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ABSTRACT In skeletal muscle, the L-type voltage-gated Ca21 channel (1,4-dihydropyridine receptor) serves as the voltage
sensor for excitation-contraction (EC) coupling. In this study, we examined the effects of Rem, a member of the RGK (Rem,
Rem2, Rad, Gem/Kir) family of Ras-related monomeric GTP-binding proteins, on the function of the skeletal muscle L-type
Ca21 channel. EC coupling was found to be weakened in myotubes expressing Rem tagged with enhanced yellow fluorescent
protein (YFP-Rem), as assayed by electrically evoked contractions and myoplasmic Ca21 transients. This impaired EC coupling
was not a consequence of altered function of the type 1 ryanodine receptor, or of reduced Ca21 stores, since the application of
4-chloro-m-cresol, a direct type 1 ryanodine receptor activator, elicited myoplasmic Ca21 release in YFP-Rem-expressing
myotubes that was not distinguishable from that in control myotubes. However, YFP-Rem reduced the magnitude of L-type
Ca21 current by ;75% and produced a concomitant reduction in membrane-bound charge movements. Thus, our results
indicate that Rem negatively regulates skeletal muscle EC coupling by reducing the number of functional L-type Ca21 channels
in the plasma membrane.

INTRODUCTION

The skeletal muscle L-type Ca21 channel (1,4-dihydropyr-

idine receptor (DHPR)) serves as the voltage sensor for

excitation-contraction (EC) coupling (1). Conformational

changes in the DHPR in response to plasma membrane de-

polarization are conveyed to the ryanodine-sensitive Ca21

release channel (RyR1), resulting in efflux of Ca21 from the

stores of the sarcoplamsic reticulum (SR) and in activation of

the contractile machinery (2). Because communication be-

tween the DHPR and RyR1 is rapid and does not require Ca21

entry via the L-type channel itself (3–5), it is believed that

there is a physical interaction between the two proteins. This

view is supported by ultrastructural evidence demonstrating

that the tetradic arrangement of L-type channels within skel-

etal muscle triad junctions is altered by exposure to ryanodine

(6). Because the DHPR is a key protein in EC coupling,

modulation of its activity may have significant consequences

for the frequency, strength, and duration of muscle contraction.

Members of the RGK (Rem, Rem2, Rad, Gem/Kir) family

of Ras-related monomeric GTP-binding proteins inhibit

high-voltage-activated (HVA) Ca21 channels via an inter-

action with Ca21 channel b subunit isoforms (7–16). Recent

evidence indicates that Ca21 channel a1 subunits and RGK

proteins have structurally distinct binding sites within the

conserved guanylate-kinase-like domain of b subunits and

that such interactions may support formation of a tripartite

complex (14,15). Several studies have established that over-

expression of an RGK family member ablates, or nearly

ablates, HVA Ca21 currents in a variety of preparations (7–

14,16–21). Moreover, intramembrane charge movements of

cardiac myocytes were reduced by viral overexpression of

Gem (17), indicating that this RGK protein either prevents

voltage-driven conformational changes necessary for chan-

nel gating or reduces the number of channel proteins in the

plasma membrane. Establishing which of these mechanisms

accounts for the inhibition of Ca21 channels by RGK pro-

teins is a matter of ongoing debate. Some biochemical and

morphological evidence suggests that the RGK-b subunit

interaction causes a reduction in the total number of channel

proteins in the plasma membrane (7,9,10,12,13,15,16).

However, binding of radiolabeled v-conotoxin GVIA to

heterologously-expressed N-type channels in tsA-201 fibro-

blasts and surface biotinylation of native L-type channels in

HIT-T15 b-islet cells were both found to be unaltered by

exogenous expression of RGK proteins (11,14,19). More-

over, Rem2 affects gating kinetics of cloned a1C channels

heterologously-expressed in Xenopus laevis oocytes (21).

These latter findings point to a mechanism of action by which

RGKs may modulate HVA channels at the plasma membrane

by altering channel gating. Regardless of the mechanism,

overexpression of RGK family proteins negatively regulates

physiological processes dependent on the activity of HVA

Ca21 channels including myocardial function (16,17,20) and

secretion in pancreatic and neuroendocrine cells (7,11,12).

