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ABSTRACT Spectrin (Sp), a key component of the erythrocyte membrane, is routinely stretched to near its fully folded contour
length during cell deformations. Such dynamic loading may induce domain unfolding as suggested by recent experiments. Herein
we develop a model to describe the folding/unfolding of spectrin during equilibrium or nonequilibrium extensions. In both cases, our
model indicates that there exists a critical extension beyond which unfolding occurs. We further deploy this model, together with a
three-dimensional model of the junctional complex in the erythrocyte membrane, to explore the effect of Sp unfolding on the
membrane’s mechanical properties, and on the thermal fluctuation of membrane-attached beads. At large deformations our results
show a distinctive strain-induced unstiffening behavior, manifested in the slow decrease of the shear modulus, and accompanied
by an increase in bead fluctuation. Bead fluctuation is also found to be influenced by mode switching, a phenomenon predicted by
our three-dimensional model. The amount of stiffness reduction, however, is modest compared with that reported in experiments. A
possible explanation for the discrepancy is the occurrence of spectrin head-to-head disassociation which is also included within our
modeling framework and used to analyze bead motion as observed via experiment.

INTRODUCTION

Simple flexible polymer chains extended near their contour

length generally exhibit a pronounced nonlinear stiffening

(see, for example, Weiner (1) who discusses a wide range

of polymer elasticity models including those used herein).

Multidomain proteins, such as RNA, titin, ankyrin, or spec-

trin, however, can undergo overstretching due to unfolding of

domains or repeated folded segments (2–4). Unfolding of

repeats moreover, is directly influenced by induced tension as

documented in the AFM force tests reported in the literature

(2–5) and as simulated via molecular dynamics (6–8). In the

case of spectrin, Ortiz et al. (9) find that the unfolding process

begins with the unfolding of the helical linker between repeats.

Despite the abovementioned efforts to characterize the

constitutive behavior of spectrin, the effect of its unfolding on

the mechanical response of a spectrin-based network such as

the protein skeleton reinforcing the erythrocyte (red blood

cell, or RBC) membrane remains unsolved. It is reasonable to

expect that, as the membrane is sufficiently stretched, the Sp

tetramers comprising the skeleton segments may lose stiff-

ness. (Note that a loss in stiffness is meant that the derivative

of force versus extension is diminished, yet remains distinctly

positive as opposed to the extension-induced softening re-

ferred to in Lee and Discher (13), which has yet to be ob-

served, and would result in network instability of a type also

not yet reported.) This, in turn, implies that the entire skeletal

response may be characterized as undergoing an extension

unstiffening. This would be, notably, in contrast to most

existing model analyses of RBC skeleton constitutive be-

havior which yield a continuous extension stiffening typical

of flexible entropic polymer chains. Examples of such treat-

ments are found in the literature (10–12).

Evidence for a loss of stiffness of the RBC skeleton with

increasing strain has been reported by Lee and Discher

(hereafter referred to as LD) (13), who experimentally re-

solved thermal fluctuations of single beads attached to the

RBC skeleton. Essentially what they observed was that when

the RBC, and thus the skeleton, was subjected to a shear

strain characterized by principal stretches l1 . l2, l1l2� 1,

the amplitude of fluctuation along the direction of l1 in-

creased. Indeed, in a deformation with l1 ; 2, the amplitude

of fluctuation in the stretching direction was observed to in-

crease by as much as twofold compared with the unstressed

state. On the other hand, along the direction of l2, the fluc-

tuation amplitude decreased by 10–20%. Although full

analysis of such interesting results is far from complete, and

the observations remain limited, they do raise questions as to

the importance of tension-induced dynamic unfolding $
refolding of Sp during the deformation of RBCs. (Note that

the analysis of the observations in Lee and Discher (13) was

based on linear, isotropic, elastic analysis of the membrane

skeleton. Moreover, no accounting was given of the con-

nections of the beads whose motion was filmed, and thus of

the dynamic response that would be affected by extension-

induced changes in the behavior of such connections.

Nonetheless, the fluctuations observed in Lee and Discher

(13) were unquestionably increased in amplitude with

stretching and this provides compelling evidence for possi-

bility of network unstiffening, unless explained otherwise.

The beads were 40 nm in diameter and bound to either gly-

cophorin extracellularly, or to the cytoskeleton F-actin in cell

ghosts.) We note, however, that there are other mechanisms

that lead to reductions in membrane stiffness, and that may
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lead to reductions in strength. One such type of event is a shift

in the dynamic equilibrium between Sp dimer head-to-head

association (14,15). Comprehensive investigations are re-

quired to illustrate the mechanical consequence of each of

these mechanisms and determine their contributions to mem-

brane unstiffening.

We present a constitutive model for Sp force-versus-

extension based on the notion that Sp tetramers, within the

skeleton of the RBC membrane, undergo continuous transi-

tions between the folded and unfolded states. We note that the

tensile force required to completely unfold an Sp, estimated

from the AFM studies of Rief et al. (4) to be ;30 6 5 pN,

may well be beyond that achievable in the skeleton under

ambient conditions prevailing during circulation. (Note also

that peak loads were measured by Rief et al. (4) at extensions

rates of 0.8 mm s�1 and at 0.08 mm s�1. As noted below, the

unfolding process is thermally activated and thus rate-

dependent. The peak loads thus decrease as the extension rate

decreases. Rate dependence is controlled by an activation

length as explained below.) Yet even at much lower tension a

finite number, which is a finite fraction, of domains within an

Sp will be unfolded; this fraction of domains will increase

with the tensile force, F. As this happens, a reduction in

compliance may result and it is this sort of phenomenology

we aim to explore in the model. The process is rate-dependent

and thermally activated, as explained below. Key issues that

arise include 1), at what levels of Sp tension do significant

rates of transition (i.e., the unfolding of repeats f $ u) occur;

and 2), at what rates do such transitions occur, and how do (or

can) these rates affect, i.e., make their influence felt in, net-

work response? As it happens, a pointed test of any such

analysis is: can the formalism explain the observation of a

decrease in fluctuation amplitude in the direction of de-

creasing stretch (i.e., l2 , 1) as observed in the experiments

of LD? To do so requires that the Sp force would have had to

have been, while the network was in its rest configuration, at

the level where appreciable f $ u transitions were in pro-

gress. Our analysis, in fact, indicates that Sp unfolding is

likely to occur during biologically achievable deformations

and that eventual unstiffening occurs. This happens, how-

ever, only after appreciable entropic stiffening which makes

our results consistent with experimental observations that

indicate such strain induced stiffening (16). Head-to-head

disassociation is also explored within our framework as an

alternative explanation of increased bead fluctuation ampli-

tude. Both Sp unfolding and head-to-head association/dis-

association are thereby two types of events, among others,

that constitute a remodeling of the skeleton and that induce

changes in constitutive response.

The rest of the article is organized as follows. In the next

section, we briefly describe the molecular structure of Sp

domains/repeats as used in our simulations. This is followed

by the mathematical formulation describing folding/unfold-

ing of these domains. The constitutive model is then detailed.

Numerical results, including the equilibrium and dynamic

responses of a stretched Sp, as well as the effect of Sp un-

folding on the mechanical response of a RBC membrane

skeleton, are presented. The skeleton response is studied via a

hybrid model which incorporates the three-dimensional ar-

chitecture of a basic unit of the skeleton, namely a junctional

complex (JC), the dynamic interactions between this junc-

tional complex and the lipid bilayer to which it is attached,

and the fluid-structure interactions (17). Using this three-di-

mensional model, we will examine the effect of Sp unfolding

on the three-dimensional configuration of the junctional

complex, the shear modulus, and the thermal fluctuation of

skeleton-attached beads. Finally, Discussion and Conclu-

sions will be provided.

SPECTRIN (Sp) DOMAIN AND
REPEAT STRUCTURE

Speicher (18) has given a description of the domain/repeat

structure of the a- and b-chains of spectrin proteins that we

adopt herein; Fig. 1 a illustrates the domain/repeat a/b-

structure as described there.

Spectrin within the skeleton of an RBC, for instance,

is composed of two similar peptide chains, a (with 2418

residues) and b (with 2137 residues). Sequence analysis in-

dicates that both chains are composed mostly of repeats, 106-

amino-acids long (see figure caption for further detail). The

repeats are expected to fold into triply stranded a-helical coils

as indicated on the top side of Fig. 1 b (19). Thus it may be

estimated that the contour length, per 106 amino-acid repeat

is 106/3 3 0.15 nm¼ 5.3 nm; the repeats are connected via a

short linker adding additional length to the average repeat.

