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In non-excitable cells, activation of G-protein-coupled phospholipase C (PLC)-linked receptors causes the release of Ca2þ from
intracellular stores, which is followed by transmembrane Ca2þ entry. This Ca2þ entry underlies a small and sustained phase of
the cellular [Ca2þ ]i increases and is important for several cellular functions including gene expression, secretion and cell
proliferation. This form of transmembrane Ca2þ entry is supported by agonist-activated Ca2þ -permeable ion channels that are
activated by store depletion and is referred to as store-operated Ca2þ entry (SOCE) and represents a major pathway for
agonist-induced Ca2þ entry. In excitable cells such as smooth muscle cells, Ca2þ entry mechanisms responsible for sustained
cellular activation are normally considered to be mediated via either voltage-operated or receptor-operated Ca2þ channels.
Although SOCE occurs following agonist activation of smooth muscle, this was thought to be more important in replenishing
Ca2þ stores rather than acting as a source of activator Ca2þ for the contractile process. This review summarizes our current
knowledge of SOCE as a regulator of vascular smooth muscle tone and discusses its possible role in the cardiovascular function
and disease. We propose a possible hypothesis for its activation and suggest that SOCE may represent a novel target for
pharmacological therapeutic intervention.
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Introduction

Virtually, every cellular response is regulated by changes in

intracellular free calcium levels ([Ca2þ ]i), making this ion a

universal intracellular mediator. Thus, understanding the

mechanisms that control Ca2þ entry into cells becomes

critically important. Increases in cytoplasmic Ca2þ signals

can be generated either by release of Ca2þ from intracellular

stores and/or by influx of Ca2þ from the extracellular

fluid. The release of intracellular Ca2þ occurs from the

endoplasmic reticulum or its specialized counterpart in

muscle cells, the sarcoplasmic reticulum (SR), and is generally

signaled by the formation of second-messengers, such as

inositol 1,4,5-trisphosphate (IP3) (Streb et al., 1983). However,

it soon became apparent that the release of Ca2þ from

intracellular stores is often followed by a sustained phase of

Ca2þ entry from the extracellular space (Putney and McKay,

1999a). This led to the proposal by Putney that depleted

Ca2þ stores (primarily in the endoplasmic reticulum) are able

to gate the entry of extracellular Ca2þ where intracellular

Ca2þ stores act as a capacitor, thus, leading to the term

‘capacitative calcium entry’ that has been superceded more

recently by the ‘store-operated calcium entry’ (SOCE)

(Putney, 1999b, Parekh and Putney, 2005). This concept was

supported by the identification of a well-characterized store-

operated current, the so-called Ca2þ release-activated Ca2þ

current (Hoth and Penner, 1992), although the consensus is

that the current mechanisms underlying capacitative calcium

entry may in fact be a special case of SOCE, and not represent

a generalized phenomenon.
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In spite of many investigations of SOCE, the molecular

details of the activation mechanisms of store-operated Ca2þ

channels (SOCCs) remain fragmentary. In fact, the existence

of different genes encoding SOCCs may account for the

diverse activation mechanisms of this channel. There

appears to be no general agreement regarding the nature of

the Ca2þ store from which the signal emits, the identity of

the Ca2þ sensor that monitors the filling state of the stores,

the retrograde signal transduction mechanism that activates

SOCCs or the molecular identity of SOCCs. This is probably

due to the complexities of mechanisms involved in SOCE, as

well as the peculiarity of various experimental methods

employed. The effect of SOCE on vascular function may

include changes in both the endothelium (Oike et al., 1994;

Fasolato and Nilius, 1998; Freichel et al., 2001; Cioffi et al.,

2005) and vascular smooth muscle cells (VSMCs). In this

review, we will focus our discussion on SOCE in VSMCs.

Moreover, we will highlight some of the challenges encoun-

tered in creating a unified hypothesis.

SR Ca2þ -ATPase inhibitors and SOCE

Exploration of the functional significance of SOCE has been

greatly aided by the use of agents, such as cyclopiazonic acid

(CPA) and thapsigargin, which act as selective inhibitors of

the sarcoplasmic/endoplasmic reticulum Ca2þ -ATPase (SER-

CA) (Laporte et al., 2004). These drugs cause depletion of SR

Ca2þ stores by inhibiting sequestration of Ca2þ ions with-

out activation of G proteins, and are used to provide an

important distinction between Ca2þ entering through

SOCCs as opposed to receptor-operated Ca2þ channels

(ROCCs). Undoubtedly, sustained Ca2þ influx, or cellular

responses, activated by SR Ca2þ -ATPase inhibitors can be

considered markers for the involvement of SOCE in cell

signalling.

