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ABSTRACT

In an attempt to probe nucleic acid structures, numerous Ru(II) complexes with different ligands have

been synthesized and investigated. In this contribution we focus on the DNA-binding properties of

ruthenium(II) complexes containing asymmetric ligands that have attracted little attention in the past decades.

The influences of the shape and size of the ligand on the binding modes, affinity, enantioselectivities and

photocleavage of the complexes to DNA are described.
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1. INTRODUCTION

Tremendous interest has been evoked by the interactions of substitution-inert metal complexes with

nucleic acids over the past decade/1-5/. In particular, ruthenium(II) complexes with polypyridine ligands,

due to a combination of easily constructed rigid chiral structures spanning all three spatial dimensions and a

rich photophysical repertoire, have attracted considerable attention. Since pioneering studies by Barton and

co-workers showed that optically active isomers of [Ru(phen)3]2+ bind to DNA with distinctive

characteristics/6/, the binding of ruthenium(II) polypyridyl complexes to DNA has initiated vigorous interest

and many structural analogues based on the prototype [Ru(phen)3]2/ have been also synthesized and

investigated/1, 7-21/.

However, most of the reported complexes contain symmetric aromatic ligands. Investigations of

ruthenium(II) complexes with asymmetric ligands have attracted little attention, and their vast potential as

DNA-binding reagents remains largely untapped. In fact, molecular shape, among the various factors that

contribute to stabilizing the metal complex on DNA helix, appears to be the most significant. Modification of
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the ligand would lead to subtle or substantial changes in the binding modes, location and affinities of the

complexes to DNA, making it possible to explore various valuable conformations- or site-specific DNA

probes and potential chemotherapeutical agents/6,21,22/. In this review we would like to focus attention on

recent progress made in our laboratory regarding the DNA-binding properties of ruthenium(II) complexes

containing asymmetric ligands/23-28/.

2. MONONUCLEAR RU(II) COMPLEXES CONTAINING ASYMMETRIC LIGANDS

2.1. Effect of ligand planarity on the DNA binding affinity

As pointed out previously, modification of the ligand may lead to subtle or substantial changes in the

binding modes, location and affinities of the complexes to DNA/21/. The influence of ligand planarity is

especially obvious in exploring the DNA binding properties of the series of complexes [Ru(bpy)z(ddt)]2+,
[Ru(bpy)2(dta)]2+ and [Ru(bpy)2(dpt)]2//28/.

Addition of CT-DNA produced a different extent of perturbation on the absorption spectra of the three

complexes; the hypochromism in the MLCT band and other data are listed in Table 1. Intrinsic binding

constants Kb of (2.1 + 0.3) 104 (3.7 + 0.3) 104 and (6.3 + 0.4) 104 M were obtained for

[Ru(bpy)2(ddt)]2/, [Ru(bpy)z(dta)]2/ and [Ru(bpy)z(dpt)]2/, respectively. The viscosity of DNA bound to the

three complexes is increased with the increment of the complex concentration (Fig. 1) and has the same trend

as observed in spectroscopic titration experiments. The results suggest that [Ru(bpy)2(dpt)]2/ is the most

efficient intercalator, [Ru(bpy)2(dta)]2/ next, and [Ru(bpy)z(ddt)]2/ the last. In general, a planar extension of

the intercalative ligand would increase the strength of the interaction of the complexes with DNA [2]. As

seen in the crystal structure of complex [Ru(bpy)z(dpt)]2+, the two phenyl rings in ddt are rotated away from

the 1,2,4-triazine ring with large dihedral angles (45.9 and 42.5, respectively) (Fig. 2). The significant

difference in DNA binding affinity of three complexes can be understood as a result of the fact that the dta

and dpt ligands display a more planar conjugate system than that of the ddt ligand.

