
Locomotive Mechanism of Physarum Plasmodia Based on Spatiotemporal
Analysis of Protoplasmic Streaming

Kenji Matsumoto,* Seiji Takagi,y and Toshiyuki Nakagakiyz

*Department of Mathematics, yResearch Institute of Electronic Sciences, and zCreative Research Initiative Sousei, Hokkaido University,
Sapporo, Japan

ABSTRACT We investigate how an amoeba mechanically moves its own center of gravity using the model organism Physarum
plasmodium. Time-dependent velocity fields of protoplasmic streaming over the whole plasmodia were measured with a particle
image velocimetry program developed for this work. Combining these data with measurements of the simultaneous movements of
the plasmodia revealed a simple physical mechanism of locomotion. The shuttle streaming of the protoplasm was not truly
symmetric due to the peristalsis-like movements of the plasmodium. This asymmetry meant that the transport capacity of the
stream was not equal in both directions, and a net forward displacement of the center of gravity resulted. The generality of this as a
mechanism for amoeboid locomotion is discussed.

INTRODUCTION

Amoebae form temporary structures for movement called

pseudopods. These deformed regions of the cell subsequently

disassemble, and the cell continues to form new pseudopods

while disassembling the old ones. Thus, amoeboid move-

ment is based on a continuous deformation of cell shape in-

duced by the motive force of the protoplasmic flow, which is

driven by osmotic and mechanical pressures. Because the

motive force drives the flow of protoplasm and deformation

of cell, amoeboid movement can be characterized by the

spatiotemporal variation of flow and deformation (1).

Amoeboid movement is associated with drastic changes in

cell shape. Studies naturally focus on what mechanical forces

are involved and how they are coordinated to move the mass

of the cell. In other words, the problem is to determine how

the locally generated forces are organized to move the entire

cell body.

The local force generation originates from contractile

proteins like actin and myosin. The stresses generated by

active contraction of actomyosin and osmotic pressures gen-

erated by depolymerizing actomyosin are possible sources of

force generation. In Amoeba proteus, one of the most widely

used model organisms for study on amoeboid movement, it

was reported that posterior regions of amoeba actively con-

tracted by consumption of ATP and pushed protoplasmic sol

forward (2–6). A contrasting theory was also proposed: na-

ked protoplasmic sol without any cell membrane showed the

ability to move; posterior parts were pulled forward by an-

terior regions where transitions of protoplasm from sol to gel

occur (2,6).

The above two theories seem contradictory, and each

theory is supported by experimental results. However, it is

possible that both mechanisms are involved simultaneously

in amoeboid motility. The relative importance of the two

mechanisms may vary with internal and external conditions.

Understanding the forces involved in amoeboid locomotion

is one of the classical problems of cell biology and continues

to be an active area of research. At this time, it is very loosely

accepted that high pressure generated in the posterior region

pushes protoplasm forward (7–9).

In addition to the cytological experiments discussed

above, techniques of molecular biology have been used to

understand actin-myosin dynamics and their role in pseu-

dopod extension and retraction. Visualizing the spatiotem-

poral variations of actin protein and associated molecules

gives dynamic images of cell movement. Based on these

experiments, various mechanisms for pseudopod formation

were proposed. Nonetheless, it is still an open question as to

how a whole cell can move. It is difficult to coordinate mea-

surements of the extension/retraction of pseudopodia with

spatial measurements of mass transport throughout the entire

cell body with sufficient resolution.

Here we consider the global problem of amoeboid move-

ment: how do amoebae organize these locally generated

forces to move their center of gravity? In this article, we

combine experimental measurement for mass transport and a

theoretical explanation for the observed phenomena to

identify the key processes involved in the displacement of the

mass of the cell.

The model organism used here is the plasmodia of the true

slime mold Physarum polycephalum, a common model or-

ganism for studying cell motility. The P. polycephalum plas-

modium is a giant protoplasmic aggregate that shows a wide

variety of cell behaviors. Its rhythmic contractions and

the resulting streaming of protoplasm have been well studied

from a cytological point of view (10–13). Recently, re-

searchers have detected patterns of locally self-sustained

rhythmic contraction associated with the cell’s behavior
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(14–21), implying that the streaming pattern is organized as a

single system throughout the cell.

Pattern formation of the rhythmic contractions is involved

in the coordination of local contractile activity and has been

considered from two viewpoints: first, the theory of so-called

coupled oscillator systems (22–28); and second, the theory of

complex viscoelastic matter (29–33). To unify these two

views, it is essential to clarify how the movement of the

plasmodium is generated by the spatiotemporal pattern of

contraction and streaming. Toward this goal, in this article we

make spatiotemporal measurements of the streaming velocity

and the body deformation and relate this to the movement of

the center of mass of the organism.

To relate the local transport to the displacement of the

center of mass, it is necessary to know the flow velocity at all

regions of cell to sufficient accuracy. For this purpose, we

develop a new technique for measuring the velocity field of

protoplasmic streaming through the entire body with a quasi-

two-dimensional extent using particle image velocimetry.

Although this technique was developed for Physarum, it has

the potential to be applied to other model systems of amoe-

boid movement.

When plasmodia are smaller than ;100–200 mm, proto-

plasmic streaming and contraction show no regular rhyth-

micity. These tiny plasmodia can move, but the speed of

movement is very small. When the size reaches 200–300 mm,

regular rhythmic contraction and streaming appear and the

locomotion speed is much faster than that of the smaller

plasmodia. The shape of the body becomes tadpolelike as

shown in Fig. 1 a. Thus, there is a critical size for the organism

to exhibit fast locomotion and organized rhythmic activity. In

our experiments, we studied organisms in the tadpole shape

that exhibit the fast locomotion.

Based on these experiments, we present a physical mech-

anism for amoeboid movement, focusing on displacement of

center of mass, in Physarum. The mechanism is proposed for

Physarum but it may be applicable to other model systems

such as Amoeba proteus, etc., and we discuss the generality of

the mechanism.

