

1 and class 2 homolog genes (the best BLAST matches) in human.

The motif CTGATAAG was found to be enriched in the class 1

human genes as well (bootstrap p-value = 0.0061), which suggested

that this motif may have functional roles. The other motifs had

failed to make the 0.01 p-value cutoff. It is not clear at this point

whether CTGATAAG is an extended reverse variant of the

canonical GATA motif TGATAAG or a binding site for another

TF. There are 11 GATA factors encoded in the Caenorhabditis

elegans genome. The deviation of CTGATAAG from the canonical

GATA motif implies that, if it is indeed bound by a GATA factor,

then only a subset of GATA factors specifically bind to this motif

and cooperate with DAF-16 to regulate the class 1 genes. Since

oxidoreductases are enriched in the class 1 genes (see below) and

GATA factors MED-1 and MED-2 are known to be involved in

oxidative stress response mediated by SKN-1[36], MED-1 and

MED-2 should be the first TFs to be investigated.

To understand the mechanism of DAF-16 at affecting lifespan,

we examined enriched molecular functions for the two classes of

target genes. On the Murphy et al. class 1 and class 2 genes, the

GO term analysis showed that the class 1 genes were enriched for

oxidoreductase activities and the class 2 genes were enriched for

Figure 2. Expression profiles of class 1 and class 2 direct targets of DAF-16 in Caenorhabditis elegans identified by TRANSMODIS.
doi:10.1371/journal.pone.0001821.g002
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peptidase activities. The target genes selected by TRANSMODIS

had significant overlap with the Muphy et al. genes for both classes.

However while there were still many oxidoreductases among the

TRANSMODIS class 1 genes, the TRANSMODIS class 2 genes

were no longer enriched for peptidase activities. Therefore there

were slight changes in the GO term analysis results between the

two sets of class 2 genes.

Among the twenty TRANSMODIS class 1 genes that had gene

ontology annotations, nearly half of them (9 out of 20) were

oxidoreductases (the Bonferroni corrected p-value was about

1024). Numerous correlations between oxidative stress resistance

and longevity have been described[37], consistent with the

observation that daf-2 RNAi worms lived significantly longer than

wild types. This observation also highlights the regulatory role of

DAF-16 on oxidoreductases to extend lifespan. The nine

oxidoreductases are C30G12.2, R09B5.6, C06B3.4, W06D12.3,

C06B3.5, B0213.15, K12G11.3, F11A5.12 and K07C6.4. Mur-

phy et al.[32] had examined five of them, namely C06B3.4,

B0213.15, K12G11.3, F11A5.12 and K07C6.4, on affecting

animal lifespan using RNAi. Knocking down the activities of all

but B0213.15 extended lifespan, though not significantly[32]. No

significant biological processes or compartments were found,

implying that the oxidoreductases are involved in many different

processes. Combined with the functional study in [32], the GO term

analysis suggested that the effects of oxidoreductases on ageing might

be cooperative/collective and this is why mutations of their upstream

regulators, e.g. DAF-2 and DAF-16, can significantly extend

lifespan. TRANSMODIS identified 150 class 2 genes, involved in

a diverse array of biological processes and functions. A significant

portion of the genes (12 out of 63 annotated genes) are involved in

macromolecule metabolism but the p-value was not significant at all.

The most enriched biological processes were phosphate transport (13

out of 63 genes, p-value = 10210) and ion transport (15 out of 63

genes, p-value = 1029). The molecular functions of the class 2 genes

with a p-value,0.01 were being structural constituents of cuticle (12

genes, p-value = 10210) and structural molecules (14 genes, p-

value = 1025). These observations suggest possible functional roles of

DAF-16 on affecting lifespan that have not yet been well studied.

Discussion

TRANSMODIS is a probabilistic model for predicting direct

targets from binding motif, sequence data, expression data and

ChIP-chip experiments. The probabilistic framework removes

arbitrary cutoffs in target selection procedures and allows

integration of data coming from various sources. Compared with

other criteria for identifying targets, TRANSMODIS is usually

more stringent by requiring consistent and significant expression

fold changes across all experiments.