In cultured VSMCs, depletion of SR Ca2þ stores with

thapsigargin activates Ca2þ influx that is independent of the

generation of inositol phosphate and resistant to the L-type

voltage-operated Ca2þ channel (VOCC) blocker, nicardipine

(Xuan et al., 1992). Numerous studies show that the SERCA

inhibitors increase not only Ca2þ influx but also vascular

tone of different blood vessels (Table 1). In all such cases, the

contractions are sustained and dependent on the presence of

extracellular Ca2þ . However, the contractile response to

SERCA inhibitors shows variable sensitivity to Ca2þ chan-

nel-blocking drugs. For instance, in the rat aorta, the

majority of the contractions is nifedipine-sensitive (Kwan

et al., 1994; Low et al., 1994; Tepel et al., 1994; Xuan and

Glass, 1996; Noguera et al., 1997; Tosun et al., 1998), whereas

in the rat pulmonary, renal and retinal arteries, the

contraction is nifedipine-resistant (Gonzalez De La Fuente

et al., 1995; Curtis and Scholfield, 2001; Snetkov et al., 2003).

In rat femoral and carotid arteries, mouse anococcygeus,

guinea-pig and cat fundus, Ca2þ entry stimulated by store

depletion is partially nifedipine-sensitive (Gibson et al.,

1994; Sekiguchi et al., 1996; Petkov and Boev, 1996a, b;

Nomura et al., 1997). These results suggest that smooth

muscle contraction in response to SERCA inhibitors may be

caused by Ca2þ entry through both VOCCs and SOCCs, with

the relative importance of these entry pathways depending

on the smooth muscle type, with SOCCs appearing to be of

greater importance in tonic smooth muscles, for example

guinea pig and cat gastric fundus, mouse anococcygeus and

rat pulmonary artery. The SERCA inhibitors do not contract

all smooth muscles, and in some cases, a poor correlation

exists between increased intracellular Ca2þ and contraction

(Snetkov et al., 2003). Huang et al. (2006) reported that Ca2þ

entry through SOCC is not directly coupled to VSMC

contraction in renal arteries (Huang et al., 2006). A role for

SOCCs other than smooth muscle contraction was first

suggested by Flemming et al. (2003) in rabbit cerebral arteries

where the application of CPA induces a sustained increase in

[Ca2þ ]i in the presence of a VOCC blocker (D600), which is

not associated with contractions. However, membrane

depolarization with a Kþ -rich solution (in the absence of

D600) also produces a sustained rise in [Ca2þ ]i that is

associated with smooth muscle contraction (Flemming et al.,

2003). Since both CPA and a 35 mM KCl-containing solution

raise [Ca2þ ]i to similar levels, it is possible that CPA

activation of SOCCs causes an increase in [Ca2þ ]i in a

cellular compartment that is spatially separated from con-

tractile proteins, indicating that this spatially separate

cellular compartment may include internal Ca2þ stores that

are able to regulate local Ca2þ levels. Moreover, CPA

activates a sustained, non-selective cation conductance in

single myocytes isolated from the mouse anococcygeus. The

current–voltage relationship for the CPA-induced current is

linear with a reversal potential close to þ30 mV in near

physiological cation gradients. The reversal potential shifts

to a more negative value upon removal of extracellular

Ca2þ , indicating that a large proportion of the current is

carried by Ca2þ (Wayman et al., 1996a). This notion was

supported by simultaneous recordings of current and

intracellular Ca2þ levels, which showed that activation or

inhibition of the current is accompanied by rises and falls in

[Ca2þ ]i correspondingly (Wayman et al., 1996b). However,

the cellular mechanisms linking store depletion to the

opening of SOCCs are not well understood (Castells and

Droogmans, 1981; Putney, 2001; Flemming et al., 2002;

Wilson et al., 2002).

A model for SOCE

Several mechanisms for activation of SOCE have been

proposed (Berridge, 1995; Parekh and Penner, 1997; Gibson

et al., 1998; Putney, 2001; Bolotina, 2004). Smani et al. (2004)

presented a simple model that may explain how Ca2þ influx

factor (CIF, produced upon depletion of Ca2þ stores)

activates SOCCs using mouse aortic smooth muscle cells.