Rem is endogenously expressed in normal skeletal muscle

and Finlin et al. have reported that viral overexpression of

Rem inhibits myoplasmic Ca21 release in C2C12 myoblasts

in response to membrane depolarization (8). However, the

mechanism for this inhibition of EC coupling was not estab-

lished. One possibility is that overexpression of Rem impairs
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the formation of the junctional associations between the

plasma membrane and the SR that are required for EC cou-

pling. Although Finlin and colleagues (8) did not find Rem-

induced morphological changes, other groups have reported

that overexpression of Rem or other RGK family members

causes pronounced morphological changes in a number of cell

types (9,10,13,18,22–25), including C2C12 myoblasts (9). A

second possibility is that Rem directly inhibits the function of

the DHPR as voltage sensor for EC coupling. A third possi-

bility is that Rem negatively modulates the EC coupling

machinery downstream of the voltage sensor by inhibiting

RyR1 or by reducing the SR Ca21 store. Here, we describe

experiments to distinguish these possibilities. We find that

expression of YFP-Rem in normal myotubes reduces the

frequency of electrically evoked contractions, dampens

voltage-dependent Ca21 release from the SR, and decreases

the magnitude of L-type Ca21 currents and immobilization-

resistant charge movements, but does not affect Ca21 release

in response to the RyR activator 4-chloro-m-cresol. Thus,

YFP-Rem inhibits EC coupling in skeletal muscle by reduc-

ing the number of functional DHPRs in the plasma membrane.

MATERIALS AND METHODS

Construction of YFP-Rem

Rem (accession number U91601) tagged with hemagglutinin, was a kind gift

from Dr. D. A. Andres (University of Kentucky, Lexington, KY). To gen-

erate Rem tagged with enhanced yellow fluorescent protein (YFP-Rem),

PCR-amplified YFP (Clontech, Palo Alto, CA) was cloned into pcDNA4.1

(Invitrogen, Carlsbad, CA) using KpnI and BamHI sites. Subsequently, full-

length Rem was amplified by PCR and cloned in-frame downstream of YFP

using BamHI and EcoRI sites. All PCR constructs were verified by sequencing.

Myotube culture and expression of cDNA

Primary cultures of normal (1/1 or 1/mdg on an outbred Black Swiss

background) and dyspedic (RyR1 null on C57BL/6 background) myotubes

were prepared from newborn mice, as described previously (26). Altogether,

myotubes from nine separate normal cultures and one dyspedic culture were

utilized in experiments. Two days after the change from plating to differ-

entiation medium, single nuclei were microinjected with YFP-Rem or

pEYFP-C1 (Clontech). The injection solution contained 5–100 ng/ml of

YFP-Rem cDNA or 10 ng/ml of YFP cDNA. In the initial stages of the study,

concentrations of YFP-Rem cDNA ranging from 5–100 ng/ml were assayed

by their ability to reduce L-type current. The effects on L-type current were

similar for each concentration tested (analysis of variance (ANOVA), p .

0.05). In the majority of experiments (including the measurement of both

Ca21 transients and charge movements), 10 ng/ml YFP-Rem cDNA was the

amount chosen to be used, because at this concentration, YFP-Rem could be

detected easily by fluorescence without the potentially deleterious effects of

higher YFP-Rem expression levels. N-benzyl-P-toluene sulfonamide (BTS,

20 mM; S949760, Sigma, St. Louis, MO) was added to the culture medium

during microinjection to prevent contractions. Fluorescent myotubes were

used in experiments 2 days after microinjection.

Contractions

Electrically evoked contractions were elicited by 10-ms, 100-V stimuli

applied via an extracellular pipette that contained 150 mM NaCl (see

Papadopoulos et al. (27)). The myotubes were bathed in rodent Ringer’s

solution (in mM, 146 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, and

11 glucose, pH 7.4, with NaOH). Contractions were assayed by the move-

ment of an identifiable portion of a myotube across the visual field.

Measurement of intracellular Ca21 transients

Changes in intracellular Ca21 were recorded with Fluo-3 (No. F-3715,

Molecular Probes, Eugene, OR). The salt form of the dye was added to the

standard internal solution (see below) for a final concentration of 200 nM.

