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Elevated serum low-density lipoprotein (LDL) is a risk factor for
atherosclerotic disorders. However, prominent atherosclerosis,
which has been observed in LDL receptor (LDLR)-knockout mice,
has diminished the significance of LDLR as a cause of athero-
sclerosis, while elaborate studies have focused on the receptors
for denatured LDL. Here we report that native LDL (nLDL)
activates vascular endothelial growth factor (VEGF) receptor 1
(VEGFR1) but not VEGFR2 through LDLR and is as potent as
VEGF in macrophage migration. Binding and co-endocytosis of
VEGFR1 and LDLR were enhanced by nLDL, which is concomi-
tant with ubiquitination-mediated degradation of VEGFR1. We
propose that LDLR-mediated use of VEGFR1 by nLDL could be a
potential therapeutic target in atherosclerotic disorders.
Keywords: VEGF receptor 1; LDL receptor; macrophage migration;
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INTRODUCTION
Accumulating evidence indicates that serum low-density lipoprotein
(LDL) is a crucial risk factor for atherosclerotic cardiovascular
disorders. Therapeutic reduction in the serum LDL level can suppress
the onset and recurrence of these disorders, and eventually decrease
the mortality rate (Baigent et al, 2005). Mutations in the native LDL
(nLDL) receptor (LDLR) have been reported in familial hyper-
cholesterolaemia (Brown & Goldstein, 1986). Interestingly, however,
in both familial hypercholesterolaemia patients and LDLR-knockout

mice (Ishibashi et al, 1994), paradoxical progression of atherosclerosis
has been observed, suggesting the possible existence of other
functional receptors for LDL. Receptors for modified versions of
LDL such as oxidized LDL, which include the scavenger receptors
(SR)-A, CD36 and FcgRII-B2, have been extensively studied (Moore
& Freeman, 2006). Macrophages in the atherosclerotic plaque
are morphologically and functionally transformed by oxidized LDL
but not nLDL (Steinberg et al, 1989). However, nLDL induces
macrophage migration by unknown mechanisms (Hara et al, 1992),
whereas little attention has been paid to LDLR.

Microvessels in atherosclerotic plaques greatly contribute to
the progression and stability of atherosclerosis (Moulton et al,
2003). It is well known that vascular endothelial growth factor
(VEGF) has a central role in promoting vascularization. VEGF has
two specific receptors, VEGFR1 and VEGFR2, with tyrosine kinase
activity. Both are expressed in endothelial cells, VEGFR2
exclusively but VEGFR1 is also exceptionally expressed in
macrophages (Shibuya, 2006). It has been reported that VEGFR1
antibody has an inhibitory effect on atherosclerotic plaque
formation in apoE�/� hypercholesterolaemic mice, suggesting that
VEGFR1 promotes atherosclerosis (Luttun et al, 2002).

Here, we report a previously unrecognized linkage between
LDLR and VEGFR1.

RESULTS
Native LDL induces VEGFR1 endocytosis
Because of sterol-mediated transcriptional downregulation, LDLR
is thought to be upregulated by lipoprotein-deficient serum (LPDS)
or serum starvation (Brown & Goldstein, 1986). We found that
LDLR was expressed in a variety of cells when deprived of serum
(Fig 1A; supplementary Fig 1A online). When nLDL labelled with
DiI (1,10-dioctadecyl-3,3,30,30 -tetramethylindocarbocyanine per-
chlorate) was applied to 293T cells transiently transfected with
VEGFR1 tagged with green fluorescent protein (GFP; VEGFR1-
GFP) and subsequently starved of serum for 8 h, VEGFR1 was
internalized and colocalized with DiI-nLDL in a VEGF-independent
manner (Fig 1B,C). A similar phenomenon was observed in RAW
cells (Fig 1B,C), a macrophage cell line that has been shown to
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express endogenous VEGFR1 (Matsumoto et al, 2002). The
concentration of nLDL that gave a significant number of VEGFR1-
GFP endocytic vesicles was at least 10mg/ml, which was
comparable with that of VEGF on a molar basis in the same assay

(Crouse et al, 1985; Kobayashi et al, 2004; supplementary Fig 1B
online, also see legend). Interestingly, denatured LDL such as
acetylated LDL (DiI-acLDL) failed to induce VEGFR1 endo-
cytosis (Fig 1D). Given that acLDL uses receptors that cannot
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bind to LDL, we suppose that nLDL could stimulate specific
co-endocytosis of its own receptor LDLR and VEGFR1.