(Note that, for a-helical segments, we take the rise to be 0.15

nm per residue, whereas, for nonhelical peptide segments, we

assume the peptide length is 0.37 nm per residue (20).) For a

completely unfolded repeat, it may be estimated that the

contour length may be as large as 106 3 0.37 nm � 39 nm

plus the length contributed by the linker. Thus, upon un-

folding, the net contour length gained may be as large as 39–

5.3 nm � 34 nm. Of course, the observed extension of the

peptide chain is likely to be less than this as the unfolded

segment will generally not be stretched to its full contour

length. Indeed, the average forced extensions, estimated by

fitting the wormlike chain (WLC) model to the measured

force versus extension curves in the AFM tests of Sp were

found to be 31.7 nm and 22 nm by Rief et al. (4) and Law

et al. (5), respectively. In the case of the data of Rief et al. (4),

the spacings thus estimated are seen to be quite close to the

spacings observed between force peaks.

We note that Bennet and Gilligan (21) present a similar

picture for the Sp structure, but with the addition of a 21st

and 22nd domain (i.e., repeat) that are similar to the 106

amino-acid repeats with an eight-residue insertion. For

analysis performed herein, either structural interpretation is

adequate.
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Unfolding versus refolding

General kinetic framework

Consider Fig. 2, which illustrates the energy scheme for the

transitions between the folded, f, and unfolded, u, states

within an Sp domain; the caption explains the terms shown in

the figure. We assume here that Sp unfolds in an all-or-

nothing manner as originally envisioned by Rief et al. (4) and

does not exhibit intermediate states of unfolding as described,

for example, by Altmann et al. (22). Unfolding of tandem

repeats, as suggested by the experiments of Law et al. (5) and

analyzed via molecular dynamics (9) are possible, although

statistically unlikely, events in the model presented below.

Specific accounting for either phenomena is also possible

within the framework of our model but, given the present

level of quantitative understanding, we postpone such re-

finement to later reports.

We assume, following LD, that of the 76 repeats of an Sp

tetramer there exist transitions, and possibly an equilibrium,

between the folded versus unfolded repeats via

f $u: (1)

Hereafter we use the subscript f to denote values correspond-

ing to the folded state, and u the unfolded state. Similarly,

f / u represents the unfolding process and u / f the refold-

ing process. Each repeat possesses a constitutive response as

described below. For now we note that the contour length of

an unfolded repeat, Lu, is larger than that of a folded repeat,

Lf; later we take Lf ¼ 5.3 nm and Lu ¼ 39 nm. The effect of

this is that once an appreciable fraction of repeats reside in the

unfolded state, a reduction in stiffness of the Sp is possible.

The rate of transition from the folded to unfolded state is

described by an Arrhenius rate relation with an activation

energy, DGf/u(T,F), where T is temperature and F(.0) the

force within the Sp. Now let DGf/u be expressed as

DGf/u � DG
0

f/u 1
@DGf/u

@F
F 1

1

2!

@
2
DGf/u

@F
2 F

2
1 . . . ; (2)

where DG0
f/u is the activation energy at F¼ 0. An activation

length may be defined as Dxf/u[� @DGf/u=@F; with

which DGf/u may in turn be expressed as

DGf/u � DG
0

f/u � FDxf/u �
1

2!

@Dxf/u

@F
F

2 � . . . : (3)

For the f / u transition, we now assume that @D xf/u/@F is

negligible along with its higher derivatives; the rate of tran-

sition then takes the form

kf/uðFÞ � k~mexp
�DGf/u

kBT

� �
¼ k~mk

0

f/uexp
FDxf/u

kBT

� �
; (4)

FIGURE 1 (a) Domain/repeat structureof a- and b-spectrin

(after Speicher (18)). The a- and b-units occur in antiparallel

side-to-side orientation to form heterodimers that then

associate via head-to-head association to form tetramers

making up the segments involved within a spoked JC. Most

repeat units (indicated by rectangles) are homologous and

are 106 residues in length. The repeats are composed of

triply folded a-helices. Repeats are connected by short

linker peptides indicated in green. Nonhomologous seg-

ments are indicated by squares and have different lengths.

Domains are indicated by Roman numerals and were

derived via digestion and were established before amino-

terminal orientation of the subunits were established. (b)

Schematic illustrating a folded repeated Sp structure com-

prised mostly of the 106-residue repeats, and a peptide

segment in which one repeat has unfolded.

FIGURE 2 The figure illustrates the energy path along the folded $
unfolded reaction path. DG0

f/u is the activation energy for the process f / u

when F ¼ 0. With finite tension, the net activation energy is reduced so that

DGf/u ¼ DG0
f/u � FDxf/u; where Dxf/u is the activation length, akin to

an activation volume for solid-state reactions. The activation length for the

refolding transition is Dxu/f; note Dxu/f , 0. When F ¼ Fat, DG ¼ 0 and

there is an athermal driving of all domains into the unfolded state.
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where k~m is a frequency term that is related to the attempt

frequency of the f / u transition and thus is dependent on the

molecular (mechanical) configuration of the folded domain.

The assumption of ignoring @Dxf/u/@F and higher deriva-

tives is here similar to Bell’s linear approximation (23) as

recently discussed by Ng et al. (24) or to the assumption of a

sharp barrier for unfolding as discussed by Evans and Ritchie

(25) in their analysis of the unfolding of titin domains. The

temperature-dependent quantity k0
f/uðTÞ is the exponential

term containing the activation energy at zero F. Heuristically

the activation length, Dxf/u, may be seen as a measure of the

distance through which the force acts in attaining the tran-

sition state along the f / u path. Neglecting terms involving

the derivatives of Dxf/u with respect to F appears reason-

able, based on molecular dynamics simulations of Sp un-

folding (6) that illustrate the localized nature of the transition

state. However, more compelling justification for using the

linear approximation in our present modeling rests upon the

consistency it provides in describing the forced unfolding

data of Rief et al. (3,4) and Law et al. (5), as described below.

For the reverse transition, we use a similar approximate form

ku/fðFÞ � k
)

mexp
�DGu/f

kBT

� �

¼ k
)

mk
0

u/fexp
�FjDxu/f j

kBT

� �
; (5)

where we have highlighted the fact that Dxu/f , 0, which

means that F 6¼ 0 retards the refolding process, by placing

jDxu/fj in the exponential. We note that the implied as-

sumption of the simple exponential dependence on force that

derives from the linear approximation made above is un-

doubtedly far more approximate for the refolding reaction.

As explained below, however, refolding does not likely occur

at appreciable rates during the sorts of deformations we sim-

ulate, and thus, the approximation appears justified, as long

as Dxu/f is approximated large enough to account for this

fact.

We now let N be the total number of Sp domains, Nu be the

number of those unfolded, Nf the number folded, fu ¼ Nu/N
the fraction unfolded, and ff ¼ Nf/N the fraction folded;

clearly ff ¼ 1 � fu. At equilibrium we have balanced rates

for f $ u, or

ðN � NuÞkf/u ¼ Nuku/f ; (6)

which leads to

fu ¼
kf/u

kf/u 1 ku/f

; (7)

or

fu ¼
½kf/uð0Þ=ku/fð0Þ�exp

FDDx
�

kBT

� �

1 1 ½kf/uð0Þ=ku/fð0Þ�exp
FDDx

�

kBT

� �; (8)

where DDx* ¼ Dxf/u – Dxu/f. The terms kf/u(0) and

ku/f(0) simply denote the expressions in Eqs. 4 and 5 eval-

uated at F¼ 0. Now define F1/2 as the level of Sp tension such

that fu ¼ 1/2. We find from Eq. 8 that

kf/uð0Þ
ku/fð0Þ

¼ exp �F1=2DDx
�

kBT

� �
; (9)

which reveals the key role that the parameter F1/2 plays in the

constitutive response. To understand the numerology here,

i.e., to assess the possible magnitudes that F1/2 must have,

note that ku/f (0)/kf/u(0) . 1 and in fact it is most likely that

ku/f(0)/kf/u(0) � 1, and thus F1/2DDx*/kBT . 1. The

assumption that ku/f(0)/kf/u(0) � 1 is supported by the

kinetic data of Clarke and co-workers (26,27), who report

values of rate constants for the folding and unfolding of the

15th, 16th, and 17th repeats of chicken brain a-spectrin.

Their data indicate that, at minimum (i.e., for repeat 17), ku/f

(0)/kf/u(0) . 20; for repeats 15 and 16, the ratios are con-

siderable larger. Accordingly, the requirement that F1/2DDx*/

kBT . 1 is meant to ensure that, at rest, the Sp are seen as

mostly in the folded state. If, for example, DDx*� 12.6 nm is

used as an estimate below, then F1/2 � 0.3 pN, just to make

the ratio ku/f (0)/kf/u(0) ¼ e. Thus F1/2 ¼ 0.3 pN would

appear to be a lower limit. On the other hand, if F1/2 ¼ 5 pN,

with the same value of DDx*� 12.6 nm for the net activation

lengths, ku/f (0)/kf/u(0) ¼ e15 � 4 3 106, high enough to

ensure that almost all domains are folded at zero force.