After entry into the whole-cell configuration, a waiting period of .5 min was

used to allow the dye to diffuse into the cell interior. A 100 W mercury

illuminator and a set of fluorescein filters were used to excite the dye present

in a small rectangular region of the voltage-clamped myotube. A computer-

controlled shutter was used to block illumination in the intervals between

50-ms test pulses. Fluorescence emission was measured by means of a

fluorometer apparatus (Biomedical Instrumentation Group, University of

Pennsylvania, Philadelphia, PA). The average background fluorescence was

quantified before bath immersion of the patch pipette. Fluorescence data are

expressed as DF/F, where DF represents the change in peak fluorescence

from baseline during the test pulse and F is the fluorescence immediately

before the test pulse minus the average background (non-Fluo-3) fluores-

cence. Where applicable, the peak value of the fluorescence change (DF/F)

for each test potential (V) was fitted according to

ðDF=FÞ ¼ ðDF=FÞ
max
=ð1 1 expððVF � VÞ=kFÞÞ; (1)

where (DF/F)max is the maximal fluorescence change, VF is the potential

causing half the maximal change in fluorescence, and kF is a slope parameter.

Measurements of responses
to 4-chloro-m-cresol

Myotubes were washed with Ca21/Mg21-free Ringer’s (in mM, 146 NaCl, 5

KCl, 10 HEPES, 11 glucose, pH 7.4, with NaOH) twice and subsequently

loaded with 5 mM Fluo-3 AM (F-1242, Molecular Probes) dissolved in ro-

FIGURE 1 YFP-Rem inhibits skeletal mus-

cle EC coupling without affecting Ca21 release

in response to direct activation of RyR1. (A)

YFP-Rem reduces the fraction of myotubes

contracting in response to a 100-V, 10-ms

electrical stimulus. (B) Representative changes

in Fluo-3 AM fluorescence in response to ap-

plication of 4-CmC (0.5 mM) elicited in a nor-

mal myotube (upper), a myotube expressing

YFP-Rem (middle), and a dyspedic myotube

(lower). Black arrows indicate time of 4-CmC

application. (C) Summary of myoplasmic Ca21

transients in response to 4-CmC (0.5 mM) for normal (black bar), YFP-Rem-injected (gray bar) normal, and dyspedic myotubes (white bar). Throughout, error

bars represent mean 6 SE. For each group in A and C, the total number of myotubes tested is indicated above each bar.
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dent Ringer’s solution for 1 h. Myotubes were then washed three times in

rodent Ringer’s solution with gentle agitation. Fluo-3-AM-loaded myotubes

were then placed on the stage of a Nikon Diaphot inverted microscope and

viewed under 403 magnification. A 100 W mercury illuminator and a set of

fluorescein filters were used to excite the Fluo-3 AM dye present in an iso-

lated myotube. To facilitate identification of myotubes expressing YFP-Rem

in the presence of Fluo-3 AM, yellow fluorescent myotubes were cytoplas-

mically injected with 1 mM sulforhodamine (S-1307, Molecular Probes)

before loading; myotubes expressing YFP-Rem were then identified by red

fluorescence. Transients were elicited by application of a bolus of 4-chloro-

m-cresol (4-CmC) (C10570, Pfaltz and Bauer, Waterbury, CT) via an ex-

tracellular pipette placed near the myotube of interest. 4-CmC was dissolved

in EtOH to make a stock solution of 500 mM and was diluted in 150 NaCl to

the working concentration (0.5 mM) just before experiments. Fluorescence

emission was measured essentially as described above.

Measurement of L-type Ca21 currents

Pipettes were fabricated from borosilicate glass and had resistances of ;2.0

MV when filled with internal solution, which consisted of (mM) 140 Cs-as-

partate, 10 Cs2-EGTA, 5 MgCl2, and 10 HEPES, pH 7.4, with CsOH. The

standard external solution contained (mM) 145 TEA (tetraethylammonium)-

Cl, 10 CaCl2, 0.003 tetrodotoxin, and 10 HEPES, pH 7.4 with TEA-OH. Linear

capacitative and leakage currents were determined by averaging the currents

elicited by eleven 30-mV hyperpolarizing pulses from a holding potential of

�80 mV. Test currents were corrected for linear components of leak and ca-

pacitive current by digital scaling and subtraction of this average control cur-

rent. Electronic compensation was used to reduce the effective series resistance

(usually to ,1 MV) and the time constant for charging the linear cell capac-

itance (usually to ,0.5 ms). Ionic currents were filtered at 2 kHz and digitized

at 10 kHz. To measure macroscopic L-type current in isolation, a 1-s prepulse

to �20 mV followed by a 50-ms repolarization to �50 mV was administered

before the test pulse (prepulse protocol (28)) to inactivate T-type Ca21 chan-

nels. Cell capacitance was determined by integration of a transient from �80

mV to �70 mV using Clampex 8.0 and was used to normalize current am-

plitudes (pA/pF). Current/voltage (I/V) curves were fitted using the equation

I ¼ Gmax � ðV � VrevÞ=ð1 1 expð�ðV � V1=2Þ=kGÞÞ; (2)

where I is the current for the test potential, V; Vrev is the reversal potential;