After CIF activation of SOCCs, CIF induces displacement of

inhibitory calmodulin (CaM) from Ca2þ -independent phos-

pholipase (iPLA2), a key event leading to activation of iPLA2

and generation of lysophospholipids; the latter, in turn,

activate SOCCs in a plasma membrane—delimited manner.

Upon refilling of the stores and termination of CIF produc-

tion, CaM rebinds to iPLA2 to resume its inhibition and so

terminating the activity of SOCCs and Ca2þ entry (Smani

et al., 2004). Studies by Trepakova et al. (2001) identified
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native CIF in support of this hypothesis. A novel 3-pS Ca2þ -

conducting channel that is activated by 1,2-bis(o-amino-

phenoxy)ethane-N,N,N0,N0-tetraacetic acid (BAPTA) and

thapsigargin causes passive depletion of intracellular Ca2þ

stores, and this channel is likely to be a native store-operated

channel in VSMCs. The 3-pS channels are activated in inside-

out membrane patches from smooth muscle cells immedi-

ately upon application of CIF extracted from mutant yeast

cell lines (Trepakova et al., 2001). The existence of CIF that is

produced by depleted stores and the idea that it may trigger

Table 1 (Vascular) smooth muscles in which SERCA pump inhibitors raise [Ca2þ ]i and/or elicit contraction

Species Smooth muscle Remarks Responses References

Rat Aorta Abolished by nifedipine/nicardipine Contraction and increased
[Ca2þ ]i

Tepel et al., 1994; Kwan
et al., 1994; Low et al., 1994;
Noguera et al., 1997;
Tosun et al., 1998; Xuan and
Glass, 1996

Carotid artery Partially reduced by verapamil Contraction and increased
[Ca2þ ]i

Sekiguchi et al., 1996

Coronary artery No contraction and
increased [Ca2þ ]i

Snetkov et al., 2003

Femoral artery Partially reduced by verpamil Contraction and increased
[Ca2þ ]i

Nomura et al., 1997

Femoral artery A small transient
contraction and increased
[Ca2þ ]i

Snetkov et al., 2003

Mesenteric artery No contraction and
increased [Ca2þ ]i

Snetkov et al., 2003

Pulmonary artery Unaffected by nifedipine, verapamil
reduced by tyrosine kinase inhibitors.
pCa2þ /tension curve unaffected

Gonzalez De La
Fuente et al., 1995

Pulmonary distal arterial
smooth muscle

Abolished by nifedipine Increased [Ca2þ ]i Wang et al., 2004

Intrapulmonary artery Unaffected by diltiazem or the
reverse mode Naþ /Ca2þ antiport
inhibitor KB-R7943

Contraction and increased
[Ca2þ ]i

Snetkov et al., 2003

Renal cortical interlobar
arteries

Increased [Ca2þ ]i Facemire et al., 2004

Renal artery No contraction Snetkov et al., 2003
Preglomerular vascular
smooth muscle

Increased [Ca2þ ]i Fellner and Arendshorst,
1999

Basilar arteries Unaffected by verapamil Contraction Bergdahl et al., 2005
Ileum Unaffected by nifedipine,

methoxyverapmail
Increased [Ca2þ ]i Ohta et al., 1995

Spleen Unaffected by nifedipine reduced by
tyrosine kinase inhibitors

Burt et al., 1995

Urinary bladder Very weak contractile Munro and Wendt, 1994
A7r5 rat smooth muscle cell
line

Not applicable Increased [Ca2þ ]i Byron and Taylor, 1995;
Iwamuro et al., 1999;
Iwasawa et al., 1997

Mouse Anococcygeus Partially reduced by nifedipine Contraction and increased
[Ca2þ ]i

Gibson et al., 1994; Wallace
et al., 1999

Guinea-pig Gastric fundus Partially reduced by nifedipine Petkov and Boev, 1996a
Cat Gastric fundus Partially reduced by nifedipine Petkov and Boev, 1996b
Canine Pulmonary arterial smooth

muscle cells
Unaffected by nifedipine reduced by
tyrosine kinase inhibitors

Contraction and increased
[Ca2þ ]i

Doi et al., 2000;
Wilson et al., 2002

Renal arterial smooth muscle
cells

Unaffected by nisoldipine reduced by
tyrosine kinase inhibitors

Contraction and increased
[Ca2þ ]i

Wilson et al., 2002

Rabbit Pulmonary arterial smooth
muscle cells

Unaffected by nifedipine Increased [Ca2þ ]i Kang et al., 2003

Carotid artery smooth muscle Increased [Ca2þ ]i Kawanabe et al., 2002
Pial artery Contraction and increased