The methodology was validated on a set of TFPEs perturbing

the activity of Pho4p in Saccharomyces cerevisiae. TRANSMODIS

had successfully recovered a majority of previously known direct

targets, i.e. the nine genes that were reported to be PHO-regulated

prior to the study of Ogawa et al. Because we do not know the total

number of true targets of Pho4p, it is difficult at the current stage

to give sensitivity and specificity analyses of TRANSMODIS. To

assess the performance of TRANSMODIS, we applied TRANS-

MODIS and two other methods (a Bayesian method[18] and an

error model[2]) on a set of 81 TFs in Saccharomyces cerevisiae. Using

PPV as a measure of efficiency and accuracy, TRANSMODIS

performed better than the Bayesian method and the error model

on 44 and 46 TFs, and performed worse than the other two

methods on 22 and 13 TFs, respectively.

Using simulated data sets, it was shown that TRANSMODIS

could recover nearly every target gene every time and had few

false positives; whereas MODEM, a previously developed method

which is applicable to a single experiment, failed to find any target

genes on the same data sets. Therefore, TRANSMODIS, though

an extension of MODEM, was much more effective at identifying

targets than MODEM when multiple arrays were available. If

Figure 3. Enriched motifs in the class 1 and class 2 target genes of DAF-16. The x axis is the position and the y axis is the log2 ratio between
the target and non-target weight matrices.
doi:10.1371/journal.pone.0001821.g003
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TRANSMODIS is fed a random motif, it can still make target

predictions provided that the expression data is unaltered. This is

due to the fact that true consensus binding motifs are usually short

and degenerate, hence contributing less information than genomic

expression data, especially when that data is combined from

several experiments.

Some true targets can be missed by TRANSMODIS if the true

targets had inconsistent induction in all experiments. The reason

can be biological (e.g., transient regulation by the TF or

combinatorial regulation of several TFs) or technical (e.g.,

systematic error or noise of microarray experiments). Nevertheless,

the result of TRANSMODIS would be consistent with one’s

intuition given the data.

The usefulness of TRANSMODIS was demonstrated in the

identification of immediate targets of DAF-16, a critical TF in

Caenorhabditis elegans that regulates ageing. TFPE experiments are

functional assays and are commonly used by researchers to

identify targets of a TF, particularly in higher organisms.

TRANSMODIS identified target genes that showed DAF-16

dependent expression changes, and expanded the list of known

DAF-16 targets. An interesting finding of our analysis is that the

flanking sequences of the core motif recognized by DAF-16 differ

dramatically in the two classes of targets with opposite effects on

lifespan. The observation may provide a clue to the TFs that

cooperate with DAF-16 to specifically regulate the two classes of

genes. We also found several putative binding motifs for the co-

factors of DAF-16 in regulating lifespan. In particular, GATA

factors may play important roles in regulating class 1 genes.

It is possible to obtain comparable results to TRANSMODIS by

raising the cutoffs sometimes. However it is not clear how high the

cutoffs should be set to in the absence of a guideline. If we require

the induction ratio of target gene expression to be at least two-fold

in at least six out of the eight Pho4p experiments done by Ogawa

et al., the target list will then shorten to fewer than 17 genes. So in

order to yield a comparable target list, we probably would like to

stick with the selection rule of requiring a marked up-regulation in

five experiments for targets. Depending on the specific choice of

the threshold, the final Pho4p target list is going to be of different

length. For example, the target gene list consists of 20, 19 and 18

genes if the required cutoff is set to 2.1-fold, 2.2-fold, and 2.3-fold

respectively. When the cutoff is raised from two-fold (the original

threshold used by Ogawa et al.) to 2.1-fold, there is no change to

the target list. When the cutoff is raised from 2.1-fold to 2.2-fold,

gene YER038C/KRE29 gets dropped and the target list becomes

identical to the TRANSMODIS target list. Further increasing the

cutoff to 2.3-fold drops gene YOL084W/PHM7, which is likely to

be a true Pho4p target. Therefore even though it is possible to

produce comparable results to TRANSMODIS by changing the

thresholds, it is unclear how to find these thresholds and any

choice would be arbitrary without an appropriate justification.