For reference, we may also note that with the above we

may express fu as

fu ¼
exp

ðF� F1=2ÞDDx
�

kBT

� �

1 1 exp
ðF� F1=2ÞDDx

�

kBT

� �; (10)

with which we may explore the fraction, fu, at F ¼ 0 via

f
0

u ¼
exp

�F1=2DDx
�

kBT

� �

1 1 exp
�F1=2DDx

�

kBT

� �: (11)

We note that an equilibrium constant may be obtained for the

reaction f / u defined as Kd ¼ fu/ff, and from Eq. 10,

Kd ¼ exp
ð�F� F1=2ÞDDx

�

kBT

� �
; (12)

where we have used the symbol �F in Eq. 12 to note that in a

true ensemble of Sp the equilibrium constant would be

determined from the average, or characteristic, force acting

on the Sp. (Note that strictly speaking, in calculating the

unfolded fraction for an ensemble of Sp molecules, one must

consider the distribution of forces acting on different mole-

cules and integrate over all forces.) From this we have

2532 Zhu and Asaro

Biophysical Journal 94(7) 2529–2545



DD x
� ¼ kBT

@ ln Kd

@�F
; (13)

which suggests an experimental method for obtaining values

for the combined activation length, DD x*. The method has,

in fact, been employed by Liphardt et al. (2) for RNA

unfolding.

Rate constants and the activation length

Clearly knowledge of the activation lengths, Dxf/u and

Dxu/f, is important for establishing the kinetics of f $ u
transitions, and in particular the force dependence. Limited

data exists so only preliminary estimates may be made at this

time. Rief et al. (4), however, performed their AFM pulling

tests at two rates, 0.08 mm s�1 and 0.8 mm s�1. Let x be the

end-to-end distance projected to the direction of F, and its

time derivative _x represents the rate of extension. To estimate

the activation length, Dxf/u, we note that the force depen-

dence of _x due to the f $ u transition is in the form _x }

exp(F*D xf/u/kBT), where F* is the most probable unfolding

force or a characteristic unfolding force, as defined in the

analysis of Evans and Ritchie (28). Thus, the activation

length may be obtained from

Dxf/u ¼ kBT
@ ln _x

@F
� : (14)

In fact, given the linear approximation used here, Eq. 14 may

also be extracted from the analysis of Evans and Ritchie (28)

(see, for example, Eq. 7 of (24) who review the Evans and

Ritchie theory as applied to protein unfolding). From the data

in Rief et al. (4) (see their Fig. 6) it may be estimated from the

first peaks in load that the difference in peak load was ;5 pN.

Thus from Eq. 14 we estimate Dxf/u� 2 6 0.5 nm. We later

compare our Monte Carlo simulations with the experimental

measurements in Rief et al. (4) and show that Dxf/u � 2.1

nm yields a best match. Note that, as is typical in reaction rate

theory, smaller activation volumes, and in our case activation

lengths, imply a stronger rate dependence with respect to the

value of force. This was noticed by Rief et al. (4) in con-

nection with the difference in the magnitudes of the forces

required (at comparable rates) to unfold titin molecules whose

estimated activation lengths were approximately a factor of

5–6 smaller; in fact, the forces required to unfold titin were

measured to be larger by the same factors. Unfortunately, at

this time data that would allow estimates of Dxu/f are

unavailable. On the other hand, observations of refolding

after unloading of Sp (4) indicate that Sp segments refold, but

only after the extended segments are relaxed completely.

(Note that the refolding observations of Rief et al. (4) were

made by completely relaxing Sp segments. No partial un-

loading or fixed force tests were reported, however, that may

have indicated refolding at reduced yet finite tension.) Sim-

ilarly, Rief et al. (3) noted that refolding of titin was not

observed until the extended chains were nearly completely

relaxed. This, in turn, suggests that jDxu/fj is, in fact, almost

certainly larger than Dxf/u. Hereafter we assume that

jDxu/fj ¼ 5Dxf/u. This explains the earlier estimate of

DDx* � 12.6 nm. We note that we have determined that

variations of jDxu/fj from the above estimate confirm that

imperceptible differences result in all the results that we

present below. For this reason, we ignore refolding events in

our simulations of dynamic unfolding of Sp. We note herein

that although the choice of Dxu/f appears to be arbitrary, we

have shown through numerical tests that if this value is

sufficiently large it does not have a significant effect on the

results. For example, in the equilibrium force-extension

curves (see Fig. 3), we find that an increased Dxu/f leads

to flatter plateaus, while there is no significant change in the

amount of extension related to unfolding.

As far as ku/f (0) is concerned, we note from Eq. 9 that

ku/fð0Þ ¼ kf/uð0Þexp
F1=2DDx

�

kBT

� �
� exp

F̃1=2DDx̃
�

4

� �
;

(15)

where in the second expression on the right, and for conve-

nience of association with the familiar units used for the

parameters, F̃ is measured in pN and DDx̃� in nm and T �
37�C. Also for the rates under the action of finite force,

ku/f

kf/u

� exp
ðF̃1=2 � F̃ÞDDx̃

�

4

� �
: (16)

FIGURE 3 (a) Force versus extension response for the

folded-unfolded Sp with various values of F1/2 used. For all

cases, pf ¼ 2.5 nm and pu ¼ 0.5 nm, Lf ¼ 5.3 nm, Lu ¼ 39

nm, Dxf/u ¼ 2.1 nm, jDxu/fj ¼ 5Dxf/u, and N ¼ 19.

Note that not until F1/2 d 2 pN does the response exhibit a

reduction in stiffness with extension (for a limited range of

extension). (b) Same as panel a, except that pu ¼ 0.8 nm.
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THE CONSTITUTIVE MODEL

Equilibrium constitutive relations

We consider first the constitutive response of an Sp deformed

slowly enough that local equilibrium between folded and

unfolded domains prevails. In this case (and even if equi-

librium does not prevail), the projected end-to-end length, x,

of an Sp is just the sum of the lengths of its constituent do-

mains, and thus

x ¼ Nf xf 1 Nu xu; (17)

where xf and xu are the projected extensions (i.e., the end-to-

end length projected onto the direction of F) of folded and

unfolded domains, respectively. When x is normalized by

NLf, for example, and noting that Nf ¼ N – Nu, we have

x

NLf

¼ ð1� fuÞ
xf

Lf

1 fu

xu

Lu

Lu

Lf

� �
: (18)

Since all the domains are in series they share the same ex-

tension force F. Models are needed for the extension-versus-

force response of both folded and unfolded domains, i.e., for

xf/Lf and xu/Lu versus F. For this we use a freely jointed chain

model, obtained from a stress ensemble (see e.g., Weiner (1))

and write

xi

Li

¼ coth
2Fpi

kBT

� �
� kBT

2Fpi

; i ¼ f ; u: (19)

In Eq. 19, pi is the persistence length of either a folded or

unfolded domain (i ¼ f, u). We note that Eq. 19 may be

expressed as xi/Li¼L(2Fpi/kBT) whereL(z)¼ coth z – 1/z is

the Langevin function. The full constitutive response is then

x

NLf

¼ ð1� fuÞ L
2Fpf

kBT

� �
1 fuL

2Fpu

kBT

� �
Lu

Lf

� �
: (20)

The approximation of the Langevin function for small z is

given as LðzÞ;z=3; so that for sufficiently small F, we

extract a linear response

xi

Li

� 2

3

piF

kBT
/xi � Li

2

3

piF

kBT
: (21)

Therefore, when Fpi/kBT� 1, we have

x

NLf

� ð1� fuÞ
2

3

Fpf

kBT
1 fu

2

3

Fpu

kBT

Lu

Lf

� �
: (22)

In equilibrium, fu is given through Eq. 10.

Time-dependent response: Monte Carlo methods

An effective way to explore the potential influence of non-

equilibrium, and thus rate-dependent, domain unfolding-re-

folding is to simulate the process via a Monte Carlo method.

Below we list a simple algorithm that includes the kinetics of

unfolding; refolding is not explicitly included as we intend

this to be used only for monotonically increasing load where

the incidence of refolding would be quite rare. The stochastic

process is meant to simulate the monotonic AFM experi-

ments of Rief et al. (3,4) and Law et al. (5). The procedure

involves imposing a constant rate of stretching, and to per-

form this in time steps, Dt. After each time step, the force on

the Sp is computed via Eq. 20 and the probability of un-

folding, P(F), is computed from P(F) ¼ kf/u(0) exp

(FDxf/u/kBT)Dt. Each folded domain is then polled to judge

whether it should be unfolded at the new time t ¼ t 1 Dt. A

simple algorithm implementing this scheme for an N repeat

Sp segment is

0. Set the stretching rate, _x
Set x ¼ 0: Set Dt: Set Dxf/u: Set Dxf/uð0Þ:

Do while

1. x)x1Dt;
2. Calculate force, F, via Eq. 20;

3. Compute P ¼ kf/uð0ÞexpðFDxf/u=kBTÞDt;
4. Poll each folded domain for unfolding (nb unfolds

found?)

4.1 update fu)fu1nb=N;
4.2 recompute force, F, via Eq. 20,

4.3 record (F, x), loop to 1,

end.