Table 1
The electronic absorption data of Ru(II) complexes upon binding to CT-DNA

Complex /max/nm Binding constant Ref

’)]’max (nm) Hypochromism (%) Kb/M"
[Ru(bpy)z(ddt)l2+ 467 9.5 (2.1 + 0.3) 104
[Ru(bpy)(dta)]2+ 500 13.1 (3.76+ 0.4) 104
[Ru(bpy)2(dpt)]2+ 474 18.1 (6.3 + 0.4) 104
IRu(tpy)(dppt)]2/ 452 9.4 2.49 x 104
[Ru(tpy)(pta)]2+ 485 22.5 9.51 x 104
[Ru(tpy)(ptp)]2/ 506 28.1 1.62 105
IRu(tpy)(PHBl)i2+ 482.5 8.0 1.6 x 103
[Ru(tpy)(PHNl).]z+ 486 27.6 3.2 104

[28]
[281
[281
[26]
[26]
[261
[271
[271
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Fig. 1: Effect of increasing amounts of the complexes of [Ru(bpy)2(dppz)]2/ (m), [Ru(bpy)2(dpt)]2/ (t),
[Ru(bpy)2(dta)]2/ (&), [Ru(bpy)2(ddt)]2/ (A) and [Ru(bpy)3]2/ (V) on the relative viscosities of calf

thymus DNA at 29 (+ 0.1) C (adapted from Ref. [28]).

Fig. 2: An ORTEP drawing of [Ru(bpy)z(dpt)]2/ (adapted from Ref. [28]).

2.2. Effect of ligand shape on the DNA binding geometry

It is expected that increasing the surface area for intercalative stacking by a complex will lead to a

substantially increased intercalative binding affinity/2/. However, if the increased part is non-planar relative

to the parent ligand, the binding affinity, even the binding mode, may be changed as observed for

[Ru(tpy)(dppt)]2/, [Ru(tpy)(pta)]2/ and [Ru(tpy)(ptp)]2//26/.
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Some electronic absorption data of complexes on binding to DNA are summarized in Table 1. When the

amount of DNA is increased, a decrease of 9.4% in the MLCT transitions is found for complex

[Ru(tpy)(dppt)]2+; for two other complexes, [Ru(tpy)(pta)]2/ and [Ru(tpy)(ptp)]2/, the decreases are 22.5 and

28.1%, respectively. The intrinsic binding constants Kb were determined as 2.49 104 M"1 for

[Ru(tpy)(dppt)]2/, 9.51 104 M"! .for [Ru(tpy)(pta)]2/ and 1.62 105 Ml for [Ru(tpy)(ptp)]2+ using the

MLCT absorption. The data suggest that the interaction of [Ru(tpy)(ptp)]2+ with DNA is the strongest,

followed by [Ru(tpy)(pta)]2/, and then [Ru(tpy)(dppt)]2/. The EB competitive binding experiment, which is

used to determine the extent of binding between the second molecule and DNA/38,39/, also supports the

above trend. The Stern-Volmer quenching constant K values for [Ru(tpy)(dppt)]2/, [Ru(tpy)(pta)]2/ and

[Ru(tpy)(ptp)]2+ are 4.89, 27.28 and 30.47, respectively.
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Fig. 3:Effect of increasing amounts of the complexes of [Ru(tpy)(dppt)]2+ (t), [Ru(tpy)(pta)]2+ (),
[Ru(tpy)(ptp)]2/ (i) and [Ru(bpy)2(dppz)]2+ (’) on the relative viscosities of calf thymus DNA at

30.0 (+ 0.1) C (adapted from Ref. [26]).

This trend can be further testified from viscosity measurements (Fig. 3). [Ru(tpy)(pta)]2/ and

[Ru(tpy)(ptp)]2/ increase the viscosity in a similar fashion to the proven DNA intercalator

[Ru(bpy)2(dppz)]2+, but [Ru(tpy)(dppt)]2/ exerts essentially no effect on DNA viscosity at low binding ratios;

upon further binding of the complex to DNA, the DNA viscosity decreases. This suggests that the three

complexes could bind DNA in two different modes: [Ru(tpy)(dppt)]2+ in partial, non-classical intercalation

mode and [Ru(tpy)(pta)]2+ and [Ru(tpy)(ptp)]2+ in classical intercalation mode. As revealed by the crystal

structures of complexes /25/, in [Ru(tpy)(dppt)]2+ the dppt ligand is somewhat sterically hindered from

planarity and two phenyl rings are rotated away from the 1,2,4-triazine ring with large dihedral angles (37.2
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and 48.3, respectively) (Fig. 4), so it does not completely intercalate DNA. The partial intercalation may act

as a "wedge" to pry one side of a base-pair stack apart, as observed for the A-[Ru(phen)3]2+/40,41/, but not

fully separate the stack as required by the classical intercalation mode. This would cause a static bend or kink

in the helix and decrease the viscosity of DNA. On the other hand, for complex [Ru(tpy)(pta)]2+ (Fig. 5) and

[Ru(tpy)(ptp)]2/ (Fig. 6), the two rotated phenyl rings are replaced with a naphthyl ring or a biphenyl ring in

pta or ptp ligand, respectively. It is nearly coplanar with 1,2,4-triazine ring and constructs a larger

framework compared to that of dppt. This helps two complexes intercalating into the DNA base pairs deeply

and increases DNA viscosity.