TRANSMODIS assumes that (1) the TF of interest has

activities in all experiments; and hence the true immediate targets

of a TF of interest ought to have consistent and significant

expression changes in most if not all microarray experiments, and

(2) the promoters of direct targets contain good matches to the

consensus binding motif. These assumptions do not always hold.

For example, the promoters of targets may contain motifs that

could be bound by the TF but are not because of a lack of co-

factors or an inaccessible chromatin structure. Or there can be a

situation where only a subset of direct targets was upregulated

because the TF recognizes different motifs under different

conditions. In these situations, TRANSMODIS is not able to

recover the full set of targets but only a subset of them.

In order to use TRANSMODIS, one has to supply a consensus

binding motif, which is not always known in advance, especially in

higher eukaryotic organisms. However as more biological

knowledge is accumulated and deposited into databases such as

TRANSFAC[38] and JASPAR[39], we believe that TRANSMO-

DIS will find more applications in the future. A Java implemen-

tation of TRANSMODIS is available upon request. Or the users

may choose to upload and analyze their microarray data at

http://haedi.ucsd.edu/.

Materials and Methods

The parametric model of TRANSMODIS
The model contains two components: expression and sequence.

Target genes should differ from non-targets in both expression

levels and patterns of extended motifs. The expressions of targets

and non-targets were modeled by a two-component Gaussian

mixture distribution, and the nucleotide frequencies at each

position of an extended binding motif were assumed to be

multinomial which was represented by a position specific weight

matrix (PSWM). The PSWM for non-target genes was the

background nucleotide frequencies in the entire genome. Many

methods for regulatory network reconstruction simply assume a

uniform background distribution. However the uniform back-

ground assumption weakened the list of learned genes by

TRANSMODIS by including an excess of false targets, especially

on the Saccharomyces cerevisiae data. The model assumptions of

TRANSMODIS are: (1) arrays are independent; (2) all arrays

have the same mean and variance for targets and also the same

mean and variance for non-targets, and (3) genes are indepen-

dent from each other in terms of expression and upstream

sequence composition. The maximum likelihood estimators

(MLEs) of model parameters were computed via an expectation-

maximization (EM) algorithm. Since the variances of target and

non-target expression distributions are allowed to be unequal,

unintuitive interpretation of expression data can occur (Figure S1).

A procedure has been put in place to avoid making such incorrect

inferences. A robust version of the formula for updating the

variance of expression distribution of targets has also been

investigated. The differences were found to be minimal when

the true expression model was a two-component Gaussian mixture

model (Figures S2 and S3, Table S4). Details as well as the

derivation of the EM algorithm can be found in the supplementary

materials.

Moderate deviations from the list of assumptions can be well

tolerated by TRANSMODIS. Gross violations will result in a

reduction of power in identifying true targets.

The program
The inputs to TRANSMODIS are: (1) the 59 upstream sequences

of all genes in the genome; (2) multiple genome-wide microarray

measurements, such as TF perturbation experiments (TFPEs)[3] or

ChIP-chip experiments[1,2] or a combination of both. The

parametric framework allows ChIP-chip experiments to be

incorporated into the model just as any other microarray

experiments as long as the TF is activated under the ChIP-chip

experimental conditions; and (3) the core DNA motif recognized by

the TF, typically six to eight bases long. The core motif could have

been known a priori or be identified by a motif finding algorithm.