ORGANISM AND METHODS

Preparation of plasmodia for observation of
protoplasmic streaming and deformation of
cell shape

Plasmodia of P. polycephalum were grown on oat flakes for a few days in

troughs (35 3 25 cm2) under dim light. Tiny portions (,1 mm3) were cut

from the front tips of the plasmodia and placed on a plain agar plate. After

waiting for several hours until the plasmodial pieces were moving around

and had tubular shapes, portions of their tips were again removed, placed on

another agar plate, and cover glasses were placed over them. After standing

overnight, the fragments displayed amoeboid movement. Different samples

had different forms, but only those with a tadpolelike shape were used, as this

seemed to be the simplest structure permitting reasonable migration rates.

Each sample was pressed downward and squeezed by the weight of its

cover glass, and was sufficiently transparent for the protoplasm to be ob-

served with a microscope (type VH5000; Keyence, Tokyo, Japan). The

protoplasm was full of intracellular vesicles, and the thickness of the orga-

nisms remained relatively constant during amoeboid motion. The streaming

vesicles were markers yielding information on flow velocity. Microscopic

images were taken with a charge-coupled device camera and recorded as a

digital video (DV) movie.

FIGURE 1 The process of particle rec-

ognition and identification. All images are

captured from processed movies and at the

same frame in the movies. Blowups are

smoothed by the texture smoothing mech-

anism of OpenGL to ease the jaggyness. (a)

The original image converted to grayscale.

The smallest rectangle indicates the posi-

tion of blowups in panels b–d and Fig. 2, a

and b. The middle rectangle indicates the

position of blowups in Fig. 2, c and d. The

largest rectangle indicates the position of

Fig. 9. (b) Blowup of the enhanced image.

Darker pixels are now occupied by moving

particles and lighter pixels are previously

occupied but now free of particles. The

open polygons indicate the recognized

clusters. The smallest rectangles corre-

spond to one pixel. (c) Trajectories of the

center of gravity of the recognized clusters.

(d) The velocity of recognized clusters. To

avoid the misidentification, the velocity is

calculated from last four trajectory points.

The underneath plasmodium image is

blowup of the original image.
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Measurement of velocity field of protoplasmic
streaming by particle image velocimetry

The DV format movies of plasmodia were transferred from the DV camera to

computer files, and then read with analyzing programs. The velocity fields

inside the plasmodia were measured by a method called particle image ve-

locimetry (34). In this approach, movies of fluids containing small marker

particles are numerically analyzed to determine the velocity fields by tracking

the movement of each particle, assuming the velocity of the marker particle to

be equal to that of the fluid around it.

In our case, the plasmodia already contained the vesicles and they could

not be removed, so we used them as marker particles. Here we briefly de-

scribe the process of particle recognition and velocity field measurement.

Appendix A gives a more complete and precise description.

The original video is in full color, but the color is not strong enough to be

useful in the subsequent analysis. Therefore, we are working with converted

grayscale images, like in Fig. 1 a. In this example, the vesicles appear as dark

spots.

As we are mainly interested in the moving particles, we want to eliminate

immovable particles and enhance the images of moving particles. This is ac-

complished by subtracting the image accumulated over a long period (;17 s)

from the present image. A sample of the image enhanced in this way is shown

in Fig. 1 b. In this image, the darker spots represent moving particles, and the

lighter spots represent the free space previously occupied by particles in the

accumulated image. To recognize the moving particle, the pixels darker than

a threshold are defined to be occupied by particles and one connected group

of occupied pixels (indicated by open polygons in Fig. 1 b) is defined as one

particle.

Next, we track the movements of recognized particles. This amounts to

identifying a particle in one frame with a particle in the next frame. This task

is not always possible for every particle. Especially as, in our case, the

particles themselves are not stable. The vesicles changed shape and aggre-

gated to form larger particles that may subsequently split again.

To avoid the complexity and to minimize the possible errors in this sit-

uation, we take the simplest approach to this task. We only identify two

particles in consecutive two frames if and only if two particles overlap each

other exclusively: a particle in the present frame overlaps not multiple par-

ticles but only one particle in the next frame and vice versa. Some sample

trajectories connecting the center of gravity of identified particles are shown

in Fig. 1 c. The longest trajectory near the center lasts .1 s.

We calculate the velocity of each particle from these trajectories. To

exclude the possible erroneous identifications, we calculate velocity only for

trajectories of greater than four-frame length. Thus, we can assign velocity to

some particles, as shown in Fig. 1 d.

As seen in this figure, the number of particles successfully assigned ve-

locities seems too little at one moment, but if we collect velocity data over a

few seconds, we get enough data to interpolate the entire space. In Fig. 2 a,

the velocity data of the last three seconds are depicted. We assign some pixels

the velocity averaged over time according to the method described in Ap-

pendix A. In this stage, the velocity is not defined on every pixel.

Then the velocity is averaged over space by the method in Appendix A. If

the initial data of velocities of clusters is dense enough, the velocity is as-

signed on every pixel as depicted in Fig. 2 b.

As a check, we compare the trajectories of the vesicles and the trajectories

of virtual fluid particles obtained by integrating the velocity field measured

above. The integration is calculated numerically using Runge-Kutta method.

The values of the vector field for pixels are assigned to the centers of the

pixels. The values of the vector field at the other points are bilinearly inter-

polated from these values at lattice points.

Depicted in Fig. 2 c is the superposition of the positive part of the en-

hanced image discussed above. A moving vesicle appears as an elon-

gated spot indicating its direction of movement. In Fig. 2 d, we draw

integrated orbits on Fig. 2 c. They agree very well, considering the size of one

pixel.

Since the resulted velocity field is obtained by averaging over some tens

of individual data, theoretically the error of the mean is only a few percent

even if the error of the individual data is some tens of percent. In this case, the

error should be measured by the time and space resolutions, which are ;6 s

and 5 mm. Because the typical period of shuttle flow in plasmodia is ;100 s,

this time resolution is good enough to investigate the various phenomena

related to shuttle flows. However, the typical width of channels in our

plasmodia is 10–30 mm. Therefore, to get the velocity profile across the

channel, or to get the total flux through a section of the channel, is beyond the

precision of our data.

