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We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor electroen-
cephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the
ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented system is able to
automatically reduce electrooculogram (EOG) artifacts, to detect electromyographic (EMG) activity, and uses only three bipolar
EEG channels. Two applications are presented: the freeSpace virtual environment (VE) and the Brainloop interface. The freeSpace
is a computer-game-like application where subjects have to navigate through the environment and collect coins by autonomously
selecting navigation commands. Three subjects participated in these feedback experiments and each learned to navigate through
the VE and collect coins. Two out of the three succeeded in collecting all three coins. The Brainloop interface provides an interface
between the Graz-BCI and Google Earth.

Copyright © 2007 Reinhold Scherer et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

A brain-computer interface (BCI) transforms electrophysi-
ological or metabolic brain activity into control signals for
applications and devices (e.g., spelling system or neuropros-
thesis). Instead of muscle activity, a specific type of mental
activity is used to operate such a system. For a review on BCI
technologies see [1–4].

After years of basic research, modern BCIs have been
moving out of the laboratory and are under evaluation in
hospitals and at patients’ homes (e.g., [5–11]). However,
BCIs have to meet several technical requirements before they
are practical alternatives to motor controlled communication
devices. The most important requirements are high informa-
tion transfer rates, ease-of-use, robustness, on-demand op-
erability, and safety [12]. In summary, for the end-user, BCI
systems have to carry information as quickly and accurately
as needed for individual applications, have to work in most

environments, and should be available without the assistance
of other people (self-initiation). To fulfill these issues, the
Graz group focused on the development of small and robust
systems which are operated by using one or two bipolar elec-
troencephalogram (EEG) channels only [13]. Motor imagery
(MI), that is, the imagination of movements, is used as the
experimental strategy.

In this work, we aim at two important issues for practi-
cal BCI systems. The first is detection of electromyographic
(EMG) and reduction of electrooculographic (EOG) arti-
facts and the second is the self-paced operation mode. Ar-
tifacts are undesirable signals that can interfere and may
change the characteristics of the brain signal used to con-
trol the BCI [14]. Especially in early training sessions, EMG
artifacts are present in BCI training [15]. It is therefore cru-
cial to ensure that (i) brain activity and not muscle activity
is used as source of control and that (ii) artifacts are not
producing undesired BCI output. Self-paced BCIs are able



2 Computational Intelligence and Neuroscience

to discriminate between intentionally generated (intentional
control, IC) and ongoing (non-control, NC) brain activity
[16]. This means that the system is able to determine whether
the ongoing brain pattern is intended as control signals (IC)
or not (NC). In this mode the user has control over timing
and speed of communication.

In addition to the above stated methods, two applica-
tions, designed for self-paced operation, are presented. The
first is a computer game like virtual environment (VE) that
users navigate through and collect points, and the second
is a user-interface which allows operating the Google-Earth
(Google, Mountain View, CA, USA) application.

2. METHODS

2.1. Electromyography (EMG) artifact detection

The results of [17] showed that muscle and movement arti-
facts can be well detected by using the principle of inverse
filtering. The inverse filtering method aims to estimate an
autoregressive (AR) filter model (see (1)) of the EEG activ-
ity. The output yt of the AR model is the weighted sum of
the number of model order p last sample values yt−i and
the model parameters ai with i = 1 . . . p. νt is a zero-mean-
Gaussian-noise with variance σ2

ν . Applying the filter model
inversely (using the inverted transfer functions) to the mea-
sured EEG yields a residual (i.e., prediction error) which is,
usually, much smaller than the measured EEG. In effect, all
EEG frequencies are suppressed. If some transient or other
high-frequency artifacts (like EMG artifacts) are recorded at
the EEG channels, the average prediction error will increase.
This increase can be detected by computing the time-varying
root-mean-square (RMS) of the residual and comparing it
with a predefined threshold value. Once the AR parameters
ai are identified from an artifact free EEG segment, these pa-
rameters can be applied inversely to estimate the prediction
error xt from the observed EEG yt,

yt =
p∑

i=1

ai · yt−i + νt with νt = N
(
0,σ2

ν

)
. (1)

For on-line experiments, the detection threshold of five times
RMS from artifact-free EEG was used. Each time the in-
versely filtered process exceeded this threshold, the occur-
rence of an EMG artifact in form of a yellow warning marker,
positioned in the lower-left part of the screen, was reported
back to the user. After any occurrence, users were instructed
to relax until the warning disappeared. The warning was dis-
abled once the threshold was not exceeded for a 1-second pe-
riod.