RESULTS

Equilibrium extension of individual Sp chains

Fig. 3 shows, via Eqs. 10 and 20, the force-versus-extension

responses for a given set of the parameters pf, pu, and DDx*,

and the force-versus-extension responses for various levels of

F1/2. Note that the type of response, e.g., whether extension

unstiffening is exhibited depends sensitively on the value of

F1/2. Such behavior is also sensitive to the values taken for

the other parameters. For example, the two figures use iden-

tical parameters except for the value of pu, which is chosen as

0.5 nm and 0.8 nm in Fig. 3, parts a and b, respectively. With

the parameters described in the caption to Fig. 3, parts a or b,

we note that only when F1/2 d 2 pN is significant, is ex-

tension unstiffening observed. Unstiffening per se, however,

is observed at all values of F1/2. Unstiffening occurs when F/

F1/2 b 0.75 or at F � 1.5 pN if F1/2 ¼ 2 pN. If F1/2 ¼ 3 pN,

unstiffening begins when F� 2.25 pN, and so on. To put this

in perspective, we note that when F1/2 ¼ 5 pN, the Sp ex-

tension where unstiffening is first observed is at ;x/NLf �
0.8. The extension of Sp in a junctional complex in the

membrane of an RBC at rest is often taken as (x/NLf) � 0.33

(12); this would suggest that unstiffening is expected to set in

at stretches corresponding to l � 2.4. In fact, inspection of

Fig. 3, a and b, reveals that unstiffening effectively begins at
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values of extension near x/NLf� 0.7–0.8 for all the values of

F1/2 considered. To put this in the perspective of the time-

dependent simulations described next, we recall from Eq. 4

that the unfolding rate is proportional to exp(FDxf/u/kBT).

But polymer-force-versus-extension relations of the type

used to describe Sp are such that as the extension approaches

the contour length, i.e., as x/NLf/1, F ; 1/e where e¼ 1 – x/

NLf. Thus, as e/0—that is, as the extension approaches the

contour length—the rate and probability of unfolding dra-

matically increase, in fact as exp(1/e) as e/0. As is seen in

what follows, this leads to the paradigm that ‘‘unfolding

occurs at critical values of extension’’ and is further seen to

be rather insensitive to other parameters in contrast. This

could provide a consistent rationale for the results of LD, as

noted above—assuming that enough time is elapsed during

LD’s loading of the RBC before the fluctuations are ob-

served.

Dynamic unfolding of a single Sp monomer via
Monte Carlo simulation

Monte Carlo simulations for single Sp were carried out via

the simple algorithm given earlier. In these, simulations after

the AFM forced unfolding observations of Rief et al. (4) and

Law et al. (5) were conducted as described next. The pa-

rameters used were based on the spectrin structure mentioned

above, as well as experimentally measured values (4,5). We

have: pu ¼ 0.8 nm, pf ¼ 2.5 nm, Lu ¼ 39 nm, Lf ¼ 5.3 nm,

kf/u(0) ¼ 3 3 10�5 s�1, and Dxf/u ¼ 2.1 nm. As shown in

Fig. 4, the computed force-versus-extension response clearly

demonstrates sawtooth characteristics consistent with ex-

perimental observations. Quantitatively, the Monte Carlo

results also compare well with experimental measurements.

According to the AFM measurements by Rief et al. (4), the

average unfolding force is ;27 pN (at _x¼ 0.08 mm/s), and 32

pN (at _x ¼ 0.8 mm/s) (measured from Fig. 7 in (4)). These

measurements are close to our Monte Carlo simulations,

which predict that at the two stretching rates, the numerical

results are 26 pN (with a standard deviation of 3.8 pN) and

31.9 pN (with a standard deviation of 3 pN), respectively. In

addition, according to the Monte Carlo simulations the av-

erage peak-to-peak distances in the force-versus-extension

curve are 29.8 nm (at _x ¼ 0.08 mm/s, with a standard devi-

ation of 6.5 nm), and 30.7 nm (at _x¼ 0.8 mm/s, with a

standard deviation of 4.8 nm). As noted, these levels are

consistent with those observed by Rief et al. (31.7 nm).

Sensitivity studies were performed with respect to key

parameters including the persistence and activation lengths.

Results for the effects of varying Dxf/u, kf/u(0), pf, and _x
are summarized in Fig. 5.

As expected, the effect of increasing the activation length

on the observed unfolding force levels is to decrease the force

peak levels with increasing Dxf/u (Fig. 5 a). In fact, since the

force and activation length appear in the rate relations as the

product FDxf/u, we expect that the sensitivity curve may

be of the form FDxf/u ¼ constant; in fact, the relation

FDxf/u � 60 describes the curve well. The observed stretch

at unfolding is, in contrast, markedly insensitive to varying

Dxf/u, as shown in Fig. 5 a. Instead, we observed that un-

folding occurred when x � 0.975NLf ; the plotted standard

deviation in the values of stretch indicates how insensitive the

value of unfolding stretch is to Dxf/u. The effects of varying

persistence length, stretching rate _x; and kf/u(0) on the un-

folding force and extension were explored via similar simu-

lations as described next.

Fig. 5 b shows the effect of the rate constant kf/u(0) on the

unfolding force and the stretch at unfolding, respectively. As

seen earlier with respect to sensitivity to activation length, the

stretch at unfolding is insensitive to parameters that directly

affect the transition rate. Unfolding is seen to occur when x�
0.96NLf. The force at unfolding is dependent on activation

length and this dependence may be approximately described

by setting kf/u(0) exp(FDxf/u)¼ constant. The accuracy of

such an approach to scaling this dependence is not as high as

found earlier but does provide a reasonable guideline. The

dependence on persistence length, pf, is shown in Fig. 5 c. In

this case, both the unfolding force and the stretch at unfolding

are seen to be sensitive to pf, since the tension generated

within an Sp is inversely dependent on persistence length for

a given stretch. Nonetheless, it is found that over the full

range of pf studied (see 0.5 nm # pf # 10 nm), the stretch at

unfolding varies only over the range 0.85NLf # x # 0.99 NLf.

Particularly revealing is the dependence of the average

unfolding force and the stretch at unfolding on the rate of

stretching, _x; shown in Fig. 5 d. The observed rate depen-

dence of the unfolding force follows from what has been said

earlier. Fig. 5 d, however, provides additional evidence for

the validity of the paradigm of a critical stretch at unfolding;

here again it is observed via the simulations that unfolding

occurs, regardless of _x; when x � 0.96NLf, at least for the

FIGURE 4 Monte Carlo prediction of the force versus extension of an Sp

with 19 repeats at different stretching rates. Also plotted is the equilibrium

solution ( _x� 0).
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range of stretching rates included in the figure. We note,

however, that for rates _x / 0, the stretch at unfolding will

decrease further and eventually toward values more like x ;

0.76NLf as discussed in connection with Fig. 3.

In the perspective of the dynamic deformation of a RBC

membrane skeleton at which the Sp segments would be ex-

pected to unfold, we note first that in the ‘‘rest (or natural)

state,’’ an Sp dimer is stretched to the end-to-end lengths in

the range 30 nm # x0 # 44 nm (13). As it was seen that

unfolding occurs when x / 0.9NLf, this means that that the

expected stretch at unfolding is in the expected range 2 # l # 3.

In the example simulations described next, x0 is taken as x0�
40 nm.

Quasi-static and dynamic shearing of a single JC

In the following simulations, we will apply our constitutive

model and examine the shearing deformation of a single JC in

the membrane of an erythrocyte.

Unlike the complicated three-dimensional cytoskeletons

of other cells, a mature human erythrocyte has only a thin (yet

three-dimensional) skeletal protein network beneath the lipid

bilayer. The network is composed of several major proteins:

a- and b-spectrins, ankyrin, band 3, protein 4.1, protein 4.2,

and actin, as well as some minor proteins such as myosin,

tropomyosin, and tropomodulin (E-Tmod). Structurally, the

network is organized into ;33,000 repeating units (29–31).

Each basic repeating unit is called a junctional complex (JC),

including an actin protofilament, up to six pairs of ab het-

erodimers, and suspension complexes that tether the JC to the

lipid bilayer. Based upon a three-dimensional model of the

JC (32,33), we have developed a hybrid model to simulate the

fluid-structure interactions involved in the dynamics of the

JC and its coupling with the lipid bilayer (17). This model

combines a Brownian-dynamics model of the protofilament,

a Fourier-Space-Brownian-Dynamics (FSBD) model of the

lipid bilayer (34,35), and a WLC model of the Sp dimers (36).

In the following, we outline the basic assumptions and the

mathematical formulations of this hybrid model.

Hybrid modeling of a JC coupled with its
lipid bilayer

As shown in Fig. 6, we consider the dynamic response of a

single JC, containing six long ab spectrin dimers radiating

from a central short actin protofilament, six suspension

complexes (SC) (including ankyrin, band 3, and protein 4.2),

and secondary linkages between the actin protofilament and

the lipid bilayer via protein 4.1 and the transmembrane

glycophorin C.