FIGURE 2 The process of vector field

measurement and comparison of trajecto-

ries of vesicles and the path line obtained

from the measured vector field. All images

are captured from processed movies. Panels

a and b are at the same frame in the movies

as in Fig. 1. Panels c and d are at the same

frame. (a) The cluster velocity data in the

last 3 s. The older the data, the darker the

arrows. (b) The resultant vector field ob-

tained by averaging the data depicted in

panel a over time (690 frames) and space

(63 pixels). (c) The superposition of pos-

itive enhanced image over ;10 s. The older

the image, the fainter the spot. The moving

vesicles should appear as elongated dark

spots like comets. (d) The path lines ob-

tained by numerically integrated the con-

structed vector field are drawn on panel c.

A circle is depicted on the path line every

0.5 s.
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Determination of cell shape and position
of center of mass, and introduction
of anterior-posterior coordinate
system for plasmodia

The cell shape is detected by outlining the edge of a plasmodium. The center

of gravity of a plasmodium is calculated by assuming the existence of unit

point mass at the center of each pixel occupied by the plasmodium.

To measure and describe the movement of plasmodia, we need an

appropriate time-independent coordinate system. Our coordinate system

consists of one longitude curve coinciding roughly with the center line

of shuttle flow and/or the trail of the plasmodium (called anterior poste-

rior axis or AP axis), and a set of straight lines perpendicular to the lon-

gitude curve (called latitude lines; see Appendix B for more precise

definitions).

To construct this coordinate system we only need the edge curve out-

lining the plasmodium, and the position of the anterior and posterior

ends of this edge. As explained in Appendix B, we can calculate the an-

terior and the posterior positions from two edge curves that are an appro-

priate time apart.

Our coordinate system for a sample plasmodium is shown in Fig. 3. The

same sample was used for most of the following figures. This coordinate

system is calculated from the four edge curves 140 s apart, which are depicted

in Fig. 3. We define the length of the longitude curve measured from point P

as the longitude coordinate value. All points on the same latitude line have

the same longitude coordinate value. The latitude coordinate value can be

defined as the length of the latitude line from the longitude curve with the

appropriate sign to distinguish the two sides. However, we do not need the

latitudinal coordinates here.

The width of a plasmodium is defined as the area occupied by the plas-

modium between two adjacent latitude lines equally spaced on the longitude

line divided by the space between two adjacent latitude lines. In our sample

case, the spacing is 6.5 mm. This amounts to measuring the width in the

direction perpendicular to the longitude line.

RESULTS

Propagation of changes in streaming direction
from posterior to anterior end

Fig. 4 shows a sequence of velocity fields of protoplasmic

streaming in two-dimensional space (open arrows) and rates

of width changes measured perpendicularly to the AP axis

(shaded arrows). The width of the tail end began to become

thinner although the anterior parts became thicker (see the

figure at 290 s). This thinning motion propagated forward

(306 s and 322 s). At 338 s, the tail began to thicken, although

the anterior parts still showed thinning, and the thickening

propagated forward again (354, 370 s). The width changes

always propagated from the posterior end to the anterior end.

Changes in the direction of protoplasmic streaming also

propagated from the tail to the front similar to the propagation

of width changes. The forward flow was observed only in the

rear region at 290 s, and then became clear at the middle

region at 306 s. At 322 s, the forward flow was observed only

in the anterior region. At 338 s, backward flow appeared in

the tail region and propagated forward at 354 and 370 s.

Accompanying the propagation of the width changes, the

changes of streaming direction also propagated from the

posterior to anterior end. Fig. 4 shows a typical sequence of a

sample, but these propagation patterns were always observed

with almost no exceptions in a few tens of fast migrating

samples.

We concluded that flows in both directions and the de-

formation of both contraction and relaxation all begin at the

posterior end of the plasmodium, and then propagate toward

the anterior. These flows are established by the cooperative

contraction and relaxation of actomyosin systems distributed

throughout the plasmodium. The contraction and relaxation

of these systems appear as shrinkage or expansion of width of

the plasmodium.

To capture the spatiotemporal patterns of the propagation

of these changes, a spatiotemporal plot was depicted by re-

ducing two-dimensional space to one-dimensional space

along the AP axis in Fig. 5. The maximum streaming velocity

over a latitude line is assigned at the corresponding position

on the AP axis. Grayscale in Fig. 5 indicates this velocity.

Brighter levels correspond to the forward direction and

darker levels correspond to the backward direction. Closed

and open circles indicate zero velocity points, which are the

points where the streaming direction reverses. The set of zero

velocity points comprise almost straight lines in Fig. 5. Each

straight line defines a velocity with which the vector field is

moving from the posterior to the anterior part of the plas-

modium. We will call this type of velocity field a shifting

velocity field or SVF, and call this velocity the shifting ve-

locity.

Consider this vector field in relation to the locomotive

mechanism of plasmodia. The center of gravity moves for-

ward by the forward streaming flow and backward by

the backward flow. Therefore, the center of gravity of the

FIGURE 3 Coordinate system of the plasmodium in Fig. 4. This plasmo-

dium has come from the right and is completing an upward turn. Edge curves

are shown at 10 s (thin dotted curve), 150 s (thin broken curve), 290 s (thin
solid curve), and 430 s (thick solid curve). The numbers indicate length scale

(mm). The curve P to A is the longitude curve. The solid and dotted lines

perpendicular to this longitude curve are the latitudinal lines. Arrows are

examples of anterior and posterior dipole vectors, which are defined in

Appendix B.
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plasmodium is oscillating with the shuttle streaming. Con-

sider the ratio of the displacement by the forward flow to the

displacement by the backward flow. In a migrating cell, the

ratio should be larger than one. The problem is to determine

the origin of this imbalance.

Let us consider the movement of a virtual particle in the

plasmodium as shown in Fig. 6, assuming the type of space-

time structure of vector field such as we observed in the

plasmodia. The hatched band on the left-hand side is the

forward flow region, and the band on the right-hand side is

the backward flow region. A virtual fluid particle starting

from point A is carried to point B by the forward flow, and

then reaches point C via the backward flow. We will call the

forward and backward migration distances lF and lB, re-

spectively. The migration distance reflects the transportation

capability of each flow. If there is no other constraint in the

system, the longer migration distance means the longer dis-

placement of the center of gravity.