[Ca2þ ]i
Flemming et al., 2002,
2003

Choroidal artery Abolished by nifedipine Increased [Ca2þ ]i Curtis and Scholfield,
2001

Human Lower oesophageal sphinctor
smooth muscle

Increased [Ca2þ ]i Wang et al., 2003

Bronchus Cortijo et al., 1997
Porcine Airway smooth muscle Increased [Ca2þ ]i Ay, 2004
Swine Renal artery Increased [Ca2þ ]i Utz et al., 1999
Prostate
cell line

Increased [Ca2þ ]i Thebault et al., 2005

Abbreviation: SERCA, sarcoplasmic/endoplasmic reticulum Ca2þ ATPases.
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activation of SOCCs was proposed more than a decade ago.

However, the molecular structure of CIF has yet to be defined

even though it is reportedly stable and can be partly purified

(Kim et al., 1995). Moreover, functional studies demonstrate

that the plasma membrane Naþ /Ca2þ exchanger (NCX) is

also involved in the regulation of vascular Ca2þ homeostasis

by contributing to SOCE (Arnon et al., 2000). Evidence for an

important role of NCX in SOCE came from a study showing

that NCX is functionally expressed in cultured VSMCs from

the human pulmonary artery and that Ca2þ entry via the

reverse mode of NCX participates in store depletion-

mediated elevation in [Ca2þ ]cyt. Thus, blockade of NCX in

its reverse mode may serve as a potential therapeutic

approach for the management of pulmonary hypertension

(Zhang et al., 2005a). The functional evidence for a positive

role of NCX in Ca2þ filling is also supported by immuno-

blotting and immunfluorescence studies where NCX is

expressed in cultured arterial myocytes (Juhaszova et al.,

1994). Besides, expression of NCX1 (mainly NCX1.3) is

detected in coronary artery smooth muscle cells (Slodzinski

et al., 1995). Furthermore, nitric oxide (NO), which induces

vascular relaxation by accelerating SERCA-dependent re-

filling of Ca2þ stores, would be expected to blunt CIF

production and so terminate the activity of SOCCs and Ca2þ

influx (Cohen et al., 1999).

Members of the canonical transient receptor potential

family (TRPC), particularly TRPC1, are involved in SOCE in

VSMCs (Golovina et al., 2001; Xu and Beech, 2001; Sweeney

et al., 2002a; Bergdahl et al., 2005). Xu et al. (2006) suggested

that TRPC5 is another component of SOCC. Studies on non-

vascular cells have implicated that additional TRPC family

members exist in association with SOCE, including TRPC3

(Liu et al., 2000; Zagranichnaya et al., 2005), TRPC4

(Hofmann et al., 2002; Strubing et al., 2003) and TRPC7

(Zagranichnaya et al., 2005). In addition, TRPC1 may also be

linked to TRPP2 (polycystin-2) Ca2þ permeable channels

(Tsiokas et al., 1999; Giamarchi et al., 2006). More recently,

Roos et al. (2005) have demonstrated that a single mem-

brane-spanning protein termed STIM1 (stromal-interacting

molecule 1) plays an essential role in the activation of

SOCCs. The STIM1 protein serves as a sensor of Ca2þ within

the stores (Roos et al., 2005). Other studies provide strong

evidence showing that Orai1 (the Greek mythological

characters the Orai, which are the keepers of the gates of

heaven) is a pore subunit of the store-operated Ca2þ release-

activated Ca2þ channels (Feske et al., 2006; Prakriya et al.,

2006). Soboloff et al. (2006) revealed a powerful gain in the

SOCC function that is dependent on the presence of both

STIM1 and Orai1 (Soboloff et al., 2005). STIM1 may interact

with TRPC1 and is involved in SOCE (Lopez et al., 2006).

Jackson (2006) suggested that given the similarities between

Ca2þ handling in platelets and VSMCs, it is likely that STIM1

and possibly Orai1 as well take part in SOCE in VSMCs and

human airway myocytes (Jackson, 2006; Peel et al., 2006).