In the hybrid model, the actin protofilament is modeled as a

rigid circular cylinder with length 35.75 nm and radius 4.5

nm (32,33). The Sps are modeled as entropic springs. The

secondary linkages are modeled as linear springs. The heav-

ing motion h of the lipid bilayer is governed by the nonlocal

Langevin equation,

@hðX; tÞ
@t

¼
Z Z

dXLðX� X9Þ½�kc=
4hðX9; tÞ

1 s=
2
hðX9; tÞ1 FsðX9; tÞ1 zðX9; tÞ�; (23)

where X ¼ (X, Y) is the horizontal position vector in a global

space-fixed Euler coordinate system (X, Y, Z) (see Fig. 6).

FIGURE 5 Effects of variations in (a) Dxf/u, (b)

kf/u(0), (c) pf, and (d) _x to the unfolding force (in pN)

and the amount of stretch where the unfolding occurs

(normalized by NLf). While changing one parameter, the

other parameters are kept as: pu ¼ 0.8 nm, pf ¼ 2.5 nm,

Lu¼ 39 nm, Lf¼ 5.3 nm, kf/u(0)¼ 3 3 10�5 s�1, Dxf/u¼
2.1 nm, and _x¼ 0.8 mm/s.
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The X,Y plane corresponds to the undisturbed lipid bilayer,

and Z points toward the JC. L(X – X9)¼ 1/8phjX – X9j is the

diagonal component of the Oseen hydrodynamic tensor, h is

the dynamic viscosity of the surrounding fluid, and kc the

bending modulus of the bilayer (so that �kc=
4h is a force

imposed on the lipid bilayer due to bending). Similarly, due

to the existing tension, s, there is an induced force s=2h in

the bilayer. Following our previous work, we choose s ¼
10�4 N/m so that the bending and the pretension contribute

equally to the deformation of the bilayer. The values Fs(X9, t)
and z(X9, t) are the interaction (steric) force and the random

thermal fluctuation force, respectively (all forces are mea-

sured per unit area of the bilayer). A detailed description of

these forces is found in Zhu et al. (17).

In this analysis, our focus is on membrane fluctuations

with wavelengths comparable to or smaller than the size of a

single JC (;100 nm). Fluctuations with larger wavelengths

(e.g., 0.1–1 mm) were studied by using a coarse-grained

model assuming that the membrane skeleton behaves as a

rigid shell (37); a similar model has been applied to examine

correlations between skeleton defects and membrane fluctu-

ation (38). The skeleton was found to have a dual effect. First,

its presence imposes an overall confinement that restricts the

elevation of the bilayer. This effect was conveniently mod-

eled by replacing Fs in Eq. 23 with a harmonic potential.

Second, the skeleton increases the tension inside the bilayer

by two orders of magnitude, as confirmed later by measure-

ments of membrane fluctuations using an optical interfero-

metry technique (39).

The motion of the protofilament is described using an

Euler-Lagrangian dual-coordinate system, including the

Euler coordinate system (X, Y, Z) defined above, and a local

actin-fixed Lagrangian reference frame (l1, l2, l3). The origin

of the Lagrangian coordinate system is at the center of the

protofilament, l1 is tangential to the protofilament aligned

toward the pointed end capped by E-Tmod, and both l2 and l3

are perpendicular to l1. The transformation between the Euler

coordinate system and the Lagrangian coordinate system is

performed through a robust Euler parameter approach, which

eliminates the well-known singularity of the more conven-

tional Euler angle method.

A Sp dimer connects with the protofilament near its tail end

at the b-spectrin binding site (32). In the Lagrangian coor-

dinate system (l1, l2, l3), these binding sites on the surface of

the protofilament are given in Zhu et al. (17). The other end of

the Sp connects to the lipid bilayer through a SC, modeled as

a mobile point inside the bilayer. The X, Y position of a SC

within the lipid bilayer (the horizontal motion) is either fixed

(in equilibrium simulations), or prescribed (in dynamic sim-

ulations). It then follows the heaving motion of the bilayer.

Due to the small length scale of the problem, the inertia of

the protofilament is negligible so that its motion is deter-

mined by the balance among the hydrodynamic viscous drag

exerted by the surrounding fluid, the Brownian force/

moment, F(z), M(z), the force and moment exerted by Sp, F(s),

M(s), and the repulsive force/moment due to its interaction

with the lipid bilayer, F(b), M(b). Measured in the Lagrangian

coordinate system, its translational velocity (u1, u2, u3) and

rotational velocity (v1, v2, v3) are thus given as

ui ¼
F
ðsÞ
i 1 F

ðbÞ
i 1 F

ðzÞ
i

Di

;vi ¼
M
ðsÞ
i 1 M

ðbÞ
i 1 M

ðzÞ
i

DMi

; i ¼ 1; 2; 3;

(24)

where D1 is the tangential drag coefficient along the proto-

filament and D2 ¼ D3 are the normal drag coefficients. DM1,

DM2, and DM3 are the drag coefficients associated with ro-

tations around the l1, l2, and l3 axes, respectively. The exact

value of these coefficients are obtained by using the Stokeslet

approach (40) and the slender body approximation (41).

Equation 23 is solved by using an efficient FSBD algo-

rithm. It is then coupled with the protofilament whose motion

is described by Eq. 24. The details of the FSBD method, as

well as the bilayer-protofilament interaction (including the

parameters that characterize the intensity of this interaction),

are given in Zhu et al. (17) and are thus skipped.

In our model, we replace the WLC model for the force-

extension relation of an Sp dimer used in the previous study

with the constitutive relation incorporating unfolding be-

havior as discussed before. A difficulty is that it is not

straightforward to adopt the a (or b) monomer constitutive

model developed above for simulation of ab heterodimers.

Apparently, the coiled-coil a- and b-subunits in a hetero-

dimer are arranged as parallel springs. The detailed config-

uration of this structure (e.g., the different contour lengths of

a- and b-subunits) suggests that it is quite unlikely that the

extension force is distributed equally between the two sub-

units. A possible scenario is that during extension one of the

subunits bears the bulk of the force until it unfolds. The un-

folding will then trigger a force redistribution so that the

mechanical loading may be shifted between the two subunits

FIGURE 6 Schematic of a single JC unit coupled with its lipid bilayer.

One end of the protofilament (the pointed end) is capped by E-Tmod and is

marked by an asterisk.
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alternatively. This process is further complicated by the ex-

istence of side-bonds between the subunits. A comprehensive

modeling of the Sp dimer in large deformations thus requires

extensive studies via AFM, MD, or other techniques. Until

such a model is available, we will use a simplified approach

by assuming that the heterodimer behaves similarly to a

monomer with some difference in kinetic parameters. In this

approach, we choose most of the parameters to be consistent

with those of the a- or b-spectrin monomers as given before.

For our JC model to yield a prediction of the shear stiffness

consistent with the reported value in the literature (see e.g.,

(42–44)), we use pf ¼ 8 nm. In addition, we assume F1/2 ¼
5 pN, pu¼ 0.8 nm, and the total number of repeats to be N¼
Nf 1 Nu¼ 19. It is helpful to note that although the pf we use

here is much larger than the one which yields best predictions

of the unfolding force (pf ¼ 2.5 nm), it is still within a rea-

sonable range since the unfolding force is relatively insen-

sitive with respect to pf according to our tests (see Fig. 5 c). It

is further supported by the fact that the persistence lengths of

each subunit in a heterodimer should be larger than those of a

standalone subunit owing to the interaction between the two

subunits which imposes a confinement on the fluctuations. It

therefore is consistent with the scenario that at any given

moment, the mechanical loading is sustained mostly by one

subunit.

We also assume herein that that all repeats have identical

unfolding/refolding characteristics. In fact, the evidence is

that this is an approximation and that the various repeats

along an Sp have different levels of stability (18,26,27). The

repeats studied by forced AFM are more likely among the

more stable and thus a full accounting for variable repeat

stability will add additional precision to the model. Here we

explore a range of parameter space to probe the effect of

varying repeat stability.

The simplification of the heterodimer configuration may

affect the accuracy of our model in describing the exact

sequence of unfolding, and consequently the mechanical

properties of the JC during dynamic deformations (see Fig.

8). However, based upon our discovery that unfolding starts

whenever the Sp is stretched close to its fully folded contour

length, it is reasonable to conclude that the simplified model

will provide accurate predictions of the start of unfolding and

unstiffening as discussed later, as well as the equilibrium

mechanical responses.

Another important difference between this model and the

one described in Zhu et al. (17) is that the secondary JC-

bilayer linkages, consisting of six pairs of glycophorin C and

protein 4.1, are now included and modeled as six linear

springs with spring constant ks. The top end of each spring is

attached to the protofilament at the same location as the Sp-

protofilament attachment (45). The bottom end is embedded

in the lipid bilayer and follows the heaving motion of the

bilayer. In addition, the bottom end (corresponding to gly-

cophorin C) is modeled as horizontally mobile with mobility

ms. In the following simulations, we assume that ks¼ 10 mN/m,

which effectively limits the pitch angle to be ,3� (without

thermal fluctuations) in all the cases considered in our study.