At the beginning of each BCI session, a 2-minute segment
of artifact free EEG was recorded in order to estimate the
AR-parameters ai (model order p = 10) by using the Burg
method. See Figure 1(a) for details on the protocol used to
collect the artifact free EEG. Subjects were instructed to sit
relaxed and not move.

2.2. Automatic reduction of
electrooculography (EOG) artifacts

Electrooculogram (EOG) artifacts are potential shifts on the
body surface resulting from retinal dipole movements or
blinking of the eyes. Since generally both eyes are in the same
line of sight, one single dipole consisting of three spatial com-
ponents (horizontal, vertical, and radial) should be sufficient
to model the bioelectrical eye activity [18]. Assuming that (i)
for each channel the recorded EEG Yt is a linear superposi-
tion of the real EEG signal St and the three spatial EOG com-
ponents (Nt,horizontal, Nt,vertical, and Nt,radial) weighted by some
coefficient b (2) and that (ii) EEG S and EOG N are indepen-
dent, the weighting coefficient b can be estimated according
to (3) (matrix notation) by computing the autocorrelation
matrix CN ,N of the EOG and the cross-correlation CN ,Y be-
tween EEG Y and EOG N. Equation (4) describes how the
“EOG-corrected” EEG is computed.

Ychannel,t = Schannel,t +
[
Nhorizontal,t,Nvertical,t,Nradial,t

]

·

⎡
⎢⎣
bhorizontal,channel

bvertical,channel

bradial,channel,

⎤
⎥⎦

(2)

Y = S + N · b =⇒ b = (NTN
)−1

NTY = C−1
N ,NCN ,Y , (3)

S = Y−N · b. (4)

To limit the total number of channels, the EOG was mea-
sured by using three monopolar electrodes, from which two
bipolar EOG channels, covering the horizontal and the verti-
cal EOG activity, were derived (Figure 1(b)).

In order to compute the weighting coefficient b, at the
beginning of each BCI session, a 1-minute segment of EEG
and EOG with eye movement artifacts was recorded. Sub-
jects were instructed to repetitively perform eye blinks, clock-
wise and counter-clockwise rolling of the eyes and perform
horizontal and vertical eye movements. The eyes should cir-
cumscribe the whole field of view without moving the head.
Figure 1(a) summarizes the recording protocol used. A more
detailed description as well as the evaluation of the EOG cor-
rection method can be found in [18].

2.3. Self-paced BCI operation

Essential for the development of self-paced motor imagery
(MI)-based BCIs is to train (i) the user to reliably induce dis-
tinctive brain patterns and to train (ii) the BCI to detect those
patterns in the ongoing EEG. In this work, prior to partici-
pate in self-paced experiments, subjects learned to generate
three different MI patterns by performing cue-based feed-
back training. The resulting classifier is named CFRMI. Once
a reliable classification performance was achieved, a second
classifier (CFRIC) was trained to discriminate between char-
acteristic EEG changes induced by MI and the ongoing EEG.
Self-paced control was obtained by combining both classi-
fiers. Each time MI-related brain activity was detected by
CFRIC the type of motor imagery task was determined by
CFRMI. If no MI-related activity was detected from CFRIC,
the output was “0” or “NC.”
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Figure 1: (a) Protocol used for the collection of EEG and EOG samples to set up the EMG detection and EOG reduction. The recording was
divided into several segments, each separated by a 5-s resting period. Instructions were presented on a computer screen. At the beginning and
end of each task low -and high-warning tones were presented, respectively. (b) Positions of EOG electrodes (reference left mastoid, ground
right mastoid). The three EOG electrodes are placed above the nasion, and below the outer canthi of the eyes, generating in a right-angled
triangle. The legs of the triangle form two spatially orthogonal components (modified from [18]).

Three healthy subjects (2 males, 1 female, right handed)
participated in self-paced experiments. Subject specific elec-
trode positions (according to the international 10–20 sys-
tem), motor imagery tasks and the on-line classification
accuracies of CFRMI after about 4 hours of cue-based 3-
class feedback training are summarized in Figure 2(a). Three
bipolar EEG channels (named C3, Cz, and C4) and three
monopolar EOG channels (Figure 1(a)) were recorded from
Ag/AgCl electrodes, analog filtered between 0.5 and 100 Hz
and sampled at a rate of 250 Hz. Figure 2(b) shows the tim-
ing of the cue-based paradigm. Classifier CFRMI was real-
ized by combining 3 pairwise trained Fisher’s linear discrim-
inant analysis (LDA) functions with a majority vote. A max-
imum of six band power (BP) features were extracted from
the EEG by band pass filtering the signal (5th-order Butter-
worth), squaring and applying a 1-second moving average
filter. From the averaged value the logarithm was computed
(BPlog).