The forward migration distance lF is always greater than

the backward one lB when the shifting velocity of the flow is

forward, namely lB , lF. If this asymmetry in migration

distance is a major source that eventually moves the plas-

modium forward, the ratio of migration distance lF/lB should

correspond to the ratio of the displacement by the forward

flow to the displacement by the backward flow in amoeboid

movement. In the next subsection, we check this relationship

experimentally.

Examination of relationship between migration
distance ratio and displacement of center
of gravity

First, we calculate the migration distances in Fig. 6. For

simplicity, assume that the flow velocity is constant in one

band of Fig. 6. We can estimate the migration distance from

the shifting velocity of the flow u . 0, the constant velocity

FIGURE 4 A sequence of velocity fields

and the rate of width change of the plas-

modium moving upwards. The open arrows

represent the vector field at the points on

the lattice whose size is arbitrarily chosen.

The solid arrows represent the rate of

change of the width of the plasmodium.

The width is measured in the direction

perpendicular to the longitude line. A pair

of solid vectors of opposite direction and

equal length is drawn on the line perpen-

dicular to the longitude line.

FIGURE 5 The grayscale plot of the maximum velocity vector of the

same plasmodium as in Fig. 4 on the time-AP axis plane. The length of the

maximum velocity vector over the latitude line with sign indicating the di-

rection of the flow is plotted. The forward flows are represented by the

lighter shade, and the backward flows are represented by the darker shade.

The open circles mark the onset of the forward flow, and the solid circles

mark the onset of the backward flow. These circles are fitted with lines to

obtain the shifting velocity of the vector field. The shifting velocities except

first two flows are 12 6 1mm/s. The absolute value of the averaged velocity

of the flow over the channel is 3 6 0.5mm/s.
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of the flow v, and duration of the flow in one direction T. The

length of each forward or backward flow region is given by

L ¼ uT. This region is moving with velocity u in the positive

direction. In accordance with the experimental results, we

assume jvj , u. Then, a virtual fluid particle is in the flow

region for time duration of t, as given by

t ¼ L

u� v
:

The migration distance of the virtual fluid particle for this

flow is given by

l ¼ vt ¼
���� Lv

u� v

���� ¼
���� uvT

u� v

����: (1)

This formula holds for the forward flow when v . 0 and for

the backward flow when v , 0.

For the actual data in Fig. 5, the shifting velocity u was

calculated as the average of inclinations of the two sides of

the flow band and T was measured at the center of the figure .

For v, we first find the maximum velocity vector for each

forward and backward flow band in Fig. 5. As these values

can be anomalous, we took v as the average velocity over 10

pixels around the position of that maximum in the original

velocity field at the time of that maximum.

Next we calculated the ratio of the forward displacement to

the backward displacement of the center of gravity. Fig. 7

shows the orbit of the center of gravity projected onto the line

connecting the initial and the last positions of the center of

gravity plotted against time. The extrema are marked by

small squares. The forward displacement DF from one local

minimum to the next local maximum is due to the forward

flow, and the backward displacement DB from a maximum to

the next minimum is due to the backward flow.

The displacement ratios DF/DB in six samples of freely

migrating plasmodia are plotted against the migration dis-

tance ratio, lF/lB, in Fig. 8. The sizes of the samples ranged

from 200 mm to 500 mm. Although some points deviate

considerably from the diagonal, the agreement is good in the

sense that the center of the distributed data points is close to

the theoretical diagonal line despite the crude approximation.

This implies that the asymmetry of migration distance ratio is

the major source of asymmetric displacement of the center of

gravity. Furthermore, the above plot can detect the anoma-

lous data points as explained below. We conclude that SVF is

the main cause of directional migration of center of gravity.

Abrupt formation of streaming channel in
relation to deviation in ratio

Many factors might contribute to the deviation in Fig. 8. We

now present a case in which we can identify a cause of the

large deviations in Fig. 8. This is related to the structure of the

shuttle flow near the anterior ends of plasmodia.

As seen in Fig. 5, the strong shuttle flow abruptly disappears

;100 mm short of the anterior end in the time from 0 to 260 s,

as indicated by the dashed line. Judging only from this figure,

the flow seems to contradict the law of continuity in fluid

dynamics. But actually, at this point of disappearance, the

strong flow plunges into a gel-rich region and slowly fans out.

FIGURE 6 Schematic drawing of the locomotive mechanism of shuttle

flow in plasmodia. The two hatched bands on the time-latitude plane are the

shifting vector fields from Fig. 4. The width of the vector field is L, and

the duration at the fixed latitudinal point is T. Hence the shifting velocity of

the vector field is u ¼ L/T. A fluid particle starting from point A on the

latitude curve is carried by the forward flow to point B, then by the backward

flow to point C. The migration distance lF is the distance between A and B

and lB is the distance between B and C.

FIGURE 7 Movement of the center of gravity of the plasmodium in Fig.

4. The inset in the upper left-hand corner is the movement on the original

image plane, and a broken line connects the first and last data points. A small

square marks the last data point. The upper curve is the projection of the two-

dimensional data onto the dotted line of the inset. Small squares mark the

extreme points. The bottom curve is the area of the plasmodium in the movie

image. The central solid line of this curve is the average. The broken lines

above and below the center line represent 105% and 95% of the average

value. Vertical broken lines are drawn from the local minimum of this curve

to the center of gravity curve. Note the coincidence between the extrema of

the two curves.
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One of the shortcomings of presenting the movements of

plasmodia by the velocity fields is that the slow flow tends to

be ignored. To investigate the slow flow near the anterior end,

we utilized the superposed image of the positive part of the

enhanced images used in Fig. 2 c.

We depicted in Fig. 9 the superposed enhanced image

and velocity field near the anterior end. A semi (or quarter)

spokewise pattern formed by the elongated solid spots was

visible at 40 s and 325 s and less obviously at 225 s. Those

images were captured at the height of the forward flows. The

channel of shuttle-streaming ended at the center of the spoke-

wise pattern. There was no definite channel in the spokewise

pattern. This kind of flow structure seemed ubiquitous. In

larger plasmodia, the same structures were also found at the

posterior end.

