Table 3. Comparison between TRANSMODIS and two other methods for target gene identification on the set of ChIP-chip data by Harbison et al. [8].
TF | Known targets | Total number of predictions | Number of predictions known to be true | PPV | ||||||
TRANSMODIS | Bayesian | Error model | TRANSMODIS | Bayesian | Error model | TRANSMODIS | Bayesian | Error model | ||
ABF1 | 30 | 240 | 176 | 267 | 9 | 5 | 5 | 0.038 | 0.028 | 0.019 |
ACE2 | 8 | 85 | 335 | 92 | 2 | 2 | 2 | 0.024 | 0.006 | 0.022 |
ADR1 | 10 | 189 | 20 | 35 | 1 | 0 | 0 | 0.005 | 0 | 0 |
ARG80 | 8 | 16 | 7 | 16 | 3 | 2 | 3 | 0.188 | 0.286 | 0.188 |
ARG81 | 8 | 17 | 20 | 28 | 3 | 4 | 4 | 0.176 | 0.200 | 0.143 |
ARO80 | 2 | 12 | 32 | 27 | 2 | 2 | 2 | 0.167 | 0.063 | 0.074 |
ASH1 | 1 | 21 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | NA |
BAS1 | 13 | 41 | 147 | 41 | 8 | 10 | 8 | 0.195 | 0.068 | 0.195 |
CBF1 | 11 | 86 | 252 | 281 | 3 | 7 | 5 | 0.035 | 0.028 | 0.018 |
CIN5 | 1 | 117 | 169 | 153 | 0 | 0 | 0 | 0 | 0 | 0 |
CUP9 | 2 | 35 | 6 | 21 | 1 | 1 | 1 | 0.029 | 0.167 | 0.048 |
DAL80 | 22 | 49 | 8 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
DAL81 | 10 | 114 | 79 | 96 | 7 | 5 | 7 | 0.061 | 0.063 | 0.073 |
DAL82 | 8 | 54 | 93 | 59 | 6 | 8 | 6 | 0.111 | 0.086 | 0.102 |
FKH1 | 1 | 167 | 116 | 142 | 0 | 0 | 0 | 0 | 0 | 0 |
FKH2 | 2 | 121 | 353 | 122 | 2 | 2 | 2 | 0.017 | 0.006 | 0.016 |
FZF1 | 1 | 35 | 5 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
GAT1 | 4 | 124 | 41 | 27 | 3 | 1 | 1 | 0.024 | 0.024 | 0.037 |
GCN4 | 57 | 68 | 169 | 75 | 23 | 32 | 22 | 0.338 | 0.189 | 0.293 |
GCR1 | 20 | 42 | 55 | 15 | 0 | 5 | 2 | 0 | 0.091 | 0.133 |
GCR2 | 9 | 47 | 43 | 56 | 4 | 5 | 4 | 0.085 | 0.116 | 0.071 |
GLN3 | 31 | 118 | 141 | 68 | 16 | 16 | 11 | 0.136 | 0.113 | 0.162 |
HAC1 | 5 | 10 | 56 | 15 | 1 | 3 | 1 | 0.100 | 0.054 | 0.067 |
HAL9 | 1 | 33 | 15 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
HAP1 | 14 | 149 | 189 | 151 | 10 | 9 | 10 | 0.067 | 0.048 | 0.066 |
HAP2 | 30 | 23 | 54 | 21 | 2 | 2 | 2 | 0.087 | 0.037 | 0.095 |
HAP3 | 27 | 10 | 19 | 30 | 1 | 2 | 2 | 0.100 | 0.105 | 0.067 |
HAP4 | 27 | 74 | 170 | 77 | 7 | 9 | 7 | 0.095 | 0.053 | 0.091 |
HAP5 | 25 | 13 | 24 | 12 | 1 | 0 | 0 | 0.077 | 0 | 0 |
HSF1 | 16 | 71 | 122 | 102 | 12 | 12 | 13 | 0.169 | 0.098 | 0.127 |
IME1 | 15 | 20 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NA |
INO2 | 20 | 33 | 62 | 48 | 5 | 10 | 7 | 0.152 | 0.161 | 0.146 |
INO4 | 18 | 31 | 64 | 37 | 9 | 13 | 9 | 0.290 | 0.203 | 0.243 |
IXR1 | 1 | 9 | 2 | 28 | 0 | 0 | 0 | 0 | 0 | 0 |
LEU3 | 7 | 19 | 61 | 24 | 6 | 6 | 4 | 0.316 | 0.098 | 0.167 |
MAC1 | 8 | 8 | 47 | 18 | 3 | 4 | 4 | 0.375 | 0.085 | 0.222 |
MBP1 | 38 | 121 | 394 | 61 | 15 | 25 | 8 | 0.124 | 0.063 | 0.131 |
MCM1 | 32 | 92 | 240 | 107 | 18 | 20 | 16 | 0.196 | 0.083 | 0.150 |