Gmax is the maximum Ca21 channel conductance, V1/2 is the half-maximal

activation potential; and kG is the slope factor. The activation phase of

macroscopic ionic currents was fitted using the exponential function

IðtÞ ¼ Afastðexpð�t=tfastÞÞ1 Aslowðexpð�t=tslowÞ�1 C; (3)

where I(t) is the current at time t after the depolarization; Afast and Aslow are

the steady-state current amplitudes of each component, with their respective

time constants of activation (tfast and tslow); and C represents the steady-state

peak current (see Avila and Dirksen (29)).

Measurement of charge movements

For measurement of intramembrane charge movements, ionic currents were

blocked by the addition of 0.5 mM CdCl2 1 0.1 mM LaCl3 to the standard

extracellular recording solution. All charge movements were corrected for

linear cell capacitance and leakage currents using a �P/8 subtraction pro-

tocol. Filtering was at 2 kHz and digitization was at 20 kHz. Voltage-clamp

command pulses were exponentially rounded with a time constant of 50–500

ms and the prepulse protocol (see above (28)) was used to reduce the con-

tribution of gating currents from voltage-gated Na1 channels and T-type

Ca21 channels. The integral of the ON transient (Qon) for each test potential

(V) was fitted according to

Qon ¼ Qmax=ð1 1 expððVQ � VÞ=kQÞÞ; (4)

where Qmax is the maximal Qon, VQ is the potential causing movement of half

the maximal charge, and kQ is a slope parameter.

Analysis

To calculate Gmax/Q9 ratios, Gmax was calculated using Eq. 2 and Q9 was de-

rived by subtracting the average maximal charge movement of dysgenic my-

otubes (Qdys) from the average total Qmax, where Qdys ¼ 1.0 nC/mF ((30) and

Bannister and Beam, unpublished observations). Figures were made using

SigmaPlot (version 7.0, Systat Software, San Jose, CA). All data are presented

as mean 6 SE. Statistical comparisons were by ANOVA or by unpaired, two-

tailed t-test (as appropriate), with p , 0.05 considered significant.

RESULTS

YFP-Rem inhibits skeletal muscle EC coupling

To assay the effects of YFP-Rem expression on EC coupling,

myotube contractions were evaluated in response to electrical

FIGURE 2 YFP-Rem reduces voltage-dependent Ca21 release from the

SR. Recordings of myoplasmic Ca21 transients elicited by 50-ms depolar-

izations from �50 mV to the indicated test potentials are shown for a

nontransfected normal myotube (A) and a YFP-Rem-expressing myotube

(B). (C) Comparison of DF/F-V relationships for normal myotubes (d, n ¼
9) and myotubes expressing either YFP-Rem (s, n ¼ 8) or YFP (n, n ¼ 4).

Sigmoidal DF/F-V curves are plotted according to Eq. 1. The best-fit

parameters for each plot are presented in Table 1.
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stimulation. Expression of YFP-Rem caused an ;50% re-

duction in the fraction of contracting myotubes (contractions

in 7 of 16 myotubes; Fig. 1 A) in comparison to nontransfected

normal and normal myotubes expressing unconjugated YFP

(contractions in 60 of 68 and 8 of 10 myotubes, respectively;

Fig. 1 A). To determine whether this reduction was a result of

an action of YFP-Rem on RyR1 or the SR Ca21 store, myo-

tubes were loaded with the Ca21 indicator Fluo-3 AM and

challenged with the RyR agonist 4-CmC. Robust responses

were observed in nontransfected, normal myotubes and in

YFP-Rem expressing myotubes, whereas no obvious re-

sponse was seen in dyspedic (RyR1 null) myotubes (Fig. 1 B).