Native LDL stimulates recruitment of VEGFR1 to LDLR
Transient co-transfection of CHO9 cells with VEGFR1-GFP and
LDLR tagged with Flag (LDLR-Flag) showed nLDL-stimulated
endocytosis and colocalization of both receptors (supplementary
Fig 1C,D online). This was blocked by SU5416, a VEGFR tyrosine
kinase inhibitor. VEGF induced endocytosis of VEGFR1, but not
LDLR, suggesting that the co-endocytosis is governed by nLDL and
is VEGFR1-dependent. Clathrin has been shown to mediate LDLR
endocytosis (Brown & Goldstein, 1986). However, we repeatedly
failed to show nLDL-stimulated colocalization of VEGFR1 and
clathrin (supplementary Fig 2A online). These results indicate a
clathrin-independent pathway for LDLR endocytosis.

We established a RAW cell line that stably overexpressed the
Flag-tagged human LDLR (RAW/LDLR-Flag). Stimulation by nLDL
changed its subcellular localization from the membrane to the
internalized vesicles (supplementary Fig 2B online). We also
observed that some of the cells showed endocytic vesicles even
before nLDL stimulation (data not shown). VEGFR1 was detected
in the anti-Flag immunoprecipitates from RAW/LDLR-Flag cells.
We pulled down VEGFR1 by using the ability of VEGFR1 to bind
efficiently to a heparin column and used the heparin-bound
VEGFR1 as a size control.

To test whether the co-endocytosis of LDLR and VEGFR1 is
dependent on LDLR, we transiently transfected VEGFR1-GFP into
skin fibroblasts derived from wild-type or LDLR�/� mice (Ishibashi
et al, 1994) and stimulated them with nLDL. As shown in
supplementary Figure 2C online, endocytosis was observed in
wild-type but not LDLR�/� cells. We further examined the co-
endocytosis of endogenous LDLR and VEGFR1 in RAW cells and
peritoneal macrophages derived from wild-type, LDLR�/� and tk�/�

mice (Hiratsuka et al, 1998), in which the intracellular domain of
VEGFR1 was genetically deleted (Fig 1E). Consistent with the results
shown above, we found that co-endocytosis is dependent on both
LDLR and the VEGFR1 tyrosine kinase domain.

Binding of endogenous LDLR to VEGFR1 in the anti-VEGFR1
immunoprecipitates from RAW cells was detected and increased
3.5-fold (average of three independent experiments) with nLDL
stimulation (Fig 2A). To test whether VEGFR1 in endothelial cells
also interacts with LDLR, we stimulated human umbilical vein
endothelial cells with nLDL. Enhanced binding between the
receptors was observed (Fig 2B). To confirm further the interaction
between the two receptors of endogenous origin, we immuno-
precipitated VEGFR1 from the whole mouse lung, as the lung is

one of the organs that express VEGFR1 most abundantly (Shibuya,
2006). The antibody used for immunoprecipitation recognizes
only the intracellular domain of VEGFR1. The immunoprecipitates
contained endogenous LDLR when the lung was derived from
wild-type but not tk�/� mice (Fig 2C). This indicates that the
interaction is specific, and the observed band is not a non-
specifically precipitated LDLR. To test whether the binding
between LDLR and VEGFR1 is mediated by the intracellular or
extracellular portion of each receptor, we tried another antibody
that recognizes only the extracellular domain of VEGFR1. As
LDLR was immunoprecipitated with VEGFR1 in both wild-type
and tk�/� cells with a similar efficiency, we assume that the
binding might be mediated by the extracellular domains (Fig 2D).
In both VEGFR1 antibodies, the immunoprecipitates did not
contain nonspecific membrane proteins such as epidermal growth
factor receptor (EGFR) or platelet-derived growth factor receptor;
(PDGFR; Fig 2C,D).