Based on these reports, we propose a model for SOCE in

smooth muscle excitation/contraction coupling, which takes

into account that, in many cases, the responses to SERCA

inhibitors and to IP3-generating receptor agonists, both have

VOCC-dependent and VOCC-independent components

(Figure 1). In addition, the contractile response to the SERCA

inhibitors is more variable than that to receptor agonists.

The release of Ca2þ from intracellular stores in response to

Ins(1,4,5)P3 has two effects. Firstly, there is a rise in [Ca2þ ]i—

possibly amplified by Ca2þ -induced Ca2þ release from

ryanodine-sensitive stores—which activates Ca2þ -depen-

dent Cl� channels, thus producing membrane depolariza-

tion that promotes Ca2þ entry via VOCCs. Wayman et al.

(1996a) described that Ca2þ store depletion activates a

biphasic inward current in mouse anoccygeous smooth

muscle cells. An initial transient current upon the release

of Ca2þ from the SR is due to activation of Ca2þ -dependent

Cl� channels (Wayman et al., 1996a). Secondly, depleted

Ca2þ stores generate CIF, which diffuses to the plasma

membrane. A cascade of plasma-membrane-delimited reac-

tions in which CIF displaces inhibitory CaM from the

membrane-bound Ca2þ -independent iPLA2 leading to iPLA2

activation and the generation of lysophospholipids that in

turn stimulate SOCCs (Smani et al., 2004). Activation of

SOCE via SOCCs is responsible for sustaining the contraction

and refilling the stores upon removal of the agonist. On the

other hand, activation of protein kinase C (PKC) by

diacylglycerol following receptor stimulation may play an

additional role in the sensitization of the contractile

apparatus to Ca2þ , further amplifying the response to

receptor agonists. Besides, receptor agonists can also induce

Ca2þ sensitization via Rho-associated kinase pathways

(Ghisdal et al., 2003). The SERCA inhibitors, which deplete

the stores and cause SOCE, fail to activate these sensitizing

processes, thus explaining the observed low magnitude of

contractions produced by CPA or thapsigargin, as compared

with receptor agonists. Moreover, in pulmonary arteries and

spleen, the cellular response activated by capacitative

calcium entry in smooth muscle is reduced by tyrosine

kinase inhibitors, suggesting a phosphorylation step via

tyrosine kinase in the SOCE pathway. Finally, NO was found

to modulate the SOCC activity via a guanosine-30,50-

cyclicmonophosphate (cGMP)-dependent mechanism

(Clementi and Meldolesi, 1997; Bolotina, 1999).

Pharmacological inhibition of SOCE

A recent review by Putney (2001) discussed a number of

drugs that possess inhibitory activity against SOCCs, but in

most cases with less than optimal specificity. The SOCE

inhibitors include cations (lanthanides, Gd3þ and divalent

cations), P450 inhibitors (econazole, miconazole, clotrima-

zole and ketoconazole), cyclooxygenae inhibitors (niflumic

acid, flufenamic acid and tenidap), lipoxygenase inhibitors

(nordihydroguaiaretic acid and eicosatetraynoic acid), puta-

tive channel blockers ((SK&F 96365, SC38249, LU52396,

L-651, 582, tetrandrine, 2-Aminoethyl diphenylborinate)

and mechanism-based inhibitors (U73122 (phospholipase

C inhibitor) and wortmannin (phosphatidylinositol kinase

inhibitor)) (Putney, 2001). The simplest and most depend-

able SOCE inhibitors are Ca2þ mimics, for example, divalent

cations, and the potent trivalent lanthanides.

There has been considerable progress in our understand-

ing of the pharmacological profile of SOCCs in VSMCs.

Flemming et al. (2003) characterized the pharmacological
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properties of store-operated channels in VSMCs of rabbit pial

arterioles with the use of various SOCC inhibitors (Flemming

et al., 2003) and demonstrated that SOCE is inhibited by

Gd3þ in a concentration dependent manner (IC50¼101 nM).