Fig. 4: An ORTEP drawing of [Ru(tpy)(dppt)]2/ (adapted from Ref. [25]).

Similar cases are also observed in [Ru(tpy)(PHBI)]z/ and [Ru(tpy)(PHNI)]2+/27/. The results from optical

experiments (Table 1) together with the viscosity measurements (Fig. 7) support that [Ru(tpy)(PHBI)]2+

binds to DNA via electrostatic interaction, while [Ru(tpy)(PHNI)]2/ binds to DNA by partial intercalation via

the extended naphthyl ring into the base pairs of DNA. Although the extended aromatic n-systems in PHBI

and PHNI are comparable to those in dppt, pta and ptp, the DNA binding properties of [Ru(tpy)(PHBI)]2/

and [Ru(tpy)(PHNI)]2+ are different from those of the three complexes discussed above. The great difference

in DNA binding mode and binding affinity is attributed to the molecular configuration of complexes. In
2+[Ru(tpy)(PHBI)]2+ and [Ru(tpy)(PHNI)] tpy and PHBI (or PHNI) sterically compact each other, and

complexes with them have relatively shielded surfaces, as seen in [Ru(bpy)3]2+ and [Ru(phen)3]2+. The steric

shielding prevents the complexes from intercalating into (or deeply into) the DNA base stack and leads to

their low binding affinities.
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Fig. 5: An ORTEP drawing of [Ru(tpy)(pta)]2/ (adapted from Ref. [25]).

Fig. 6: An ORTEP drawing of [Ru(tpy)(ptp)]2/ (adapted from Ref. [25]).
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Fig. 7: Effect of increasing amounts of [Ru(tpy)(PHNI)]2+ (=), [Ru(tpy)(PHBI)]2+ (c), [Ru(bpy)2(dppz)]2+

(,) and [Ru(bpy)3]2/ (’) on the relative viscosities of CT DNA at 28.0 (+ 0.1) C (adapted from

Ref. [27]).

2.3. Enantioselective binding to DNA

Equilibrium dialysis experiments may offer the opportunity to examine the enantioselectivity of the

complex binding to DNA. According to the proposed binding model [6[, the A enantiomer of the complex, a

right-handed propeller-like structure, will display a greater affinity than the A enantiomer with the right-

handed CT-DNA helix, due to the appropriate steric matching.

The CD spectra in the UV region of [Ru(bpy)z(dta)]2+ and [Ru(bpy)z(dpt)]2/ after their racemic solutions

were dialysed against CT-DNA are shown in Fig. 8. The dialysate of [Ru(bpy)2(dta)]2/ and [Ru(bpy)(dpt)]2/

show strong CD signals of A enantiomer with a positive peak at 269 and 270 nm, and a negative peak at 287

and 290 rim, respectively. However, the CD spectra for the dialysate of [Ru(bpy)z(ddt)]2/ show no discernible

signals. This is related to the difference in the DNA binding affinity of the complexes and also indirectly

reflects the influence of ligand shape.

2.4. DNA photocleavage studing

The octahedral transition metal complex is stable to the oxidant, but sensitive to light. Upon irradiation,

they can cleavage DNA by generating singlet oxygen, or subtracting the hydrogen atom. Some ruthenium(II)
complexes have been found to promote the cleavage of DNA [14,15,31-35].
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Fig. 8:
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CD spectra of the dialysate of [Ru(bpy)2(dpt)]2+ (solid line), [Ru(bpy)2(dta)]2+ (dash line) and

[Ru(bpy)2(ddt)]2+ (dot line) after 48 h of dialysis against CT-DNA ([Ru] 50 ktM, [DNA] 1.0

mM) (adapted from Ref. [281).
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Photograph showing the effect of the ruthenium(II) complexes and light on supercoiled pBR 322

DNA after incubation for 1 h at 37 "C. DNA alone (lane 0), the concentration of [Ru(bpy)2ddt]2/ was

20, 40, 60 ,uM (lanes 1.-3); the concentration of [Ru(bpy)2dta]2+ was 20, 40, 60 ,uM (lanes 4-6); the

concentration of [Ru(bpy)2dpt]2+ was 20, 40, 60/tM (lanes 7-9) (adapted from Ref. [28]).