MET28 | 1 | 20 | 1 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
MET4 | 9 | 25 | 76 | 28 | 4 | 5 | 1 | 0.160 | 0.066 | 0.036 |
MIG1 | 29 | 10 | 67 | 22 | 1 | 8 | 2 | 0.100 | 0.119 | 0.091 |
MOT3 | 4 | 22 | 11 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
MSN1 | 1 | 114 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
MSN2 | 36 | 154 | 199 | 47 | 11 | 17 | 4 | 0.071 | 0.085 | 0.085 |
MSN4 | 33 | 115 | 163 | 71 | 8 | 13 | 4 | 0.070 | 0.080 | 0.056 |
PDR1 | 15 | 323 | 108 | 8 | 4 | 4 | 0 | 0.012 | 0.037 | 0.000 |
PDR3 | 9 | 8 | 39 | 21 | 1 | 2 | 1 | 0.125 | 0.051 | 0.048 |
PHO2 | 19 | 33 | 2 | 33 | 1 | 0 | 1 | 0.030 | 0 | 0.030 |
PHO4 | 24 | 72 | 82 | 31 | 4 | 8 | 7 | 0.056 | 0.098 | 0.226 |
PPR1 | 4 | 15 | 24 | 28 | 0 | 2 | 0 | 0 | 0.083 | 0 |
PUT3 | 2 | 14 | 66 | 90 | 1 | 2 | 0 | 0.071 | 0.030 | 0 |
RAP1 | 35 | 291 | 196 | 0 | 17 | 13 | 0 | 0.058 | 0.066 | N/A |
RCS1 | 11 | 39 | 183 | 261 | 7 | 10 | 0 | 0.179 | 0.055 | 0 |
REB1 | 21 | 278 | 313 | 0 | 4 | 4 | 0 | 0.014 | 0.013 | N/A |
RFX1 | 5 | 12 | 57 | 25 | 2 | 4 | 2 | 0.167 | 0.070 | 0.080 |
RGT1 | 6 | 9 | 1 | 0 | 1 | 1 | 0 | 0.111 | 1.000 | N/A |
RIM101 | 4 | 115 | 27 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
RME1 | 2 | 29 | 66 | 40 | 1 | 1 | 0 | 0.034 | 0.015 | 0 |
ROX1 | 13 | 104 | 94 | 6 | 1 | 2 | 0 | 0.010 | 0.021 | 0 |
RPH1 | 1 | 25 | 68 | 8 | 0 | 1 | 0 | 0 | 0.015 | 0 |
RPN4 | 7 | 144 | 212 | 101 | 4 | 7 | 4 | 0.028 | 0.033 | 0.040 |
RTG3 | 5 | 26 | 47 | 37 | 4 | 4 | 4 | 0.154 | 0.085 | 0.108 |
SIP4 | 2 | 9 | 69 | 21 | 1 | 2 | 1 | 0.111 | 0.029 | 0.048 |
SKN7 | 21 | 187 | 201 | 190 | 8 | 6 | 6 | 0.043 | 0.030 | 0.032 |
STE12 | 78 | 60 | 567 | 63 | 24 | 34 | 25 | 0.400 | 0.060 | 0.397 |
STP1 | 1 | 60 | 117 | 72 | 1 | 1 | 0 | 0.017 | 0.009 | 0 |
SUM1 | 2 | 81 | 110 | 60 | 1 | 0 | 1 | 0.012 | 0 | 0.017 |
SUT1 | 1 | 95 | 73 | 69 | 0 | 0 | 0 | 0 | 0 | 0 |
SWI4 | 14 | 105 | 271 | 161 | 5 | 6 | 4 | 0.048 | 0.022 | 0.025 |
SWI5 | 11 | 46 | 203 | 120 | 3 | 7 | 5 | 0.065 | 0.034 | 0.042 |
SWI6 | 44 | 118 | 430 | 158 | 10 | 19 | 10 | 0.085 | 0.044 | 0.063 |
TEC1 | 44 | 62 | 46 | 43 | 3 | 0 | 0 | 0.048 | 0 | 0 |
THI2 | 8 | 34 | 67 | 47 | 5 | 8 | 7 | 0.147 | 0.119 | 0.149 |
UGA3 | 3 | 9 | 42 | 32 | 2 | 2 | 0 | 0.222 | 0.048 | 0.000 |
UME6 | 40 | 286 | 239 | 134 | 18 | 18 | 10 | 0.063 | 0.075 | 0.075 |
XBP1 | 5 | 65 | 50 | 77 | 1 | 1 | 1 | 0.015 | 0.020 | 0.013 |
YAP1 | 39 | 25 | 314 | 72 | 5 | 11 | 7 | 0.200 | 0.035 | 0.097 |
YAP6 | 1 | 15 | 242 | 60 | 1 | 0 | 1 | 0.067 | 0 | 0.017 |
YHP1 | 1 | 42 | 9 | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
YRR1 | 4 | 66 | 3 | 23 | 0 | 0 | 0 | 0 | 0 | 0 |
ZAP1 | 12 | 22 | 62 | 22 | 4 | 9 | 4 | 0.182 | 0.145 | 0.182 |
Average | 14.4 | 72.8 | 111.3 | 58.6 | 4.3 | 5.6 | 3.5 | 0.086 | 0.066 | 0.063 |
The cutoff of the error model is set to 0.001, as suggested by the original authors[2].