CFRIC consisted of one single LDA. To identify the most
discriminative BPlog the distinction sensitive learning vector
quantization (DSLVQ [19, 20]) method was used. DSLVQ is
an extended learning vector quantizer (LVQ) which employs
a weighted distance function for dynamical scaling and fea-
ture selection [20]. The major advantage of DSLVQ is that
it does not require expertise, nor any a priori knowledge or
assumption about the distribution of the data. To obtain re-
liable values for the discriminative power of each BPlog the
DSLVQ method was repeated 100 times. For each run of

the DSLVQ classification, 50% of the features were randomly
selected and used for the training and the remaining 50%
were kept to test the classifier. The classifier was fine-tuned
with DSLVQ type C training (10000 iterations). The learning
rate αt decreased during this training from an initial value
of αt = 0.05 to αt = 0. The DSLVQ relevance values were
updated with the learning rate λt = αt/10.

DSLVQ was applied to the last session of the cue-based
feedback training data (4 runs with 30 trials each; 10 per
class). From each trial at two time points t1 and t2 = t1 +
1.0 second around the best on-line classification accuracy
during motor imagery, ninety-three BPlog features were ex-
tracted; thirty-one for each bipolar EEG channel between
6–36 Hz with a bandwidth of 2 Hz (1 Hz overlap). Motor
imagery tasks were pooled together and labeled as class IC
(intentional-control). For class NC (noncontrol), in contrast,
BPlog were extracted at time of cue onset (t = 3.0 seconds, see
Figure 2(b)). This time was selected to prevent the classifier
to detect “unspecific” MI preactivations, resulting from the
“beep” presented 1 second before the cue. Additionally from
the 2-minute segment of artifact free EEG, used to set up
EMG detection (Figure 1(b)), in step sizes of 1-second BPlog

features were extracted. The 6 most discriminative BPlog were
selected and used to set up CFRIC. To increase the robust-
ness of CFRIC, an additional threshold THIC was introduced
which had to be exceeded (dropping below) for a subject-
specific transition time tT before a switch between NC and
IC (IC and NC) occurred. Increasing or decreasing the value
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Figure 2: (a) Electrode positions used for self-paced feedback experiments. Fz served as ground. The curves show the average classification
accuracy (40 trials/class) of the specified motor imagery tasks. (b) Timing of the cue-based training paradigm. The task was to move a
smiley-shaped cursor into the direction indicated by the cue.

of the threshold was synonymous with shifting the optimal
LDA decision border. In doing so, at least to some extent,
nonstationary changes of the EEG (from session to session)
could be adapted.

2.4. Navigating the freespace virtual environment

The “freeSpace” virtual environment (VE) was developed as
a platform-independent application based on the Qt applica-
tion framework (Trolltech, Oslo, Norway) and intended as a
test platform for self-paced BCIs. The virtual park consists of
a flat meadow, several hedges, and a tree positioned in the
middle (Figure 3(a)). Like in computer games, coins were
positioned on fixed locations inside the park and users had
the task of navigating through the virtual world and collect-
ing them. The coins were automatically picked by contact;
hedges or the tree had to be bypassed (collision detection).
Four commands were implemented. These are “turn left,”
“turn right,” “move forward,” and “no operation.” The user
datagram protocol (UDP) was used to realize the communi-
cation between BCI and VE. For easier orientation, a map
showing the current position was presented (Figure 3(a)).
The VE was presented in first-person-view perspective on a
conventional computer screen (Figure 3(b)). However, given
that proper hardware is available, also a stereoscopic 3D rep-
resentation is possible (Figure 3(c)). In order to provide feed-
back on received navigation commands and upcoming state
switches as fast as possible, during the transition time tT
the command arrows were steadily growing (NC to IC) or
shrinking (IC to NC), before performing the requested ac-
tion.

By autonomously selecting the navigation commands,
subjects had the task of picking up the three coins within a
three-minute time limit. For each run the starting position
inside the VE was altered. No instructions on how to reach
the coins were given to the subjects. Two sessions with 3 feed-
back training runs were recorded. Each session started with
free-training lasting about 20 minutes. At the beginning of
this period the subject-specific threshold THIC and transi-

tion time tT (maximum value 1 second) were identified em-
pirically according to the statements of the subjects and fixed
for the rest of the session. At the end of each session subjects
were interviewed on the subjective-experienced classification
performance. The BCI and the VE were running on different
computers.