The inhibitory effect of other inhibitors in the same study

includes: 10 mM La3þ (70% inhibition), 75 mM 2-Aminoethyl

diphenylborinate (66% inhibition), 100 mM Ni2þ (57%

inhibition), 10 mM wortmannin (76% inhibition) and

100 mM capsaicin (12% inhibition). Drugs that are ineffective

include: 1 mM nifedipine, 10 mM SK&F96365, 10 mM LOE908,

10–100 mM ruthenium red, 100mM sulindac, 0.5 mM strepto-

mycin and a 1:10 000 dilution of Grammostolla spatula

venom (Flemming et al., 2003). On the contrary, Wayman

et al. (1996a) reported that SOCCs in anococcygeus smooth

muscle cells are insensitive to Gd3þ or La3þ at concentra-

tions of up to 400 mM (Wayman et al., 1996a). SOCCs in

VSMCs of canine renal arteries show some degree of

sensitivity to 100 mM Gd3þ , while those in pulmonary

Figure 1 A model for excitation/contraction coupling in a tonic smooth muscle cell in which sustained contraction involves Ca2þ entry
through both VOCCs and SOCCs. (1) Physiologically, SOCE is initiated either by stimulation of receptors that couple through heterotrimeric
GTP-binding protein (G proteins) to activate phospholipase Cb (PLCb) or (2) by stimulation of receptors that couple through tyrosine
phosphorylation to activate PLCg (Parekh and Penner, 1997; Patterson et al., 2002). This results in breakdown of phosphoinositide and
production of IP3. (3) This second messenger activates IP3 receptors, which are ligand-gated Ca2þ channels located in the SR. The resulting
release of Ca2þ into the cytoplasm causes a transient increase in [Ca2þ ]i, whereas (4) emptying of Ca2þ stores generates a retrograde signal
that activates SOCCs in the plasma membrane, which are responsible for the sustained increase in [Ca2þ ]i after the initial Ca2þ transient. (5)
Depleted Ca2þ stores generate a key messenger molecule called Ca2þ influx factor (CIF), which diffuses to the plasma membrane. (6) A
cascade of plasma-membrane-delimited reactions in which (7) CIF displaces inhibitory CaM from the membrane-bound iPLA2, leading to iPLA2

activation and the generation of lysophospholipids (8) that in turn activate SOCCs. Ca2þ release from the SR causes the sensor (i.e., Ca2þ -
sensing STIM1 protein) to aggregate in areas close to the plasma membrane and to interact with SOCC (i.e., Orai1), which is believed to be the
store-operated channel (9). On the other hand, (10) SOCC may also provide direct depolarization, independently of Ca2þ -activated Cl�

channel VOCCs are opened by membrane depolarization due to initial Ca2þ -release from SR, which stimulates a Ca2þ -activated Cl� channel
(11). (12) The plasma membrane NCX is involved in the regulation of Ca2þ homeostasis in blood vessels by contributing to Ca2þ entry.
Finally, (13) NO/cGMP inhibits SOCCs, possibly by enhanced re-filling of the Ca2þ -stores. (14) Ca2þ sensitization might occur via agonist-
induced activation of either the small G protein RhoA/Rho-associated kinase (Rho K) pathway or protein kinase C (PKC). A, agonist; CICR, Ca2þ

-induced Ca2þ release; CIF, calcium influx factor; CLCA, Ca2þ -activated Cl� channel; iPLA2, Ca2þ -independent phospholipase A2; CaM,
calmodulin; CPA, cyclopiazonic acid; DAG, diacylglycerol; G, GTP binding proteins; cGMP, guanosine-30,50-cyclicmonophosphate; IP3,
inositol-1,4,5-trisphosphate; NCX, Naþ /Ca2þ exchanger; NO, nitric oxide; PKC, protein kinase C; PLC, phospholipase C; R, receptor; S,
putative Ca2þ sensor; SOCC, store-operated Ca2þ channel; STIM1, stromal-interacting molecule 1; TG, thapsigorgin; TK, tyrosine kinase; Vm,
membrane potential; VOCC; voltage-operated Ca2þ channel.
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arterial smooth muscle are resistant to Gd3þ (Wilson et al.,

2002). SOCCs of rat intrapulmonary arteries are sensitive to

1 mM La3þ and these channels in main pulmonary arteries

are blocked by La3þ only at much higher concentrations

(4100mM) (Robertson et al., 2000; Ng and Gurney, 2001).

The SOCCs of the anococcygeus and ileal smooth muscles

can be inhibited by 10 mM SK&F96365 (Wayman et al., 1996a;

Zholos et al., 2000; Ng and Gurney, 2001).