Fig. 9 shows gel electrophoresis separation of pBR 322 DNA after incubation with three complexes

[Ru(bpy)2ddt]2+, [Ru(bpy)2dta]2/ and [Ru(bpy)2dpt]2+ and irradiation at 365 nm. With increasing

concentration of the complexes, [Ru(bpy)2dta]2+ and [Ru(bpy)2dpt]2+ caused single-strand nicking with the

conversion of form to form II; the latter complex even induced the double-strand scissions in supercoiled

DNA; on the other hand, in the presence of [Ru(bpy)2ddt]2+, no distinct cleavage of pBR 322 DNA is

observed. While DNA photocleavage by [Ru(phen)3]2/ has been reported to involve an 102-based mechanism

/29/, the natures of the reactive intermediates as well as the mechanisms of their actions involved in the DNA

photocleavage by these Ru(II) complexes containing asymmetric ligands have not yet been explored in detail.

However, the different DNA-nicking efficiencies of these complexes may be related to the absorption

intensity at 365 nm and the affinity for DNA.
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3. DINUCLEAR RU(II) COMPLEXES BRIDGED BY AN ASYMMETRIC LIGAND

Although considerable attention has been mainly devoted to mononuclear ruthenium(II) DNA
intercalators over the last decade, there is growing interest in the interaction of dinuclear Ru(II) complexes
with DNA /42-51/. For example, Kelly and co-workers have reported that by tethering relatively weak

binding systems such as [Ru(bpy)3]2/ into bimetallic systems, binding affinities may be enhanced by several

orders of magnitude/41/. Norden and colleagues have reported that non-intercalating bimetallic complexes,
in which Ru(II) centers are linked by a semi-rigid dppz dimmer, bind with extremely high affinities/45/.

Later they synthesized a bis-intercalating system, where [Ru(phen)2dppz]2+ is tethered together via the dppz
moieties and an aliphatic diamide linker/47/. With the aim of developing novel DNA-binding reagents, we

investigated the DNA binding properties of [Ru(bpy)2(pztp)]2/ and [(bpy)2Ru(pztp)Ru(bpy)2]4//23/.
The absorption spectrum of [Ru(bpy)z(pztp)]2+ showed a perturbation on addition of CT-DNA, with

hypochromism of about 12% in MLCT band. However, upon coordination of another RuI center in the

bridging ligand pztp, the hyperchromism.of the MLCT band for [(bpy)2Ru(pztp)Ru(bpy)2]4/ decreased by

5%, which is only slightly larger than that of [Ru(bpy)3]2+. For further clarification of the interaction between

the two complexes with DNA, viscosity measurements were carried out. The effects of [Ru(bpy)2(pztp)]2/,
[(bpy)2Ru(pztp)Ru(bpy)2]4/ and [Ru(bpy)3]2+ on the viscosity of rod-like DNA are shown in Fig. 10.

[Ru(bpy)2(pztp)]2/ increases the viscosity of DNA dramatically and nearly linearly at low complex
concentration ([Ru]/[DNA] < 0.15). The result suggests that [Ru(bpy)2(pztp)]2/ may bind to DNA by

intercalation mode despite its much smaller hypochromism in absorption spectra compared with some known

intercalator such as [Ru(bpy)2(ppz)]2+/52/and [Ru(bpy)2(pip)]2//53/. However, [(bpy)2Ru(pztp)Ru(bpy)]4+

decreases the viscosity of DNA dramatically. With two [Ru(bpy)3]2/-like units, the dinuclear complex cannot

intercalate between the base pairs of DNA even partially, so it is just an electrostatic binder. Unlike other

bimetallic systems, the rigid structure of bridging ligand in [(bpy)zRu(pztp)Ru(bpy)2]4/ prevents the further

enhancement of DNA bind affinity.

4. A NOVEL "MOLECULAR LIGHT SWITCH" FOR DNA

Recently, because of their attractive luminescent properties which are extremely sensitive to the

microenvironment, Ru(II) complexes have been used as photoprobes of DNA structures and conformations

/1,2/. However, the emission of Ru(II) complexes switched by double strand DNA is rare. [Ru(bpy)z(dppz)]2+

and [Ru(phen)2(dppz)]2+, the most extensively investigated "molecular light switch" for DNA, show no

luminescence in aqueous solution but luminesce intensely in the presence of DNA/54/. In our laboratory, two

novel complexes [Ru(pztp)2(phen)]2+ and [Ru(pztp)2(bpy)]2/ are found to posses the similar properties/24/.