This flow structure is relevant to the above deviation of

ratio because the position of this flow structure did not

gradually move forward. It stayed at the same position for a

few periods of shuttle streaming, then abruptly a new channel

of considerable length was formed and the spokewise pattern

appeared at the end of this new channel, as shown in Fig. 9.

When the flow pattern changed in this way, the above devi-

ation in the ratio was observed. We will show this by

checking flow data and the corresponding ratio data.

The process of the formation of the new channel is shown in

Fig. 9 at 225, 285, and 325 s. From 40 to 225 s, the position of

the end of the channel stayed at the almost same position

(lower dashed line). But at 325 s, it appeared at a position

;50-mm closer to the anterior end than the previous posi-

tion (upper dashed line). A new channel appeared between

these two positions during the forward flow at 325 s. This new

channel can already be recognized during the backward flow

at 285 s.

This same process was also apparent in Fig. 5. The slanted

solid and open columns corresponding to shuttle streaming

expand 50 mm to the anterior end at 300 s.

FIGURE 9 Semispokewise flow patterns

near the anterior end. The dashed lines are

the latitude lines at the longitude positions

indicated by the two dashed lines in Fig. 11.

FIGURE 8 The ratio of displacement of the center of gravity versus the

ratio of the migration distances of forward and backward flows, lF/lB. Data

from six experiments are plotted. The shifting velocity of the velocity field u,

the velocity of the flow v, and the duration of the flow T are obtained from

the data in Fig. 5 and the migration distance is calculated from Eq. 1.

Displacement ratios are calculated from every three consecutive extrema in

the projected center of gravity curve. A different symbol is used for each

experiment.
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The corresponding ratio data is shown in Fig. 10. This is

one of the six experiments from Fig. 8. The attached numbers

are the temporal order of the data points. Each data point was

calculated from three consecutive extrema from the projected

center of gravity curve shown in Fig. 7. Data point 0 was

calculated from the first, second, and third extrema of the

center of gravity curve; data point 1 was calculated from the

second, third, and fourth extrema; and so on.

The deviations of data points 4 and 5 were the largest in

Fig. 10. This means that the anomaly causing these devia-

tions occurred between the sixth and seventh extrema of the

projected center-of-gravity curve shown in Fig. 7, and that it

arose in the time period from 290 to 340 s. The anomaly

consisted of the fact that the displacement ratio was too large.

This means that the center of gravity moved forward anom-

alously fast during the forward flow corresponding to the

open column at 300 s in Fig. 5.

So, the deviation in ratio was observed at the open column

at 300 s in Fig. 5, exactly when a new channel was formed (or

opened). Because of the new expanded channel, the trans-

portation capability of the forward flow was also expanded

larger than before. The large movement of the center of

gravity resulted from this fact.

When the channel was formed, the total area of the plas-

modium suddenly enlarged as shown by the lower time-

course in Fig. 7. Normally in forward displacement, the total

area decreased, meaning that the plasmodium contracted.

However, in the anomaly, the total area did not decrease, but

instead remained constant. The increased area gradually de-

creased during each contraction. We consider the variations

in total area in the Discussion.

Variation of channel width in relation to wave
propagation of changes in flow direction

There are two frames of reference for describing the fluid

motion: Lagrangian and Eulerian. In the Lagrangian repre-

sentation, the fluid motion is described by the motion of the

fluid particles. In the Eulerian representation, the fluid motion

is described by the velocities of the fluid at spatially fixed

points. In the above experiment and analysis, we used both

reference frames. The raw experimental data are Lagrangian

because we measured the positions of vesicles. From these

data, we construct velocity fields in the Eulerian frame. We

did this because these velocity fields are easier to display, and

the Lagrangian representation can be recovered by integrat-

ing the Eulerian velocity field to obtain the orbits of fluid

particles. In the argument of SVF we returned to Lagrangian

representation, but this simplified the presentation.

Switching between the two frames is not always trivial.

The kind of flow described in the argument of SVF in the

Lagrangian frame is difficult to describe in the Eulerian

frame. This is because in such a flow the channel width is not

constant in time. Now we explain this and then check the data

to show that the channel was really wider during the forward

flow than during the backward flow.

Assume that protoplasm is flowing through a channel of a

plasmodium according to the velocity profile in Fig. 6. Fur-

thermore, assume that the diameter of the channel is constant

in time and space. Consider a cross section of the channel at

position B. During each of forward and backward flow, the

amount of protoplasm flowing through the cross section is

given by (migration distance) 3 (area of the cross section).

Let FF be the total amount of protoplasm flowing through this

cross section during the forward flow and FB be that during

the backward flow. We have FF . FB both from the migra-

tion length argument and from the fact that the plasmodium is

moving forward.

On the other hand, the amount of protoplasm flowing

through the cross section is also given by (duration of flow) 3

(absolute value of velocity of fluid) 3 (area of the cross

section). According to the velocity profile in Fig. 6, the du-

ration and absolute value of velocity of flows are almost the

same for the forward and backward flows. So the constant

radius channels cannot accommodate the flows described in

Fig. 6. The channel radius must be wider during the forward

flow than during the backward flow. Now we confirm this

fact from the experimental data.

Fig. 11 shows the relationship of the velocity field (shaded
pattern) and the width variation (circles) in the same sample

as Fig. 5. Brighter grayscale indicates high speed of flow and it

gives no information on flow direction. The flow direction is

indicated by the trajectories of virtual fluid particles, drawn by

the solid lines. Solid and open circles indicate the lower and

upper extrema, respectively, of width variation, which mean

the rate of width change is zero. For instance, the thickening

process begins at the time indicated by solid circles, and

FIGURE 10 The displacement ratio versus the migration distance ratio of

the plasmodium in Fig. 4. Data points are numbered in temporal order. Data

point 0 is calculated from the first, second, and third extrema marked by

small squares of the projected center of gravity curve in Fig. 7; data point 1 is

calculated from the second, third, and fourth extrema; and so on.
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thinning begins at open circles. The most relevant result here

is that the extrema of width variations almost always occurred

a little after the reversal (expressed by the solid regions) of the

flow direction.

Fig. 12 shows the time course of the width change (the

upper curve) and the maximum flow velocity (the lower
curve) at a fixed position (indicated by the dashed line in Fig.