A recent study showed that diethylstilbestrol (DES), a

synthetic estrogenic agonist, elicits a rapid and reversible

block of SOCCs in rat basophilic leukaemia cells, aortic

smooth muscle and human platelets. DES also inhibits

whole-cell Ca2þ release-activated Ca2þ currents and thapsi-

gargin-induced capacitative calcium entry (Zakharov et al.,

2004). In contrast, trans-stilbene, a close structural analog of

DES that lacks hydroxyl and ethyl groups, had no effect on

the Ca2þ release-activated Ca2þ current and on SOCE. Thus,

DES is proposed to be an effective inhibitor of SOCCs in a

diversity of cell types (Zakharov et al., 2004). Brueggemann

et al. (2006) also reported the pharmacological characteristics

of a store-operated current, including its sensitivity to DES,

2-Aminoethyl diphenylborinate or micromolar Gd3þ , and

compared the effects of these inhibitors on thapsigargin- or

[Arg8]-vasopressin-activated SOCE in rat mesenteric artery

VSMCs using fura-2 (Brueggemann et al., 2006).

Other important roles played by SOCE in response
to hormones and neurotransmitters

SOCCs and VSMC proliferation

Considerable existing evidence supports an important role

for Ca2þ in cell proliferation, where activation of SOCCs is

thought to participate in the process. VSMC proliferation

normally occurs during the development and progression of

hypertension. Pulmonary vascular medial hypertrophy due

to VSMC proliferation contributes to the increased pulmon-

ary vascular resistance in patients with pulmonary hyper-

tension. A rise in [Ca2þ ]cyt promotes the growth of

pulmonary artery VSMCs. Resting [Ca2þ ]cyt, intracellular

stored [Ca2þ ], SOCE and store-operated Ca2þ currents are

greater in proliferating human pulmonary artery VSMCs

than in growth-arrested cells (Sweeney et al., 2002a). In cells

treated with an antisense oligonucleotide specifically de-

signed to cleave TRPC1 mRNA (resulting in reduced mRNA

and protein expression of TRPC1), the amplitudes of the

store depletion-activated currents (ISOC) and SOCE elicited

by passive depletion of Ca2þ stores are reduced. Importantly,

there is a 50% reduction in the growth rate of these cells,

indicating that TRPC1 may encode a SOCC that plays a

critical role in VSMC proliferation of the pulmonary artery

by regulating SOCE-associated changes in [Ca2þ ]cyt

(Sweeney et al., 2002b).

Spontaneous SOCC activity

In addition to SOCC stimulation by store depletion,

spontaneous channel activity has been also recorded in

unstimulated smooth muscle cells. In freshly isolated rabbit

portal vein myocytes, approximately 45% of outside-out

patches contain spontaneous single-channel currents with a

unitary conductance 23 pS, which have similar properties as

to those of channel currents evoked by noradrenaline and

the diacylglycerol analogue 1-oleoyl-2-acetyo-sn-glycerol

(Albert and Large, 2001). The molecular identity of the

channel is unknown. However, it is becoming increasingly

evident that there are several similarities between these

channels and the TRP and TRPL (transient receptor poten-

tial-like) channels previously described in Drosophilia photo-

receptors (Harteneck et al., 2000). Firstly, in rabbit portal vein

smooth muscle, the non-selective cation channels are

activated by diacylglycerol in a PKC-independent manner

(Helliwell and Large, 1997). The mammalian homologue

hTRPC6, hTRPC3 and mouse TRPC7 are non-selective cation

channels that are activated by diacylglycerol independently

of PKC (Hofmann et al., 1999; Okada et al., 1999). Secondly,

the relative permeability of some of these channels to

divalent cations is similar. Thirdly, in the absence of

activators, channels open and close spontaneously in native

venous myocytes and in cells expressing TRP and TRPL

channels (Hofmann et al., 1999). Lastly, the probability of

channel opening is greatly increased at positive potential

(Chyb et al., 1999; Hofmann et al., 1999).

Using whole-cell, perforated-patch recording method, Bae

et al. (1999) described a basal non-selective cation current in

freshly dispersed rabbit pulmonary artery myocytes and

concluded that the non-selective cation conductance is a

component of the resting membrane potential (Bae et al.,

1999). Spontaneous SOCC activity could be one reason for

the resting membrane potentials (�60 and �45 mV) of

VSMCs being significantly less negative than the Kþ

equilibrium potential (EK, about �85 mV, Nelson and

Quayle, 1995; Kuriyama et al., 1998). Albert et al. (2003)

suggested that in rabbit ear artery myocytes, there exists a

constitutively active Ca2þ -permeable cation channel that is

regulated by external Ca2þ ions and suppressed by the tonic

PKC activity. Such a constitutively active Ca2þ -permeable

cation current may contribute to the resting membrane

conductance and basal Ca2þ influx in the arteries (Albert

et al., 2003).