For more details on user training, self-paced BCI sytem
set-up and evaluation of the freeSpace VE see [21].

2.5. Operating Google Earth-Brainloop

The Brainloop interface for Google Earth was implemented
in Java (Sun Microsystems Inc., Santa Clara, CA, USA). The
communication with the BCI was realized by means of the
UDP protocol; the communication with Google Earth by us-
ing the TCP/IP protocol. A multilevel selection procedure
was created to access the whole functional range of Google
Earth. Figure 4(a) shows a screen shot of the interface. The
user was represented by an icon positioned in the center of
the display. The commands at the user’s disposal were placed
around this icon and could be selected by moving the feed-
back cursor into the desired direction. The three main com-
mands “scroll,” “select” and “back” were selected by mov-
ing the cursor to the left, right, or down, respectively. Af-
ter each command Google Earth’s virtual camera moved to
the corresponding position. By combining the cursor move-
ment down with left or right, the commands “show bor-
ders” and “show cities” were activated (Figure 4(b)). During
the transition time tT the feedback cursor was moving to-
wards the desired control command (NC to IC) or back to
the user icon presented in the middle of the screen (IC to
NC). Once the feedback cursor was close to the command,
this was highlighted and accepted. Figure 4(c) summarizes
the four hierarchically arranged selection levels. Levels 1 to
3 were needed to select the continent, the continental area
and the country. The scroll bar at level 4 contained com-
mands for the virtual camera (“scan,” “move,” “pan,” “tilt,”
and “zoom”). For this level also the assignment of the com-
mands was changed (see Figure 4(b)). Every selection was
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Figure 3: (a) The freeSpace virtual environment. The screenshot shows the tree, some hedges, and a coin to collect. In the lower mid part of
the screen, the navigation commands are shown. The number of collected coins and the elapsed time are presented in the upper left and right
sides, respectively. For orientation, a map showing the current position (red dot) was presented. (b) Presentation of the VE on a conventional
computer screen. (c) Stereoscopic visualization of the VE on a projection wall (perspective point of view).

made by scrolling through the available options and pick-
ing the highlighted one. While the “scroll” command was se-
lected, the options were scrolling at a speed of approximately
2 items/s from the right to the left. For more details on the
interface please see [22].

Subject s2 took part in self-paced on-line experiments.
Figure 4(b) summarizes the MI tasks used to operate the
feedback cursor. After three consecutive days of training
(about 2.5 hours/day) on December 14, 2006, a media per-
formance lasting about 40 minutes was presented to the audi-
ence. Figure 4(d) shows pictures taken during the Brainloop
media performance. Because it is very difficult to compute
self-paced BCI performance measures, after the media per-
formance the subject self-reported on the BCI classification
accuracy.

3. RESULTS

The percentage of EEG samples classified as EMG artifact
during the training procedure was less than 0.9% for each
subject. Figure 5(a) shows example EMG detections. The
method works well for minor (upper plot) as well as for mas-
sive muscle activity (lower plot). The power density spec-
trum for each channel and motor imagery task is summa-
rized in Figure 6. The power density spectrum was com-
puted by averaging the power spectrum of the forty mo-
tor imagery trials for each class recorded during the last
cue-based feedback session. Before computing the discrete
Fourier transform of the 4-second motor imagery segment

(see Figure 2(b)) a hamming window was applied. The spec-
tra show clear peaks in the upper-alpha (10–12 Hz) and
upper-beta bands (20–25 Hz).

The EOG reduction method is able to reduce about 80%
of EOG artifacts [18]. The example in Figure 5(b) shows
clearly that eye blinks were removed from the EEG.

The relevant frequency components for the discrimi-
nation between IC and NC identified for each subject by
DSLVQ are summarized in Table 1. The therewith trained
LDA classifiers achieved classification accuracies (10 × 10
cross-validation) of 77%, 84%, and 78% for subjects s1, s2,
and s3, respectively [21].

Each subject successfully navigated through the freeSpace
VE and collected coins. Subjects s2 and s3 succeeded in col-
lecting all three items within the 3-minute time limit. Sub-
ject s1 was able to collect only 2 of the 3 coins. While s1 and
s2 were able to improve their performance (reflected in the
covered distance and number of collected items), the results
of session two for s3 were poor compared to the first. The
best performance for each subject out of the 6 runs recorded
on 2 different days is shown in Figure 6. The covered dis-
tances (Figure 6(a)), however, show that subjects (depend-
ing also on the ability to control the BCI) choose different
ways to collect the coins. The corresponding distribution of
the BCI classification in Figure 6(b) show that each class oc-
curred during the experiment. Interviews with the subjects
confirmed that all 3 motor imagery mental states as well
as NC were deliberately used for navigation. The “no oper-
ation” command (non-control state) was necessary during
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Figure 4: (a) Screenshot of the “Brainloop” interface. The upper part of the screen was used to select the command. The available options
were presented in a scroll bar in the lower part of the screen. (b) Available commands for operating Google Earth and used motor imagery
tasks. (c) The four levels of selections. (d). Photographs of the “Brainloop” performance.

non-MI related mental activity, like, for example, orientation
or routing, or whenever subjects needed a break.