On average, the responses to 4-CmC (0.5 mM) of control and

YFP-REM-expressing myotubes (2.0 6 0.9 DF/F, n ¼ 4 vs.

2.4 6 1.0 DF/F, n ¼ 5, respectively) were not significantly

different (p ¼ 0.796; Fig. 1 C). In control experiments, dys-

pedic myotubes responded negligibly to 0.5 mM 4-CmC

(0.2 6 0.1 DF/F, n ¼ 5; Fig. 1 C). These data indicate that

YFP-Rem does not cause depletion of SR Ca21 stores or in-

hibit the ability of RyR1 to release Ca21 from the SR.

YFP-Rem inhibits voltage-dependent Ca21

release from the SR

To obtain more precise information regarding the inhibition of

EC coupling by YFP-Rem, we measured intracellular Ca21

transients in the whole-cell patch-clamp configuration. As

shown in Fig. 2 A, nontransfected normal myotubes produced

robust Ca21 transients with an amplitude that had a sigmoidal

dependence on test potential (Fig. 2 C) and a maximum (DF/

F)max of 0.46 6 0.08 (n¼ 9). Myotubes expressing YFP-Rem

yielded Ca21 transients that were considerably smaller (Fig.

2 B), with a (DF/F)max of 0.14 6 0.11 (n¼ 8, p , 0.05). Only

one of the eight YFP-Rem-expressing myotubes examined

had sufficiently large Ca21 transients to analyze voltage de-

pendence, which appeared to be little affected (this cell

dominated the average data illustrated in Fig. 2 C). In control

experiments, expression of unconjugated YFP had no sig-

nificant effect on either the magnitude or voltage dependence

of Ca21 transients relative to nontransfected normal myo-

tubes (Fig. 2 C and Table 1).

YFP-Rem reduces skeletal muscle L-type
Ca21 currents

Whole-cell patch-clamping was employed to test directly

whether Rem affects skeletal muscle L-type Ca21 currents

mediated by the DHPR. Normal myotubes produced large,

TABLE 1 YFP-Rem inhibits EC coupling

DF/F-V

DF/Fmax (DF/F) VF (mV) kF (mV)

Contracting cells/

number tested

Normal 0.46 6 0.08 (9) 6.9 6 1.2 6.4 6 0.5 60/68

Normal 1

YFP-Rem

0.14 (8) 8.4 6.8 7/16

Normal 1

YFP

0.63 6 0.25 (4) 4.3 6 0.9 6.5 6 0.3 8/10

DF/F-V relationships were fitted using Eq. 1. For untransfected normal

myotubes and myotubes expressing YFP, data represent the average of the

fits for each individual experiment (numbers in parentheses represent the

number of myotubes tested) and are given as mean 6 SE. Because seven of

eight experiments with myotubes expressing YFP-Rem were difficult to fit

with Eq. 1, the DF/F-V relationship is given as the fit of the average data.

FIGURE 3 YFP-Rem reduces skeletal muscle L-type Ca21 current. Re-

cordings of L-type Ca21 currents elicited by 200-ms depolarizations from

�50 mV to the indicated test potentials are shown for a normal, control

myotube (A) or a normal myotube expressing YFP-Rem (B). (C) Comparison of

I/V relationships for normal, control myotubes (d, n¼ 21), normal myotubes

expressing YFP-Rem (s, n ¼ 15), and normal myotubes expressing uncon-

jugated YFP (D, n ¼ 6). Currents were evoked at 0.1 Hz by test potentials

ranging from �20 mV through 180 mV in 10-mV increments, following a

prepulse protocol (28). The YFP-Rem I/V relationship represents pooled data

from myotubes injected with 5, 10, 20, 50, and 100 ng/ml YFP-Rem cDNA; no

significant difference in peak current density was found between these groups

(p . 0.05, ANOVA). The smooth curves are plotted according to Eq. 2. The

best fit parameters for each plot are presented in Table 2.
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slowly activating L-type currents (�10.4 6 0.9 pA/pF, n ¼
21; Fig. 3 A). By comparison, L-type currents were reduced by

73% in normal myotubes expressing YFP-Rem (�2.8 6 0.5

pA/pF, n¼ 15, p , 10�6; Fig. 3 B). YFP-Rem caused a small

rightward shift in the voltage dependence of activation (V1/2¼
19.0 6 1.0 mV vs. 24.1 6 1.2 mV, for normal and YFP-Rem

currents, respectively, p¼ 0.003), but did not alter the kinetics

of activation (see Table 3). In control experiments, expression

of unconjugated YFP had no effect on either the voltage de-

pendence (V1/2¼ 20.3 6 1.4 mV, p . 0.05) or the magnitude

of L-type current (�12.5 6 2.0 pA/pF, n ¼ 6, p . 0.05)

relative to nontransfected normal myotubes (Fig. 3 C and

Table 2).