Native LDL induces VEGFR1 autophosphorylation
As cells that express VEGFR1 at levels high enough for
experimentally controlled molecular analysis are unavailable,
we used NIH3T3 cells that stably overexpressed VEGFR1 (3T3/
VEGFR1) and that were previously shown to have VEGF-
dependent endocytosis of VEGFR1 (Kobayashi et al, 2004). We
initially confirmed that endocytosis of LDLR takes place in these
cells by an 125I-LDL internalization assay, as shown in supple-
mentary Fig 3 online. Both nLDL and VEGF induced degradation
of VEGFR1 (by 45% and 50% within 20 min, respectively) but not
LDLR in a time-dependent manner (supplementary Fig 4A,B
online). As ErbB2 receptor tyrosine kinase was internalized and
degraded by heat-shock protein 90 (Hsp90) inhibitor geldana-
mycin (Lerdrup et al, 2006), we examined the effects of the Hsp90
inhibitors on VEGFR1 (supplementary Fig 5A–D online). The
inhibitors induced time-dependent degradation of VEGFR1 by
more than 90% in 2 h. Geldanamycin also induced endocytosis of
VEGFR1 in NIH3T3 cells transiently transfected with VEGFR1-
GFP. Moreover, the geldanamycin-induced degradation of the
endogenous VEGFR1 was evident in RAW cells. However, neither
endocytosis (data not shown) nor protein degradation was
observed in LDLR in the presence of geldanamycin.

To gain an insight into the mechanism of nLDL-induced
degradation of VEGFR1, 3T3/VEGFR1 cells transfected with
ubiquitin-Flag expression vectors were treated with VEGF,
geldanamycin or nLDL. In all cases, the degradation of VEGFR1
was accompanied by ubiquitination of VEGFR1 (supplementary
Fig 6A online). As the VEGF- or nLDL-induced degradation was

Fig 1 | Native low-density lipoprotein induces endocytosis of VEGFR1. (A) Immunoblotting (IB) of whole-cell lysates (WCLs; 30 mg each) from human

293T cells (left) with human LDLR antibody and those from rodent cells with mouse LDLR antibody, including the liver of LDLR�/� and WT mice,

RAW, CHO9, NIH3T3 cells overexpressing VEGFR1 (3T3/VEGFR1) and peritoneal macrophages (middle). Cell lines were cultured in 1% FCS for 24 h

before protein extraction. WCLs from 3T3/VEGFR1 cultured in 10% and 1% serum, or LPDS were also subjected to anti-LDLR and anti-actin

immunoblotting (right). (B) WCLs of 293T cells transfected with the VEGFR1-GFP expression vector or mock (�) were immunoblotted with GFP

antibody (left). Membrane localization of VEGFR1-GFP transfected into 293T or RAW cells before nLDL stimulation (right). Scale bars, 10 mm.

(C,D) 293T or RAW cells transfected with VEGFR1-GFP (green) were incubated with 10 mg/ml DiI-nLDL (red) (C) or 10 mg/ml DiI-acLDL (red)

(D) for 30 min. Note the merged images with nLDL but not acLDL. Scale bars, 10 mm. (E) Peritoneal macrophages (MF) derived from WT, tk�/�,

LDLR�/� and RAW cells were immunostained with VEGFR1 and LDLR antibodies before (�) and after (þ ) stimulation by nLDL at 100mg/ml.

acLDL, acetylated LDL; GFP, green fluorescent protein; LDL, low-density lipoprotein; LDLR, LDL receptor; LPDS, lipoprotein-deficient serum;

nLDL, native LDL; VEGFR, vascular endothelial growth factor receptor; WT, wild type.
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inhibited by MG132 or bafilomycin, both proteasomes and
lysosomes could be the site for degradation (supplementary
Fig 6B online).