They represent the kind of non-dppz based Ru(ll) complex as molecular "light switch" for DNA.

[Ru(pztp)2(phen)l2+ and [Ru(pztp)2(bpy)]2+ do not luminesce in aqueous solution either, but that they emit

luminescence at 590 nm and show emission enhancement in the presence of increasing amounts of CT-DNA

upon excitation at 462 nm (Fig. 11). On saturation with CT-DNA, the typical relative emission intensities for
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[Ru(pztp)2(phen)]2+ and [Ru(pztp)2(bpy)]2/ are 0.07 and 0.35 using the emission of [Ru(bpy)3]2/ in Tris-

buffer as a standard.

i..).,0 0,1 0,2 0.,3

Fig. 10: Effect of increasing amounts of [Ru(bpy)3]2+( & ), Ru(bpy)(pztp)]2+(I) and

[(bpy)2Ru(pztp)Ru(bpy)2]2+ (1) on the relative viscosities of CT DNA at 32.7 (+ 0.1) C (adapted

from Ref. [23]).
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Fig. 11" Plots of emission intensity versus [DNA]/[Ru]
[Ru(pztp)2(bpy)]2+ (i) (adapted from Ref. [24]).

ratio for [Ru(pztp)2(phen)]2/ (o) and
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The mechanism of the "light switch" effect for [Ru(phen)2(dppz)]2+ has been studied intensively and

accumulated evidence points to hydrogen bonding and/or excited state proton transfer to the phenazine

nitrogens as the mechanism of deactivation of the complexes’ excited state [54-59].
To explore the possible mechanism involved in the light switch effect, an experiment similar to

[Ru(phen)2(dppz)]2+ was carried out. It is noted that the luminescences of [Ru(pztp)z(phen)]2+ and

[Ru(pztp)2(bpy)]2/ in CH3CN are very sensitive to water, being almost completely quenched in the presence
of 5% water (v/v). Fig. 12(A) shows the progressive decrease of the emission intensity of [Ru(pztp)z(phen)]2/

in CH3CN upon the addition of H20. The titration curves showing the effect of H20 on the emission of

[Ru(pztp)z(phen)]2+ and [Ru(pztp)z(bpy)]2+ in CH3CN are shown in Fig. 12(B). Similar to that for

[Ru(phen)2(dppz)]2+ [31], at low H20 concentrations, ([H20] < 0.3 mol din-3), the data fit the Perrin sphere of

quenching model very well. Based on Fig. 12(B), the luminescence of [Ru(pztp)2(bpy)]2+ is more sensitive to

water than that of [Ru(pztp)z(phen)]2+. These results indicate that the above complexes may experience a

similar "light switch" mechanism to that proposed for [Ru(phen)z(dppz)]2+, whose emission is also solvent

dependent and displays almost the same trend [59].

10

+H20

0
500

Fig. 12:

600 700

Wavelength / nm
[HO], M

(A) (B)

(A) Emission spectra of [Ru(pztp)2(phen)]2/ in CH3CN showing the change in intensity with

increasing amount of H_O ([Ru] 0.2 mmol.tlm"3, [H20] 0-1.6 mol.dm3). (B) Plots of ln(/b)
versus [HO] for [Ru(pztp)2(phen)]2+ (o) and [Ru(pztp)2(bpy)]2+ (w) (adapted from Ref. [24]).
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ddt

dta

dpt

dppt

pta

ptp

PHBI

PHNI

pztp

bpy

phen

tpy

phendione

dppz

EB

3-(pyrazin-2-yl)-5,6-diphenyl-as-triazine

3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene

3-(pyrazin-2-yl)-as-triazino[5,6-)qphenanthrene
3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine

3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene

3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]phenanthrene

2-(2-benzimidazoie)-l,10-phenanthroline
2-(2-naphthoimidazole)-l,10-phenanthroline

3-(pyrazin-2-yl)-as-triazino 5,6-f] 1,10-phenanthroline

2,2’-bipyridine

1,10-phenanthroline

2,2’ :6’,2"-terpyridine

1,10-phenanthroline-5,6-dione

Dipyrido[3,2-a:2’,3’-c]phenazine

ethidium bromide
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