YFP-Rem reduces skeletal muscle
charge movement

To determine whether the reduction in L-type current by YFP-

Rem was a consequence of a reduced number of functional

DHPRs in the plasma membrane, immobilization-resistant

charge movements were measured. Charge movements in

YFP-Rem-expressing myotubes were reduced by 48% rela-

tive to normal, control myotubes (Qmax ¼ 2.5 6 0.4 nC/mF,

n¼ 7 vs. 4.8 6 0.5 nC/mF; n¼ 7, respectively; p¼ 0.004; Fig.

3, A–C). Under the assumption that these Qmax values include

a component unrelated to the DHPR (Qdys¼ 1.0 nC/mF) ((30)

and Bannister and Beam, unpublished observations), the ratio

of L-type conductance (Gmax) to charge (Q9 ¼ Qmax � Qdys)

was nearly identical in control and YFP-Rem-expressing

myotubes (63 vs. 61 nS/pC, respectively; Table 2). Thus, the

reduction in L-type current resulting from expression of YFP-

Rem can be accounted for by the decrease in functional

DHPRs.

DISCUSSION

The aim of this study was to determine the mechanism by

which Rem, an RGK family GTP-binding protein, inhibits EC

coupling in skeletal muscle. We found that YFP-Rem reduces

the fraction of myotubes displaying electrically evoked con-

tractions and attenuates voltage-dependent myoplasmic Ca21

transients (Figs. 1 A and 2), consistent with the finding of

Finlin et al. that virally overexpressed Rem inhibits KCl-in-

duced myoplasmic Ca21 responses (8). Moreover, we found

that this impairment of EC coupling was not a consequence of

a reduced SR Ca21 store or of direct inhibition of RyR1 (Fig.

1, B and C). Instead, it appears that Rem inhibits EC coupling

by reducing the number of functional DHPRs, since both

L-type Ca21 currents and membrane charge movements

were reduced substantially in myotubes expressing YFP-Rem

(Figs. 3 and 4, respectively). This is the first demonstration

that skeletal muscle L-type (a1S-mediated) currents can be

modulated by an RGK family member. On average, the

skeletal muscle L-type channel was not inhibited by Rem to

the extent that has been observed for other L-type channels in

native and heterologous systems (8,13,14,20,21).

Recent evidence indicates that RGK proteins interact with

b subunits via a subdomain of the highly conserved guanylate

kinase domain that is distinct from the subdomain that binds

the I-II loop of the a1 subunit (14,15). This finding is partic-

ularly important when considered in the context of skeletal

TABLE 2 L-type Ca21 current conductance and charge movement

G-V Q-V

Gmax (nS/nF) V1/2 (mV) kG (mV) Qmax (nC/mF) VQ (mV) kQ (mV) Gmax/Q9 (nS/pC)

Uninjected normal 238 6 16 (21) 19.0 6 1.0 4.6 6 0.3 4.8 6 0.5 (7) �3.3 6 0.5 9.3 6 0.8 63

Normal 1 YFP-Rem 92 6 10z (12) 24.1 6 1.2* 5.3 6 0.8 2.7 6 0.5y (7) �3.4 6 3.4 8.6 6 1.3 61

Normal 1 YFP 268 6 39 (6) 20.3 6 1.4 4.7 6 0.7 ND ND

Data are given as mean 6 SE; numbers in parentheses indicate the number of myotubes tested. Three myotubes expressing YFP-Rem had no appreciable

L-type current and, for that reason, were not able to be fit by Eq. 2; these cells were included in the calculation of total current density (see Results), but were

omitted from the data presented in Table 2. Gmax was calculated according to Eq. 2, whereas the Q9 was derived by subtracting the average maximal charge

movement of dysgenic myotubes (Qdys) from the average total Qmax, where Qdys ¼ 1.0 nC/mF (see Bannister and Beam (30)). Symbols indicate significant

differences (*p , 0.05; yp , 0.005; zp , 10�6) compared to normal myotubes by t-test. I/V and Q/V curves are plotted according to Eqs. 2 and 4,

respectively (see Materials and Methods). For all the data given, the calculated average voltage error was ,5 mV.