11) on AP coordinate. The forward flows begin before the

peaks of the width variation and end before the bottom of the

width variation. Similarly, the backward flows start before

the bottom of width variation and end before the peak. The

vertical lines in Fig. 12 mark the time of flow reversal, and

they indicate the relationship between the flow direction and

the width variation. This delay means that the average width

over the period of forward flow is wider than that of back-

ward flow.

DISCUSSION

Possible mechanisms for how the propagation
begins from the tail end

It was found that SVF was a major source of asymmetric net

transport in protoplasmic mass. We discuss here how the

characteristic propagation of various movements begins from

the posterior end. One possible explanation is that the intra-

cellular Ca21 concentration is not the same at tail and front.

In fact, in Physarum, some patterns and periodic wave trains

of Ca21 are observed (35,36). This asymmetry may form the

characteristic pattern of propagation from tail to front.

According to the two-pool model for intracellular Ca21

dynamics, the frequency of the calcium oscillation increases

as the basal level of cytoplasmic Ca21 increases (37). Cy-

toplasmic calcium varies through calcium entry from extra-

cellular space. When the ratio of surface area to protoplasmic

volume is compared in every local region of the amoeba, it is

relatively higher in the tail than in the front because the cell

shape of the tail region is long and thin. This is a possible

cause of high cytoplasmic Ca21 in the tail. According to the

theory of coupled limit-cycle oscillators, phase-waves prop-

agate from high-frequency regions (38).

The above argument may be applicable to other cells. In

Amoeba proteus, contraction in the posterior region is re-

garded as a motive force of mass transport and Ca21 is ac-

tually high in the posterior region (39–42). Although there is

no direct evidence of wave propagation of contraction and

FIGURE 11 Joint plot of the absolute value of the

velocity field (grayscale), points of onset of contractions

(open circles) and relaxation (solid circles), orbits of fluid

particles obtained by numerically integrating the velocity

field (solid curves), and the longitudinal positions of the

anterior and posterior ends of the plasmodium (open

curves) on the time-longitude plane. The time series of

width and velocity of the flow at longitude 120 mm

(indicated by the dashed line) is depicted in Fig. 12.

Two open dashed lines indicate the corresponding posi-

tions of the white dashed lines in Fig. 9.

FIGURE 12 The time series of the width (upper curve) and the maximum

flow velocity (lower curve), both at the solid dashed line in Fig. 11. The

length of the maximum velocity vector over the latitude line is plotted with

sign indicating the direction of the flow. The positive velocity means the

forward flow. The mass center of line segment AB (thus the time-average of

width in forward flow) is larger than that of BC (the averaged width in

backward flow). Due to the delay of the extrema of the width, the width is

wider during the forward flow than during the backward flow. Vertical lines

indicate the points of reversal of the flow.
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Ca21, periodicity of contraction is observed (43). In the

above sense, cytological events are common in Amoeba
proteus and Physarum. So the locomotive mechanism pro-

posed here might not be limited only to Physarum.

On the other hand, another explanation for the character-

istic propagation comes from a mathematical model for

coupled oscillator systems with a mass conservation law,

which was proposed for rhythmic amoeboid movement in

Physarum (28). According to this theory, directional propa-

gation of phase waves can spontaneously appear without any

macroscopic asymmetry initially given. The symmetry is

broken by small random fluctuations. These ideas from non-

linear dynamics are useful in explaining the symmetry-

breaking necessary for amoeboid movement.

Release of pressure accompanying total
area variations

As shown in Fig. 7, the total areas of plasmodia were not

preserved during the experiments; instead, they oscillated,

and their extreme values coincided precisely with those of the

projected center of gravity curves. In Fig. 7, vertical broken

lines are drawn from the local minima of the total area curve.

Except for a few cases, those vertical lines are very close to,

or simply coincide with, the local maxima of the projected

center of gravity curves. This very precise correspondence

suggests that the variation in area directly reflects the varia-

tion of some physical quantity, most likely the pressure.

At a local maximum of the projected center of gravity

curve, most regions of the plasmodium are contracting and

the anterior part is being pushed forward. This is the state

where the inner pressure of the plasmodium is presumably

the greatest. At this point, the area is at its local minimum.

We propose two possible reasons for the total area varia-

tions. The higher the inner pressure, the rounder the plas-

modium becomes to contain it. Then it may sink deeper into

flat agar gel. The second explanation is that the volume

changes observed are related to morphological changes in the

plasmodium. There are many invaginated pits filled with

water on surface of plasmodium. The water may be squeezed

out of cavity of invagination when the plasmodium contracts.

This explanation is supported by the previous observation: the

ectoplasm cortex of plasmodial veins become thinner when

contracting (44,45). In fact, the thickness of endoplasmic

cortex varied temporally as shown in Fig. 4.

The oscillation of the total area is interrupted during the

anomaly in the period from 290 to 340 s in Fig. 7. It then

resumes with a new and larger baseline. Considering that the

total area is inversely proportional to the inner pressure, the

change of the total area is consistent with the expansion of

the channel. Up to 290 s, the gel-rich region at the anterior end

hinders the forward flow and the inner pressure mounts. This

reveals itself in the slight decrease of the baseline of the os-

cillation in total area. At the anomaly, the mounted pressure is

released by the forward flow, which propels the center of

gravity forward faster than usual. This release of pressure

appears as an increase of the baseline of the total area. Sub-

sequently, the total area oscillates around a higher baseline as

the inner pressure is lowered by the expansion of the channel.

We have observed similar sets of characteristic data (large

displacement ratios, blockages, release of forward flow, and

anomalous total area curves) in other experiments and sam-

ples. These observations were all consistent with the above-

mentioned interpretation.

Formation of flow channel in viscoelastic
protoplasm in cell

The technique used in this report allowed us to record spa-

tiotemporal variations of protoplasmic flow in the anterior

region of the sheetlike structure. Protoplasmic streaming is

not clear in this region, and the flow is relatively slow com-

pared with that in a tube because of the spongelike structure

of gel in the anterior sheetlike part. Sol flows slowly through

narrow cavities of the sponge. However, we noted some

channels in which the protoplasmic flow was much faster;

such channels appear suddenly rather than developing

gradually and their positions do not vary. Subsequently, one

of the channels grows into a tubular structure known as a

plasmodial vein. Hence, channels are the precursor of tubes.