The choice of ms is based upon the following estimation.

Although glycophorin C (with one transmembrane domain)

is a much smaller molecule than band 3 (with multiple

transmembrane domains), its mobility should be just a little

larger than that of band 3 owing to the logarithmic relation

between the mobility of a membrane-embedded molecule

and its size (46). The mobility of band 3 within the bilayer has

been estimated to be 1.28 3 108 m/Ns based on its short-

range diffusivity (35). Thus in our simulations we choose

ms ¼ 2 3 108 m/Ns. For more accurate simulations, precise

values of ks and ms are required, which unfortunately are not

currently available.

In our previous study, we applied two different modes of

Sp-protofilament junction, that is, a point attachment and a

molecular wraparound type of connection. In a point-

attachment junction, Sp dimers are connected to the proto-

filament at a single point corresponding to the proposed

b-spectrin binding site on the G actin (32). Correspondingly,

in our numerical model the six Sps are pinned at the outer

surface of the circular cylinder representing the protofila-

ment. In a wraparound junction, on the other hand, the a- and

b-spectrins branch and reconnect at the backside of the

protofilament, providing a possible mechanism of torque

mitigation. In terms of JC response, the most pronounced

difference between the point-attachment junction and the

wraparound junction is that the latter effectively limits the

pitch angle of the protofilament and is therefore more con-

sistent with experiments (47,48). We see herein that even if

the point-attachment junction is applied, by including the

secondary linkages the pitch angle of the protofilament is also

restricted. The computations hereafter are performed with the

point-attachment model.

Equilibrium and dynamic response of the JC to
in-plane deformations

We assume that in its natural state the six SCs in a JC form a

regular hexagon with a radius of 40 nm (Fig. 7 a). A general

in-plane stretch of the JC, corresponding to a topology-con-

serving redeployment of the SCs within the lipid bilayer, can

be represented as a stretching along an arbitrary axis within

the X,Y plane (denoted as axis 1) by a ratio l1, plus a

stretching by a ratio l2 along an second axis which also lies

within the X,Y plane and is normal to axis 1. The angle be-

tween axis 1 and the X axis, measured counterclockwise,

is defined as the deformation angle. Two special cases, an

equibiaxial deformation and an anisotropic deformation,

have been considered. The equibiaxial deformation refers to

an in-plane stretching in which l1 ¼ l2¼ l. The anisotropic

deformation corresponds to an area-preserving shearing, i.e.,

l1¼ 1/l2¼ l (Fig. 7 b). Our current modeling efforts will be

focused on anisotropic deformations with deformation angle

0�. To relate the deformation ratio l to the Sp extension
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x/NLf, we note that at the natural state (l¼ 1), the extensions

of Sp1 to Sp6 are, respectively, 0.46, 0.45, 0.40, 0.39, 0.36,

and 0.36. As l is increased, Sp1 and Sp2 are shortened and the

other four are elongated. For example, at l ¼ 3, the exten-

sions of Sp3 to Sp6 are all ;1.0, close to the starting point of

unfolding as shown in Fig. 3.

The shear modulus of the JC undergoing finite deforma-

tions is calculated by using the method described by Evans

and Skalak (49) based upon the strain energy F(s) stored in

the Sp dimers. In this approach, an arbitrary deformation is

characterized by two independent deformation parameters

a ¼ l1l2 – 1 and b ¼ ðl2
11l2

2Þ=ð2l1l2Þ – 1. Here a rep-

resents area change, and b a change of aspect ratio or ec-

centricity. The shear modulus, m, is then given as

m ¼ 1

A0

@F
ðsÞ

@b

����
a¼0

; (25)

where A0 is the reference area, which is the projected area

occupied by the JC (the hexagon). The value a ¼ 0 corre-

sponds to the anisotropic deformation. The potential energy

stored inside each Sp dimer is calculated by integrating its

internal tension timing the extension, starting from the

natural state. F(s) is then evaluated by summing up the total

potential energy in the six dimers.

In the following, we consider a shearing process, in which

the JC undergoes an anisotropic deformation starting from its

natural state (l¼ 1) to a deformed state (l¼ 4) within a time

interval Ts. To achieve this, we prescribe the X,Y locations of

the six SCs as functions of time so that l increases linearly

with time from 1 to 4.

Fig. 8 shows results for the attitude of the protofilament,

i.e., the yaw angle (see the inset of Fig. 6 for a definition), and

the shear modulus m of a JC in an anisotropic extension. No

thermal fluctuations are included in the simulation. As shown

in Fig. 8 a, in a quasistatic simulation (Ts/N), a bifurcation

exists over the whole range of l. One of the equilibrium states

is characterized by a yaw angle at ;70� (state 1) and the other

at �70� (state 2). As we have illustrated in Zhu et al. (17),

with thermal fluctuations included, the existence of bifurca-

tion may cause mode switching (the frequent switching of JC

configuration between the two equilibrium states). Our cur-

rent results, as well as the results reported in Zhu et al. (17)

indicate that the two equilibrium states are often approxi-

mately symmetric with respect to axis 1 (the stretching axis).

Therefore, while considering the thermal fluctuation of a

protofilament-attached bead as discussed below, this mode

switching is expected to contribute to the motion of the bead

along axis 2 (the compressing axis). The exact contribution

depends on, for example, the location on the protofilament

where the bead is mounted.

A dynamic simulation with Ts¼ 0.01 s yields a result close

to the equilibrium state 1 until l¼ 2.7. Beyond that, owing to

the occurrence of unfolding, the quasistatic simulation pre-

dicts a smoothly reducing yaw angle, while abrupt changes

in yaw angle are observed in the dynamic simulation. The

shear modulus m is plotted in Fig. 8 b. For small deformations

(l ; 1), both simulations predict that m is ;5–10 mN/m, a

value consistent with other studies. Strain-stiffening is ob-

served up to l ; 2.7. At a larger stretching, and assuming an

equilibrium-force-versus-extension response applies, how-

ever, the shear stiffness reaches a plateau. As seen from Eq.

25, the shear stiffness is determined by the slope of the strain

energy Fs. Due to the occurrence of unfolding, if l . 2.7, the

tension inside an Sp reaches a almost steady value (see

Fig. 3), while the elastic energy inside the Sp increases lin-

early with extension. Correspondingly, the derivative of Fs

with respect to l becomes nearly constant. With respect

to the eccentricity parameter b, however, the derivative

decreases and thus a reduction in m is indeed observed.

FIGURE 7 (a) The natural state, (b) an anisotropically deformed state,

and (c) an idealized picture of a single JC.

FIGURE 8 Equilibrium (quasistatic) and dynamic re-

sponse (Ts ¼ 0.01 s) of a single JC when it is stretched

continuously from its natural state (l ¼ 1) to an aniso-

tropically deformed state (l ¼ 4). The plotted are (a) the

yaw angle and (b) the shear stiffness m. The pitch angle is

,3� in all cases.
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Additional discussion about this strain-unstiffening behavior

is provided in the Discussion and Conclusions.

In the same figure, we also show m predicted by the dy-

namic simulation, in which a sawtooth-like curve is observed

and a peak value of 250 mN/m, much larger than the maxi-

mum value in the equilibrium stretching (;45 mN/m), is

recorded. Our dynamic simulation indicates that Sp5 unfolds

first at l ¼ 2.97. After that, the system experiences a se-

quence of unfolding events, occurring at l ¼ 3.0 (Sp3), 3.41

(Sp4, Sp6), 3.85 (Sp4), and 3.9 (Sp6). After each unfolding

event, significant variations and redistribution of tension in-

side the six Sp are observed (Fig. 9 b). The unfolding of one

Sp usually leads to an abrupt plunge in tension both in itself

and in other Sp.

Cases with different deformation angles have also been

examined. The results are in general similar to those pre-

sented above. However, the sequence of unfolding was found

to be case-dependent. For instance, with a deformation angle

of 90�, in a dynamic anisotropic deformation from l¼ 1 to 4

within 0.01 s, the first unfolding occurs at l¼ 2.6 within Sp1,

followed by Sp2 (l¼ 3), Sp1 (l¼ 3.4), and Sp2 (l¼ 3.7). In

addition, we inspected the effect of deformation time Ts. By

increasing Ts, the peak tensions inside the Sp dimers as well

as the peak values of the shear modulus are decreased, so that

the results are closer to the equilibrium predictions.

Thermal fluctuation of a JC-attached bead

In the following, we apply the single-JC model and numer-

ically investigate the thermal oscillation of a spherical bead

attached to the protofilament (similar to the experiment done

by LD as described in the Introduction). The intention here

was to determine how Sp unfolding affects the magnitude of

bead fluctuation, which is measurable through experiments.

In a broader context, the analysis and simulations provide

vital underpinning for future study via microrheology meth-

ods for measuring response that, in fact, rely on monitoring

membrane motion as seen by marker movements either in

response to thermal fluctuations or other external stimulation.