Intriguingly, nLDL induced autophosphorylation of VEGFR1, but
not VEGFR2, in 3T3 cells that overexpress either of the receptors
(Fig 3A,B). The phosphorylation was similarly observed with both
commercially available nLDL and nLDL freshly prepared from
volunteers (data not shown). The minimum dose of nLDL required
for VEGFR1 phosphorylation is 5–10mg/ml (Fig 3C). VEGFR1 has
the ability to bind heparin. To eliminate the possibility that VEGFR1
could be activated by nLDL bound to heparin, which might have
been contaminated during the preparation of nLDL, heparinase
treatment experiments were carried out. The result was negative
(supplementary Fig 6C online). The intensity of the VEGFR1
autophosphorylation by nLDL was approximately 20–30% of that
by VEGF. As VEGFR1 could be transphosphorylated by Src family
tyrosine kinases, such as Fyn or Yes (Mary et al, 2002), when it is
stimulated by VEGF, we pretreated the cells with the VEGFR
inhibitor SU5416 or the Src inhibitor PP2. SU5416 suppressed
VEGFR1 phosphorylation by nLDL or VEGF, but PP2 failed to do so
(Fig 3A). Anti-LDLR short interfering RNA (siRNA) experiments
were carried out to test the LDLR dependency for VEGFR1
activation. As shown in Fig 3D, knockdown of LDLR expression

levels by more than 90% abrogated nLDL-induced VEGFR1
autophosphorylation and its degradation, whereas control RNAs
did not. Therefore, we suppose that phosphorylation of VEGFR by
nLDL is specific for VEGFR1 and mediated by LDLR. VEGFR1 has
major autophosphorylation sites, such as Tyr 1169, which is
responsible for cell migration (Cunningham et al, 1997), and minor
ones, such as Tyr 1333 that we have shown to be essential for
receptor endocytosis with recruitment of the c-Cbl–CD2AP
complex (Kobayashi et al, 2004). Both anti-phospholipase C g
and anti-c-Cbl immunoprecipitates from 3T3/VEGFR1 cells stimu-
lated by nLDL contained autophosphorylated VEGFR1 (Fig 3E,F).
These results indicate that nLDL and VEGF use the same molecular
mechanism for endocytosis and protein degradation, and that nLDL
might regulate some biological functions of VEGF.

nLDL accelerates macrophage migration through VEGFR1
As reported previously (Hara et al, 1992; Shibuya, 2006),
peritoneal macrophage migration can be promoted by both VEGF
and nLDL (Fig 4). To eliminate the possibility that commercially
available nLDL might be oxidized to some extent and thus could
stimulate expression of the chemokine MCP1 (also known as
chemokine ligand 2 (CCL2); Berliner et al, 1992), we treated the
cells with MCP1-blocking antibody. Cells stimulated by MCP1,
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added to the culture, showed migrating ability that was blocked by
the antibody. However, the antibody had no effect on the cells
stimulated by nLDL (supplementary Fig 7 online). Interestingly, the
nLDL-induced macrophage migration was repressed by SU5416
(Fig 4). This is consistent with the results shown in Fig 3E. The
requirement for nLDL-induced migration by the tyrosine kinase
activity of VEGFR1 was further confirmed by the inability of
peritoneal macrophages from tk�/� mice to migrate. nLDL-induced

migration was totally absent in macrophages from LDLR�/�

mice, supporting our conclusion that nLDL activates VEGFR1
through LDLR.

DISCUSSION
The sorting proteins involved in LDLR endocytosis, such as
autosomal recessive hypercholesterolaemia (ARH; Garuti et al,
2005), exert their function by binding to the NPXY motif found in
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the intracellular domain of LDLR. A mutation in the tyrosine
residue within the motif abrogates receptor clustering in clathrin-
coated pits. However, a recent study showed that LDLR can be
internalized independently of this motif and dependently on the
ligand very low density lipoprotein (VLDL) (Michaely et al, 2007).
VEGFR1 has the conserved Tyr 1053 followed by NPD, which
might act as the NPXY motif. Although Tyr 1053 is not a major
autophosphorylation site in the detailed phosphotyrosine mapping
analysis (Ito et al, 1998), the possibility that it is one of the minor
sites cannot be completely excluded.