TABLE 3 L-type Ca21 current activation fit parameters

Islow Ifast

tslow (ms) Aslow (pA/pF) Fraction (%) tfast (ms) Afast (pA/pF) Fraction (%)

Normal 94.1 6 7.7 (11) 10.0 6 1.1 87 6 3 8.6 6 1.1 1.6 6 0.4 13 6 3

Normal 1 YFP-Rem 108.8 6 9.0 (6) 3.3 6 0.7* 84 6 4 6.1 6 0.3 0.5 6 0.1 16 6 4

Activation was fitted with a double exponential function (Eq. 3) yielding time constants tfast and tslow with absolute or fractional amplitudes Aslow and Afast

(see Avila and Dirksen (29)). Data are given as mean 6 SE; numbers in parentheses indicate the number of myotubes tested. The asterisk indicates a

significant difference (p , 0.001). The analysis of activation kinetics excluded cells with very small currents and cells in which tail current decay was

obviously not monoexponential.

Rem Inhibits the Skeletal Muscle DHPR 2635

Biophysical Journal 94(7) 2631–2638



muscle, because the b1a isoform is required for skeletal-type

EC coupling (31–37). The b1-null zebrafish mutant relaxed

lacks the characteristic arrays of DHPR tetrads typically ob-

served in freeze-fracture replicas of normal skeletal muscle,

indicating that b1a is important for the linkage of DHPRs to

RyR1 (37). However, the reduced number of functional

DHPRs that are present in YFP-Rem-expressing myotubes

appears to be normally linked to RyR1, as indicated both by an

unaltered Gmax/Q9 ratio (Table 2) and normal activation ki-

netics (Table 3), both of which are substantially changed

when skeletal DHPRs are not coupled to RyR1 (29,38,39).

Measurement of immobilization-resistant charge move-

ments indicated that YFP-Rem reduced the total number of

functional a1S-DHPRs in the plasma membrane (Fig. 3 and

Table 2). Our data do not allow us to distinguish whether this

reduction is a consequence of decreased channel insertion/

increased channel internalization (7,9,10,12,13,15,16) or of

the ability of Rem to lock the channel in a nongating state

(11,14,19,20). A similar reduction in gating charge move-

ment, associated with a1C-DHPRs, has been observed in

ventricular myocytes after viral expression of Gem (17). In

contrast to the observed reduction in gating charge after

maintained expression of RGK proteins, recent work indi-

cates that acutely applied Rem can inhibit L-type Ca21 cur-

rents via a1C-DHPRs expressed in HEK293 cells, without

reducing gating charge movement (40). Possibly, Rem has

both acute and chronic effects, such that a rapid inhibition of

Ca21 current is followed by a slower reduction in the number

of functional channels in the plasma membrane.

It is clear that an important goal of future studies will be to

resolve the mechanisms whereby RGK proteins inhibit

voltage-gated Ca21 channels. Muscle cells would appear to

offer several advantages for such studies. For example, be-

cause they are concentrated in discrete foci (27,30,41),

membrane-associated, fluorescently-tagged L-type channels

in myotubes can be identified with less ambiguity than the

more diffusely distributed channels typical of cultured neu-

rons or heterologously expressed channels. Thus, in myo-

tubes it should be possible to determine whether YFP-Rem

targets to channels already present in the plasma membrane

and whether this targeting depends on the isoforms of the

a1 and b subunits. Similarly, it will be of interest to determine

whether the subcellular targeting of YFP-Rem is altered in

myotubes lacking b subunits and whether exogenous ex-

pression of Rem alters the tetradic arrangement of DHPRs as

seen with freeze-fracture electron microscopy.

In summary, we have shown that the RGK GTP-binding

protein Rem inhibits EC coupling in skeletal muscle as a

consequence of reducing the number of functional DHPRs.

In addition to inhibition of EC coupling, this reduction in

functional DHPRs implies that Rem may modulate other

physiological processes in muscle cells that are dependent

on voltage-driven conformational changes of the DHPR, in-

cluding excitation-transcription coupling and excitation-

coupled Ca21 entry (42,43).
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