In our simulation, a bead of diameter D ¼ 40 nm is con-

nected to the pointed end of the protofilament through a stiff

spring with spring constant 103 mN/m. The motion of the

bead is determined by the balance among the restoring force

from the spring, the fluid drag (with drag coefficient 3phD),

FIGURE 9 Thermal vibration of an

protofilament-attached bead at (a) l ¼
1, (b) l ¼ 2, (c) l ¼ 3, and (d) l ¼ 4.
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and a random thermal fluctuation force following the dissi-

pation-fluctuation law. By using the equilibrium constitutive

relation for the Sp, the thermal vibration of the bead is re-

corded, from which the standard deviation is extracted. We

note that by attaching the bead with a stiff spring we limit the

fluctuation amplitude to what is allowed by the stiffness of

the skeleton; otherwise the stiffness of this spring has to be

considered in keff in Eq. 26.

To put the results to be now presented in perspective, we

use a result obtained by LD via the analysis found in Chaikin

and Lubensky (50), for the mean-square fluctuation ampli-

tude, Æj2æ versus stiffness. This is

keff ¼ kBT
lnðco=ciÞ

2p
Æj2æ�1

; (26)

where j2 ¼ j2
X1j2

Y; as explained below, is the square-mag-

nitude of the fluctuation amplitude vector with components

jX and jY (i.e., the displacements from the mean position in X
and Y directions). In Eq. 26, ci and co are inner and outer

cutoff ranges for fluctuation wavelengths. We take co to be on

the order of the radius of a JC in its natural state (;40 nm),

and ci to be on the order of a typical persistent length (;8

nm); thus, ln(co/ci)/2p � 0.26. The effective stiffness from

Chaikin and Lubensky (50) is keff ¼ m(k 1 m)/(k 1 2m),

where k is the area modulus. Now, if the skeleton is thought

to be mobile in the lipid membrane, reasonable because the

SCs and glycophorin are mobile, we take k to be the area

modulus of the skeleton itself and therefore k� 2m, as model

studies have typically shown (e.g., (12)). Thus, keff � 3/4m.

Then if m � 5–10 mN/m, as our model studies and experi-

ments have found, the expectation is that Æj2æ � 140–280

nm2. In fact, we find that for a JC in its natural state, Æj2æ �
142 nm2, as presented just below.

Fig. 9 displays the thermal fluctuations of the bead in both

the X (stretching) and Y (compressing) directions at l ¼ 1,

l ¼ 2, l ¼ 3, and l ¼ 4. The corresponding deviations are

ðÆj2
Xæ1=2; Æj2

Yæ1=2Þ ¼ (9.8 nm, 6.8 nm), (8.5 nm, 7.6 nm), (4.6

nm, 10.4 nm), and (7.4 nm, 11.4 nm), respectively. The de-

crease of Æj2
Xæ until l ¼ 3 demonstrates the strain-stiffening

before unfolding (see Fig. 8 b). The strain-unstiffening as a

result of Sp unfolding leads to the increase in Æj2
Xæ at l ¼ 4.

The variation of Æj2
Yæ1=2; on the other hand, cannot be ex-

plained solely by the change in skeleton stiffness. Instead, as

we observe from Fig. 9, b–d, the onset of mode switching

contributes to the increase of oscillation in Y direction. This

finding highlights the importance of including the detailed

three-dimensional structure of the network. Indeed, we cre-

ated a simplified model by ignoring the protofilament and

connecting the bead directly to the Sp dimers. With

this setup, our simulations show that the variation of Æj2
Xæ1=2

is consistent with the three-dimensional model predic-

tion, while Æj2
Yæ1=2

decreases from ;8 nm at l ¼ 1 to ;5 nm

at l ¼ 3, where it reaches a steady value. It is also necessary

to note that the effect of mode switching on Æj2
Yæ1=2 strongly

depends on the configuration, i.e., the exact location of the

bead-protofilament attachment. For example, if the connec-

tion point is at the center of the protofilament instead of the

pointed end, our simulations show that Æj2
Yæ1=2 is close to the

prediction of the simplified model.

DISCUSSION AND CONCLUSIONS

Our dynamic and equilibrium analysis of Sp unfolding has

suggested a new paradigm of a critical stretch, xc, for un-

folding. The forces existent within an Sp at unfolding are, as

shown, dependent on stretching rate, yet at most rates of

biological interest appreciable unfolding occurs only when

the Sp extension is near, say, x / 0.8 – 0.9L, where L ¼ Nf

Lf 1 NuLu is the effective contour length of the partially

folded/unfolded chain. For RBC skeletons stretched very

slowly, this implies that appreciable unfolding is expected at

principal stretches as low as, say, l / 2, and certainly when

the stretch is near l / 2.5–3. The RBC skeleton, impor-

tantly, is routinely subject to stretches within this range and

thus we clearly expect that Sp unfolding will be common

events. The stiffness of the membrane skeleton is thereby

apparently adaptive and, in a way, self-protective against

damage from overstretching.

By employing a three-dimensional model of a single JC

within the membrane skeleton coupled with the lipid bilayer,

we simulated the anisotropic deformation of the skeleton and

examined the effect of Sp unfolding on the shear modulus, m.

Strain-stiffening, i.e., the monotonous increase in shear mo-

dulus with the deformation ratio l, is observed up until l ;

2.7. If the deformation ratio is further increased, however,

strain-unstiffening, manifested in the plateauing and the slow

decreasing of m in equilibrium deformations, or the abrupt

plunging of m in dynamic deformations, are observed. Each

plunge in m observed in the dynamic case corresponds to the

occurrence of an unfolding event in one (or more than one)

Sp. Unstiffening of the membrane skeleton, although ex-

pected to occur at a stretch l . 2 as indicated by Fig. 8 b, is

expected to be modest. Perspective on this may be obtained

by first using a result of Dao et al. (12) who represented the

stress, via the virial theorem, within a regular hexagonal

skeleton, such as drawn in Fig. 7 and in particular sketched as

an idealized JC in Fig. 7 c, as

sij ¼
1

2A

FðaÞ
a

aiaj 1
FðbÞ

b
bibj 1

FðcÞ
c

cicj

� �
; i; j ¼ 1; 2:

(27)

Here, F(x) is the force-versus-extension relation used to

describe the tension within a stretched Sp and a, b, and c
represent the three vector Sp segments (tetramers) that exist

on average per JC; A is interpreted as 4/3 the area of the JC

unit as considered here, and a, b, and c represent the mag-

nitudes of a, b, and c, respectively. Dao et al. (12) include a

steric repulsive term that is unimportant here where we

impose only an area preserving pure shear described by the

deformation gradient
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F ¼ l 0

0 1=l

� �
; (28)

and where the components of F are referred to the x1, x2 axes

shown in Fig. 7 c. Here the stretch, l, is set to unity when the

JC is in an initial or rest state where, with reference to Fig. 3,

x/NLf � 0.4 as estimated, for example, in Dao et al. (12). At

sufficiently large stretches, say l . 2 or so, the in-plane

principle stresses obtained from Eq. 27 are dominated by

terms of the form s1 – s2 ; lg(l), or perhaps like s1 – s2 ;

lg(l – 1), depending on the form of the force-versus-

extension law used. To see this, note that the stretch per unit

length along a typical vector segment such as a is given as

l
2ðaÞ ¼

l
2
a

2

1;0 1 1=l
2
a

2

2;0

a
2

0

; (29)

where a0¼ (a1, 0, a2, 0) is the vector a in an initial state. As l

becomes large, l(a) / lja1, 0j and a / lja1, 0j, ai / lai, 0.

This then implies that the maximum shear stress, t ¼
1/2js1 – s2j, is of that same form (viz. lg(l)). We now recall

that the shear modulus we define may be expressed via the

relation (49)

t ¼ m

2l
2

1l
2

2

jl2

1 � l
2

2j; (30)

where the conjugate shear strain is g ¼ 1=4ðl2
1 � l2

2Þ: For

the pure shear being considered, of course, l1l2 ¼ 1. Thus

dimensionally we have, at sufficiently large stretch,

m ;
lgðlÞ

l
2 � 1=l

2 ;
l

3
gðlÞ

l
4 � 1

		!l[ gðlÞ
l
: (31)

To acquire the desired perspective, note that this also implies

@m

@l
;

1

l
g9ðlÞ � gðlÞ

l

� �
: (32)

For the simplest linear spring model for an Sp, the result

implies that at large stretches m becomes stationary, although

during modest stretches it will undergo an increase as pre-

vious studies have documented (e.g., (10)). If, on the other

hand, g(l) is hyperlinear, m may display continued stiffening

as shown by others who use entropic Sp models (e.g., (12)).