These observations provide insight into the morphogenesis of

veins.

The protoplasm is a complex viscoelastic material with the

characteristics of a non-Newtonian fluid. Thixotropy is one

such feature, and a gel converts to a flowing sol when the

pressure is large enough to break some of the intermolecular

structures of the gel. Once flow starts, the viscosity decreases

so that the flow becomes easier. This complex process is

difficult to understand unless its dynamics are considered in

terms of mathematics and physics. In fact, regular shuttle

streaming is not observed in organisms ,100 mm in diam-

eter. This implies the occurrence of some kind of instability.

A mathematical model capturing the essence of the complex

cell dynamics will be greatly needed in future work.

Amoeboid movements based on nonlinear
waves and oscillations

The relationship between these results and previous findings

that appear to contradict them (17,18) must be considered

here. In our previous work, we observed that the contraction

waves transmit from the anterior to the posterior part of large

plasmodia with veins and sheets. At that time, due to tech-

nological limitations (that is, analog television cameras and

less-powerful personal computers), we used coarse-grained

images instead of detailed ones. Under those conditions, we

mainly observed changes in the thickness of the sheets.

Preliminary observations show that in large plasmodia with

veins and sheets, the forward flow in veins enters the sheets
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near the anterior rim, then bounces off the rim and transforms

into backward flow through the sheet. We believe that what

we observed in the previous work was this backward flow in

the sheet. Further investigation to clarify this point is un-

derway.

In large plasmodia with veins and sheets, velocity mea-

surements cannot be made by the present methods due to the

lack of transparency and the large velocity of flow. However,

now that we can measure the thickness of the veins with

precision, we can estimate the velocity fields inside them

based on the present mechanism. We hope, soon, to be in a

position to confirm this theory.

In this article, we have established that the direction of

locomotion and the direction of propagation of the contrac-

tion phase coincide in small plasmodia. The next question is

whether this relationship still holds in other situations, such

as tactic responses to stimulation and the locomotion of or-

ganisms with more complex shapes. When this question is

answered, we might begin to understand how the amoeba

organizes the various regions of its protoplasm to achieve

behavioral feats such as maze solving. Dynamical aspects of

oscillations and waves should be studied at a level of the

whole body of the amoeba to clarify mechanics of amoeboid

locomotion by integrating molecular events of mechano-

chemical interactions.

APPENDIX A

One DV movie consists of 29.97 frames per second, each of which has 720 3

480 pixels,

S ¼ fðx; yÞ 2 Z : 0 # x , 720; 0 # y , 480g;
where S is a set of pixels in a frame. Each pixel has an integer value from 0

(brightest) to 255 (darkest). A movie g is expressed as a mathematical

function:

gðx; y; tÞ 2 Z; 0 # gðx; y; tÞ, 256; 0 # t , ttotal; ðx; yÞ 2 S:

To enhance the moving vesicles in the images of the movie, we subtract the

accumulated image Gm(x, y, t) from the original image. In the following

analysis, we set m ¼ 500 to be ;16.6 s:

Gmðx; y; tÞ ¼
1

m
+
N

k¼0

m� 1

m

� �k

gðx; y; t � kÞ;

gmðx; y; tÞ ¼ gðx; y; tÞ � Gmðx; y; tÞ:
We recognize the moving vesicles as the black granules in gm. As a threshold,

we set Ct ¼ 256 3 0.75:

CðtÞ ¼ fðx; yÞ 2 S : Ct # gmðx; y; tÞg:
To separate one vesicle from the rest of C(t), we decompose C(t) into

connected components called clusters c(tji), i ¼ 1, . . ., Nc(t) and

CðtÞ ¼ [NcðtÞ
i cðtjiÞ:

A set c� S is connected, when for any pair of points (x1, y1), (x0, y0) 2 c there

is a sequence of points (x1, y1), (x2, y2), . . ., (xk, yk), (xk, yk)¼ (x0, y0), all in c,

such that (xi11, yi11) 2 n(xi, yi), i¼ 1, 2, . . ., k – 1 where n(x, y)¼ f(x 1 1, y),

(x – 1, y), (x, y 1 1), (x, y – 1)g \ S is a set of nearest neighbors of (x, y). We

can reach (x0, y0) from (x1, y1) by a route in c.

To track the movements of clusters we have to establish the correspondences

between the clusters in two consecutive frames. The cluster c(tji) in frame

t corresponds to c(t – 1jj) in frame t – 1, when c(tji) overlaps only

c(t – 1jj), and c(t – 1jj) overlaps only c(tji). We express this correspondence

by the function l(i, t) ¼ j.

More precisely, l(i, t) ¼ j if and only if both sets fj:c(tji) \ c(t – 1j j) 6¼ Øg
and fi: c(tji) \ c(t – 1jj) 6¼ Øg have just one element. Otherwise, it is

undefined.

The center of gravity of the ith cluster in frame t is defined as

pðtjiÞ ¼ +
ðx;yÞ2cðtjiÞ

gmðx; y; tÞðx; yÞ:

From N 1 1 consecutive corresponding clusters, we obtain the velocity per

frame of the ith cluster in frame t:

vðtjiÞ ¼ pðtjiÞ�pðt�Njlðt�ðN�1Þ; . . . ; lðt� 1; lðt; iÞÞ � � �ÞÞ
N

:

We use N ¼ 3 in the following formulae.

From the velocities of the clusters we construct the velocity field. First, we

assign velocities to the points in the clusters with defined velocities. The

function u0 : S/f0; 1g is 1 at a point where the velocity is thus defined, 0 at

other points:

u0ðx; y; tÞ ¼
1; ðx; yÞ 2 cðtjiÞfor some i
0; otherwise

;

�

u0ðx; y; tÞ ¼
vðtjiÞ; u0ðx; y; tÞ ¼ 1

0; otherwise
:

�

Then we smooth the velocity field by geometric series in time. But the

velocity is not always defined at the point. We compensate for this effect by

modifying the normalization factor F1 defined as

F1ðx; y; tÞ ¼ +
N

i¼�N

w� 1

w

� �jij
u0ðx; y; t � iÞ:

We set w ¼ 90. If the zero terms u0 ¼ 0 are too numerous in this series, the

velocity cannot be defined at that point. We set the threshold Ft ¼ 0.02 3 w.