The Brainloop interface is a very intuitive graphical user
interface for Google Earth. The developed selection proce-
dure enables users to quickly pick a country and to ma-
nipulate the virtual camera. Although audience was present
during the performance, subject s2 succeeded in operating
Google Earth. After the performance, the subject stated that
most of the time the BCI was correctly detecting the intended
motor imagery patterns as well as the non-control state.

4. DISCUSSION

The presented BCI is able to automatically reduce EOG arti-
facts, detect EMG activity, and support the self-paced opera-
tion mode. Each of these issues is important for the realiza-
tion of practical BCI systems. Additionally only three bipolar

channels were used which makes the system easy to use and
inexpensive compared to a system with more channels.

The proposed EOG reduction and EMG detection meth-
ods are simple to implement, computationally not demand-
ing, and can easily be adapted at the beginning of each feed-
back session. One still open issue, however, is the long-term
stability of the methods. Both methods are part of the BioSig
open source toolbox [23] and freely available under the GNU
General Public License.

Since the proposed EOG reduction method modifies the
recorded EEG, an analysis of the influence on the classifi-
cation accuracy was performed. DSLVQ was applied to the
EEG (cue-based training) before and after EOG reduction.
The computed DSLVQ feature relevance showed that the
same frequency components are relevant before and after
applying the EOG reduction method. A statistical analysis of
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the DSLVQ classification results revealed no significant dif-
ference (P < 0.05). Since the frequency range of EOG arti-
facts is maximal at frequencies below 4 Hz (we were looking
in the range 8–30 Hz) and prominent over anterior head re-
gions [14], this result was not surprising.

Although both methods have no direct impact on the
system classification performance, the robustness of the BCI
could be increased. Artifacts did not cause wrong system re-

sponses, but were either reduced or detected and reported
back. After artifact detection different options are possible.
These include a “pause-mode” (or “freeze-mode”) or to “re-
set” the system to the initial status. In both cases the BCI
suspends execution. While in the former case, after a prede-
fined period of artifact-free EEG, the BCI resumes working,
in the latter case, the system resets itself. The choice, however,
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Figure 6: (a) Map of the freeSpace virtual environment showing the best performance (covered distance) for each subject. (b) Frequencies
of occurrence of the detected motor-imagery tasks (selected navigation commands).

Table 1: Relevant frequency components in Hz identified by
DSLVQ for the discrimination of intentional control (IC) and the
non-control state (NC).

Subject C3 Cz C4

s1 12–14, 15–17, 20–22, 25–27 9–11, 21–23 —

s2 12–14, 19–21, 27–29 9–11, 11–13 21–23

s3 8–10, 16–18 8–10 15–17, 24–26

primarily depends on the robustness of the selected signal
processing method in the presence of artifacts.

Even though very simple feature extraction and classifi-
cation methods were used to create a self-paced system, sub-
jects reported they were quite satisfied with the BCI classi-
fication performance. An open question is determining the
optimum detection threshold THIC and the transition time
tT . We used an empirical approach and changed the parame-
ters according to the statements of the subjects, which is only
a suboptimum solution.

For cue-based systems a variety of different performance
measures exist. Since only a few groups investigate asyn-
chronous or self-paced systems [24–26], appropriate bench-
mark tests and performance measures are not available yet
[27].

The “freeSpace” paradigm was introduced because no in-
structions, except the overall aim to collect coins, had to be
given to the subjects. The paradigm is motivating, entertain-
ing and most important there is an endless number of ways
to collect the coins.

The Brainloop interface provides a new way to interact
with complex applications like Google Earth. By remapping
commands and options the interface can be customized also

for other applications. Self-report was selected to character-
ize BCI performance, since performance can be difficult to
measure objectively with asynchronous BCIs. Interesting is
that there was no need to adapt the detection threshold THIC

and the transition time tT . The values fixed during the last
freeSpace session were used.

The results of the experiments show that subjects learned
to successfully use applications by autonomously switching
between different mental states and thereby operating the
self-paced Graz-BCI.
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