The TRANSMODIS program consists of two steps. In the first

step, the parametric model of TRANSMODIS is fitted to genes

containing matches to the input core motif in their promoters to

obtain MLEs via an EM algorithm (details can be found in the

supplementary text (Text S1)). The matches do not have to be

Target Gene Identification

PLoS ONE | www.plosone.org 10 March 2008 | Volume 3 | Issue 3 | e1821



perfect matches; it is still considered a match if the nucleotide

subsequence differs from the core motif in only one base pair. The

reverse complement of the input core motif is also scanned for. If a

promoter has multiple matched copies of the input core motif, all

copies are extracted and aligned to create an initialization of the

PSWM of the target genes. Then during iterations of the EM

algorithm, the copy with the highest score according to the current

estimate of the target PSWM is chosen as the putative

transcription factor binding site.

In the second step of the TRANSMODIS analysis, genes that

do not contain copies of the core motif (i.e. genes that were not

used for the estimation of model parameters in the first step) have

their promoters scanned for the core motif on both strands. If the

probability of being a target is computed to be greater than that of

being a non-target, the gene will be brought into the target list. No

model parameters are estimated or modified during this step. The

sole purpose of this second step is to catch potential true targets

that lack a copy of the consensus binding motif and therefore

would otherwise be overlooked if this step was not taken.

The output of TRANSMODIS are (1) two PSWMs, one for

target genes and the other for non-targets. The weight matrices go

beyond the core motif and cover the immediate flanking regions

beside the core motif; and (2) the probability of being a true target

for each gene. By default, genes are identified as targets if the

probabilities are greater than 0.5.

TRANSMODIS is computationally efficient and converges fast.

The running times on the Pho4p and Daf16p data sets were

2 minutes and 31 seconds and 8 minutes and 53 seconds

respectively on a 2.4 GHz single processor computer with 512

KB of cache memory.

GO term analysis
GO Term Finder[40] was used for the gene ontology analyses.

The analyses were run on the annotation file submitted on March

21, 2006 for Saccharomyces cerevisiae and the annotation file

submitted on March 20, 2006 for Caenorhabditis elegans. Bonferroni

correction was used to adjust p-values for multiple testing.

Supporting Information

Figure S1 Illustration of drawing invalid conclusions due to

unequal variances. Two scenarios are depicted here: (A) target

distribution has a greater mean and a greater variance and (B)

target distribution has a greater mean and a smaller variance. In

particular, in panel (A) the distributions are assumed to be N(0,1)

and N(3,1.4) for non-targets and targets respectively. Then the

target distribution curve lies above the non-target’s for all

expression values less than 27.5, thus making genes with small

expression values (,27.5) inappropriately identified as target

genes instead of non-targets (e.g., for an expression value of 210,

the ratio of conditional probabilities is as large as 700). In panel

(B), the target and non-target distributions are assumed to be

N(3,0.4) and N(0,1) respectively. Because of the smaller variance,

the target distribution goes to zero faster than the non-target

distribution does as expression level increases. For an expression

value of 6, the odds of drawing such an expression value from the

non-target over the target distribution is greater than 104.

However it is incorrect to conclude that genes having expression

values of 6 or greater are much more likely to be non-targets than

targets.

Found at: doi:10.1371/journal.pone.0001821.s001 (1.75 MB TIF)

Figure S2 Comparison of sensitivity between the two updating

formulas for the standard deviation of target distribution.

Found at: doi:10.1371/journal.pone.0001821.s002 (7.86 MB TIF)

Figure S3 Comparison of specificity between the two updating

formulas for the standard deviation of target distribution. (Even

though the one standard error bar is drawn above one, no actual

specificity was ever greater than one.)

Found at: doi:10.1371/journal.pone.0001821.s003 (7.92 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0001821.s004 (0.06MBDOC)

Table S2

Found at: doi:10.1371/journal.pone.0001821.s005 (0.10MBDOC)

Table S3

Found at: doi:10.1371/journal.pone.0001821.s006 (0.32MBDOC)

Table S4

Found at: doi:10.1371/journal.pone.0001821.s007 (0.02MBDOC)

Text S1 Supplementary text

Found at: doi:10.1371/journal.pone.0001821.s008 (0.24MBDOC)
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