The value u1 indicates whether the velocity is thus defined or not:

u1ðx; y; tÞ ¼
1; Ft , F1ðx; y; tÞ
0; otherwise

;

�

u1ðx;y; tÞ

¼ F1ðx;y; tÞ�1 +
N

i¼�N

w�1

w

� �jij
u0ðx;y; t� iÞ; u1ðx;y; tÞ ¼ 1

0; u1ðx;y; tÞ ¼ 0

:

8><
>:

Finally, we interpolate the velocity to fill the undefined points. The aver-

age velocity in a square Sq(x, y) is assigned to that point. We set nx ¼ 4 and

ny ¼ 4:

Sqðx; yÞ ¼ fði; jÞ 2 S : ji� xj# nx; jj � yj# nyg:
Then, the velocity field we use in subsequent analysis is given by

u2ðx; y; tÞ ¼
u1ðx; y; tÞ; u1ðx; y; tÞ ¼ 1

F2ðx; y; tÞ�1 +
ðx;yÞ2Sqðx;yÞ

; 0 , F2ðx; y; tÞ

undefined; otherwise

;

8><
>:

where
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F2ðx; y; tÞ ¼ +
ðx;yÞ2Sqðx;yÞ

u1ðx; y; tÞ:

APPENDIX B

To extract the edge of a plasmodium we use the accumulated image defined

in Appendix A. We choose the threshold at ;Et ¼ 0.5*256, but sometimes

we need to find the optimum value manually. This depends on the quality of

the original movie. Let

GðtÞ ¼ fðx; yÞ 2 S : Et # Gmðx; y; tÞg:
We denote the connected component of G(t) corresponding to our plasmo-

dium by E(t). To construct the coordinate system, we take two sets E(t1) and

E(t2), where t1 , t2. Then the forward set is defined as

F ¼ Eðt2Þ \ Eðt1Þ;
where Eðt1Þ is the complement of E(t1) with respect to S. The connected

components of F are denoted by Fi, where F ¼ [ iFi.

Each component Fi has two kinds of boundaries. One is the boundary of

E(t2):

@F
1

i ¼ fðx; yÞ 2 Fi : nðx; yÞ \ Eðt2Þ 6¼ Øg:
The other is the boundary adjacent to E(t1):

@F
�
i ¼ fðx; yÞ 2 Fi : nðx; yÞ \ Eðt1Þ 6¼ Øg:

We can express movements of boundaries by analogy with the dipole

moment vector of electromagnetism. We assume that a positive charge 1 is

distributed uniformly on the boundary @F1
i and negative charge – 1 on @F�i :

Then we define the dipole vector of Fi as

pi ¼
jFij
j@F

1

i j
+

ðx;yÞ2@F
1
i

ðx; yÞ � jFij
j@F

�
i j

+
ðx;yÞ2@F

�
i

ðx; yÞ;

where we denote the number of elements in set F by jFj. The length of the

vector pi is set proportional to the area of Fi.

We can similarly define the backward set as

B ¼ Eðt1Þ \ Eðt2Þ:
The connected components of B are B ¼ [ iBi.

The boundaries of Bi are

@B1

i ¼ fðx; yÞ 2 Bi : nðx; yÞ \ Eðt2Þ 6¼ Øg
and

@B
�
i ¼ fðx; yÞ 2 Bi : nðx; yÞ \ Eðt1Þ 6¼ Øg:

The backward dipole vector is

qi ¼
jBij
j@B1

i j
+

ðx;yÞ2@B
1
i

ðx; yÞ � jBij
j@B

�
i j

+
ðx;yÞ2@B

�
i

ðx; yÞ:

The center of gravity of a set A is defined as

CgðAÞ ¼ +
ðx;yÞ2A

ðx; yÞ:

The boundary of a set A is defined as

@A ¼ fðx; yÞ 2 A : nðx; yÞ \ A 6¼ Øg:
We denote by D the displacement vector of the center of gravity from E(t1) to

E(t2), where

D ¼ CgðEðt2ÞÞ � CgðEðt1ÞÞ:
With respect to this vector D, we pick a frontmost forward dipole vector and a

rearmost backward dipole vector of more than a defined size. We denote the

inner product of vectors by (,)

iF ¼ max
i;Td, jFi j

ðD;CgðFiÞÞ;

iB ¼ min
i;Td, jBi j

ðD;CgðBiÞÞ:

The main motivation for defining forward and backward dipole vectors is to

pinpoint the heads and tails of plasmodia. The head Ph(t) is the foremost

boundary point with respect to the forward dipole vector piF ;

PhðtÞ ¼ max
ðx;yÞ2@EðtÞ

ðpiF ; ðx; yÞÞ:

Likewise, the tail Pt(t) is defined as

PtðtÞ ¼ min
ðx;yÞ2@EðtÞ

ðpiB ; ðx; yÞÞ:

Thus, for a pair of sets E(t1) and E(t2), we obtain four points on the plane

Pt(t1), Pt(t2), Ph(t1), and Ph(t2) and for sets E(t1), . . ., E(tn), we have Pt(t1),

. . ., Pt(tn) and Ph(t1), . . ., Ph(tn). Assuming (D, Pt(tn)) , (D, Ph(t1)) (if not,

just discarding some Phs), the sequence of points fPt(t1), . . ., Pt(tn), Ph(t1),

. . ., Ph(tn)g is the first approximation to our longitude curve.

If the segment from Pt(tn) to Ph(t1) is relatively long as in Fig. 3, we take

some extra points on this segment P1, . . ., Pk and shift their position to the

center of the plasmodium P91, . . ., P9k in a direction perpendicular to this

segment. We now have a second approximation fPt(t1), . . ., Pt(tn), P91, . . .,
P9k, Ph(t1), . . ., Ph(tn)g to our longitude curve.

Finally, to round the corners, the sequence of points is passed through a

low-pass filter using a two-dimensional fast-Fourier transform.
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