It still remains to be explained how VEGFR1 is activated by
nLDL. Ligand-independent activation of receptor tyrosine kinase
by another receptor is known in EGFR (Saito et al, 2001). In this
case, platelet-derived growth factor (PDGF) transactivates EGFR in
a superoxide-dependent or cytoplasmic Src tyrosine kinase-
dependent manner with heterodimeric formation of PDGFR and
EGFR. However, we repeatedly observed VEGFR1 activation and
colocalization of LDLR and VEGFR1 even in the presence of PP2
or N-acetyl-cysteine (data not shown). Enzyme-linked immuno-
sorbent assay of nLDL and fragment proteins containing the
extracellular domain of VEGFR1 fused to the Fc portion of the
immunoglobulin failed to prove direct binding between the two
(data not shown). VEGF was not upregulated in nLDL-treated cells,
thus negating the possibility of VEGFR1 activation by paracrine
mechanisms. As the interaction of both receptors outside of the
cells seems to be important for VEGFR1 activation by nLDL (Fig 2),
we assume that nLDL-bound LDLR directly induces a conforma-
tional setting of VEGFR1 that might mimic the VEGF-bound and
activated state.

VEGF expression is switched on and off depending on the
biological circumstances, such as hypoxia, whereas nLDL is
constantly and abundantly present in the serum. Given the
VEGFR1 activation by nLDL in the absence of VEGF, our findings

indicate that nLDL not only is the source of denatured LDL that
activates scavenger receptors but also by itself could be a cause of
atherosclerosis through VEGFR1.

METHODS
Molecular reagents. Antibodies and chemicals are listed in
supplementary Table 1 online.
Plasmid construction. The GFP-tagged wild-type VEGFR1 ex-
pression vector has been described previously (Kobayashi et al,
2004). The full-length human LDLR complementary DNA was
isolated from a human placenta cDNA library (Shibuya, 2006),
sequenced and subcloned into pCMV-Tag4B expression vector.
Cell culture and transfections. NIH3T3 cells that overexpress
VEGFR1 (3T3/VEGFR1) and VEGFR2 (3T3/VEGFR2) were de-
scribed previously (Kobayashi et al, 2004). 293T, RAW264.7,
CHO9 and NIH3T3 cells and skin fibroblasts isolated from wild-
type and LDLR�/� mice were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal calf serum. LPDS
was prepared as described previously (Goldstein et al, 1983). The
combination of transfection reagents, cells and primers for siRNA
experiments are listed in supplementary Table 1 online.
Western blotting and immunoprecipitation analysis. 3T3/
VEGFR1 cells cultured for 16–24 h in 1% FCS-containing DMEM
were stimulated with 100 ng/ml VEGF or 500 mg/ml nLDL.
Immunoprecipitation and western blotting were carried out as
described previously (Okamoto et al, 2006) with the indicated
antibodies (supplementary Table 1 online). For immunoprecipita-
tion assay with lung lysates, 1% NP-40 was used instead of 1%
Triton X-100. The intensity of bands in western blotting was
quantified by Scion Image.
Immunofluorescence. 293T and RAW264.7, and CHO9 cells
were transfected with VEGFR1-GFP and/or LDLR-Flag expression
vectors. At 24 h after the transfection, the cells were starved of
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serum for 8 h before being stimulated for 15 min at 37 1C with
Dil-nLDL at 10mg/ml, Dil-acLDL at 10 mg/ml, nLDL at 1, 10 or
100 mg/ml, or VEGF at 100 ng/ml. Peritoneal macrophages from
mice were starved of serum for 24 h in 1% FCS before nLDL
stimulation. They were then immunostained with the indicated
antibody (supplementary Table 1 online) as described previously
(Kobayashi et al, 2004). Fluorescent images were obtained by
using Zeiss confocal laser scan microscopy (Zeiss, Oberkochen,
Germany).
Ubiquitination assay. 3T3/VEGFR1 cells were transfected with a
Flag-ubiquitin expression vector. At 24 h after transfection, the
cells were treated with trypsin and replated to collagen-coated
culture dishes with 1% FCS-containing media for 20 h. Cells
stimulated by 100 ng/ml VEGF, 10 mM geldanamycin or 500 mg/ml
nLDL were lysed in the ubiquitination assay buffer (50 mM NaCl,
10 mM Tris (pH 7.4), 5 mM EDTA, 50 mM NaF, 1% NP-40,
100 U/ml aprotinin, 10 mM N-ethylmaleimide and 50mM LLnL).
Macrophage migration assay. The Boyden-chamber cell migra-
tion assay was carried out as described previously (Hiratsuka et al,
1998) with or without VEGF or nLDL at the indicated concentra-
tions. In the statistical analyses, two-sided P-values of o0.05 were
considered statistically significant.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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