In our case, g(l) displays a transition from hyperlinear to

quasilinear behavior as shown in Fig. 3. Indeed the term in

brackets becomes negative after the transition but only at

values of l sufficiently large to ensure that the magnitude of

the negative slope is modest, which helps explain the modest

effect of Sp unstiffening on predicted bead fluctuation am-

plitude. As a confirmation of the above dimensional analysis,

we assume that l¼ 3 is sufficiently large to apply Eq. 32 with

confidence. We then set the value of a constant, z, in the

relation m � zg(l)/l by equating zg(l)/l ¼ 45 mN/m, the

latter value obtained at l ¼ 3 from the quasistatic prediction

for m in Fig. 8 b; thus z� 45/(g(l)/l) m�1. Then, and again at

l ¼ 3, @m/@l � 45/(g(l)/l)(g9/l – g/l)l¼3. Now appealing

to Fig. 3 b we estimate g9/f � 0.2 at l ¼ 3. Thus we estimate

(@m/@l)l¼3 � 6 mN/m. In fact, the drop in m from l ¼ 3 to

l ¼ 4 shown in Fig. 8 b is ;7 mN/m, consistent with this

estimate.

To further investigate the possibility that the unfolding

might have been the cause of the reported deformation-in-

duced increase in the thermal fluctuation of a skeleton-at-

tached bead, we applied a single-JC model and carried out

simulations of a bead connected to the protofilament. Our

result does indicate that the unfolding causes increase in the

amplitude of fluctuation as a result of reduced skeleton stiff-

ness. The effect, however, is not large enough to explain the

observed twofold increase (13). Moreover, the unfolding

occurs at l ; 3, while in the experiment the bead was located

at a position with l ; 2. Mode switching, the transition of the

protofilament orientation between two equilibrium states, can

increase the fluctuation in the compressing direction. How-

ever, mode switching does not have a considerable effect

on the fluctuation in the stretching direction. We therefore

conclude that the increased bead fluctuation cannot be solely

interpreted by Sp unfolding or mode switching. Other factors,

such as inter-protein interactions, may then play a pivotal role

on Sp network stiffness, and may contribute to the phe-

nomenon discussed above. We explore this briefly below.

Sp dimers within the skeleton network assemble via as-

sociation at the N-terminal region of the a-subunit with the

C-terminal region of the b-subunit. The vital role of this

association has been demonstrated by various hereditary

hemolytic anemia causing mutations that perturb tetramer

formation (e.g., (51–54)). The moderate affinity of the head-

to-head association between a and b is dynamic in vivo and

will be affected by Sp tension. The disassociation process

may be written as

D2
		! 		k 1

k�
2D; (33)

where D2 stands for a tetramer and D the two dimers a 1 b.

The association constant, Ka, has been measured in the range

Ka � 1 – 3 3 105 M�1 at 37�C (53,55). (Note that the as-

sociation constant is traditionally written for the tetramer

formation reaction, i.e., the reverse of the disassociation

reaction of Eq. 33.) With these definitions we have that

Ka ¼
k�
k1

: (34)

DeSilva et al. (53) report a value of k1 ¼ 3.4 3 10�4 s�1 at

23�. Ungewickell and Gratzer (55) report the value k1 ¼
1.6 3 10�3 s�1 at 37�.

Various measurements of Ka, e.g., (53,55), are consistent

to within factors of 2–3, as are the measured rate constants.

To assess the possibility of head-to-head disassociation af-

fecting skeleton response, it is necessary to evaluate the

tension affected term exp (FDxd/kBT) where Dxd is an acti-

vation length characterizing the head-to-head dissociation.

With the tension measured in pN, F̃; and the activation
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length, Dx̃d; in nm this factor is ;exp ðF̃Dx̃d=4Þ: Then, with

the tension force in the range of several pN and the activation

length of ;2-4 nm, the rates are in the range of 10�2 s�1, or

larger, and are clearly seen to be of possible importance. Data

that directly address forced Sp dimer-tetramer association/

disassociation are not available as yet. The results presented

by An et al. (14), however, suggest that tetramer dissociation

is promoted by even modest imposed levels of shear stress. In

fact, when interpreted within the framework of our kinetic

descriptions, we would estimate Dxd to be certainly .2 nm,

and most likely larger yet. An et al. (14) suggest, based on

their results, ‘‘. . . that rupture of spectrin tetramers is a likely

mechanism for the capacity of the membrane to adapt to very

large distortions.’’ Moreover, the apposition of the associa-

tion sites on the proteins attached to the membrane promotes

reassociation so that modest amounts of disassociation need

not cause a permanent remodeling of the network. In fact, that

association is promoted by the geometrical constraint of be-

ing attached to the membrane, within the network, was an

argument used in An et al. (14) to explain the preponderance

of tetramers in the rest state of the membrane despite the

relatively weak self-association in free solution, i.e., Ka� 1 –

3 3 105 M�1 at 37�C. The implication is that the membrane

skeleton undergoes a dynamic balance between head-to-head

disassociation and reformation. A shear deformation, even if

modest (within the range achievable in vivo), can disturb this

equilibrium in favor of local disassociation from tetramers to

dimers.

Our brief discussion of head-to-head Sp dimer disassoci-

ation certainly suggests that this may be another cause of

phenomena such as strain unstiffening in such entropic sys-

tems as the RBC skeleton. Indeed, as shown in Fig. 10, by

using the hybrid model our preliminary simulations show that

the stretched Sp dimers (i.e., Sp3 ; Sp6 in Fig. 7) are re-

moved at l ¼ 2, and the bead fluctuations are found to be

Æj2
Xæ1=2 ¼ 14.7 nm and Æj2

Yæ1=2 ¼ 8.3 nm. Note that Æj2
Xæ1=2

is

almost 50% larger than its value (9.8 nm) at the natural state

(l ¼ 1), even at this more modest level of stretch. This in-

dicates that large increases in thermal fluctuation in a sheared

membrane skeleton along the stretching direction are possi-

ble with progressive Sp dimer disassociation. As noted

above, the kinetics of head-to-head disassociation suggests

timescales for such events that are comparable to those of Sp

unfolding as demonstrated herein. Future analysis of the full

effects await further study. Whether head-to-head disasso-

ciation would be seen to be reversible upon Sp unfolding

remains to be seen, yet recent experiments (14) and model

results (15) suggest this is indeed so. If so, both unfolding and

disassociation would fit within a broader category of adaptive

mechanical response as recently described by Chaudhuri

et al. (56) for actin networks. Of course there, that is in (56),

the elasticity is not thought to be entirely entropic but rather

comprised of an interplay between entropic and enthalpic

(energetic), the latter manifested in the elastic buckling of

shorter actin filaments. The simulations of Li et al. (15), based

on a tethered bead model (e.g., akin to that of Boey et al. (57))

assumed a range of binding energies for the Sp head-to-head

connection. Indeed, when the binding energy was set suffi-

ciently low, the shear stiffness was reduced by factors near 2

at low to modest strains, at least under the conditions of shear

strain rate they imposed. At larger deformations the skeleton

were observed to become fluidlike. Under such circum-

stances, the amplitude of bead fluctuation would be expected

to indeed increase and eventually become diffusive.

Still another event that will cause a loss of stiffness in the

membrane is Sp-actin disassociation. Such events may be

described within the framework we have used here. Indeed, if

such disassociation occurs at a sufficiently high density, the

membrane’s response will become fluidlike; such transitions

in membrane behavior are in fact the topic of a forthcoming

report. We note, however, that in that case, evidence indicates

that direct metabolic energy input may help drive Sp-actin

disassociation. Such events are readily accounted for in our

kinetic models as direct reductions in the activation energy

for disassociation.

The perspective gained from the studies presented herein

demonstrates the most likely occurrence of Sp unfolding

during normal RBC deformation. The effect of unfolding on

membrane stiffness is seen, however, to be modest. The more

significant effect of unfolding perhaps lies in its role as a

remodeling phenomenon that mitigates the rise in tension

during large deformations. Our preliminary results of the ef-

fects of Sp tetramer disassociation suggest that dimer-tetramer

stability has a more pronounced influence on membrane

stiffness. Here two requirements exist for further progress.

The first is more direct experimental data on the role of stress

on disassociation; the results of An et al. (14) are clearly a

start in this direction. The second is the development of more

quantitative models for forced disassociation calibrated by

such data. The framework and model presented herein pro-

FIGURE 10 Thermal vibration of an

protofilament-attached bead attached

to a disassociated JC (with Sp3 ; Sp6

disconnected) at l ¼ 2.
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vides the quantitative capability to better interpret, and

design, experiments, such as those that probe membrane

dynamic motion, and to directly link such motion to the de-

tails of molecular connectivity.

As noted above, for simplicity, we have assumed that all

domain repeats have identical unfolding/refolding charac-

teristics. By accounting for the variable stability of different

repeats (18), it is possible that additional reductions in stiff-

ness may be displayed by our model. This refinement will

certainly be included in future study. Finally, we note that

the computational simulations presented here, based on our

molecular-detailed model for the JC units and their connec-

tivity to each other and the lipid bilayer, provide a valuable

capability to interpret experiment as we have done herein as

well as to ‘‘design-experiment’’—for example, those that

involve observations of the motion of attached markers. The

results presented here demonstrate that such motions, as

observed, are indeed influenced by many factors including

the details of attachment itself.
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