Molecular identity of SOCCs in VSMC

Emerging evidence links SOCE to TRP channels. It has long

been known that smooth muscle contraction can occur

independently of changes in the membrane potential; what

is less clear is the nature of the Ca2þ permeation pathway

that is stimulated without voltage activation. In this

regard, ROCCs activated by ligand–receptor interaction and

SOCCs are thought to be principal modes of voltage-

independent Ca2þ entry. It is possible that ROCCs and

SOCCs may be closely related members of the TRP channel

family (McFadzean and Gibson, 2002). The TRP channel

proteins were first identified in the Drosophila melanogaster

fruit fly where a mutation led to visual defects due to defects

in the Ca2þ influx pathway. There have since been a large

number of TRP channel proteins identified and these can

be classified into three categories. They all have six trans-

membrane domains and are non-selective ion channels.
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(i) TRPC, where C stands for classical or canonical due to

the highest homology with the molecular identity of TRP

channels in Drosophila. There are at least seven members

(TRPC 1–7) of this subfamily, with TRPC1 being the most

abundant in vascular tissue. TRPC2 is a pseudogene in man.

However, the expression of the various isoforms of TRPC

channels in the vasculature is likely to be highly species and

vascular bed dependent. There is evidence suggesting that

the ROC may in fact be a TRPC6 and possibly TRPC1 channel

(Xu and Beech, 2001; Inoue, 2005). It is likely that ROC and

SOC channels are made up of heteromeric combinations of

various TRPC proteins.

(ii) TRPV, where V stands for vanilloid, as these channels

(TRPV 1–6) are closely related to the vanilloid receptor.

(iii) TRPM, where M stands for melastatin (a tumor

suppressor).

Although TRP channels are widely studied for their roles in

ion conductance, it is also clear that they have several other

principal functions as manifested by their sensory activities

in perception of temperature, taste, pH, chemical stimuli (for

example capsaicin) and osmolarity (Inoue, 2005).

Multiple homologues of TRPC proteins are expressed in

VSMCs (Beech, 2005). When expressed heterologously, TRP

channels generally form functional entities that exhibit

electrophysiological properties characteristic of non-

selective cation channels. There is growing support for the

involvement of the TRPC1–7 family in the formation of

Ca2þ -permeable non-selective cation channels in VSMCs

(Table 2). Several studies demonstrate that TRPC mRNA and

TRPC proteins are expressed in several smooth muscle

preparations. In rat pulmonary artery VSMCs, reverse

transcription-PCR analysis revealed the expression of TRPC1,

TRPC3, TRPC4, TRPC5 and TRPC6, while mRNA immuno-

staining identified proteins for TRPC1, TRPC3, TRPC4 and

TRPC6 (Ng and Gurney, 2001). Moreover, reverse transcrip-

tion-PCR and western blotting performed on RNA and

protein isolated from distal intrapulmonary arteries

and main pulmonary artery VSMCs revealed both mRNA

and protein expression for TRPC1, TRPC4 and TRPC6,

but not for TRPC2, TRPC3, TRPC5 or TRPC7 (Wang et al.,

2003). In a number of murine and canine smooth muscle

cell preparations, mRNA for TRPC4, TRPC6 and TRPC7 is

detected but with no detection of mRNA for TRPC1, TRPC2

and TRPC5. In rat renal resistance arteries and aorta, mRNA

and protein are probed for TRPC1, TRPC3, TRPC4, TRPC5

and TRPC6, while mRNA for TRPC2 and TRPC7 is undetect-

able (Facemire et al., 2004). Furthermore, in situ hybridiza-

tion yielded strong labeling of TRPC1, TRPC3, TRPC4,

TRPC5 and TRPC6 in endothelial and VSMCs of human

coronary and cerebral arteries. TRPC7 is only expressed in

endothelial cells but not in the underlying VSMCs. Results

from immunohistochemical staining are in consistence with

those from in situ hybridization (Yip et al., 2004).

Some studies favour a role for TRPC proteins in smooth

muscle function. For example, TRPC1 partially mediates

SOCE in smooth muscle (Inoue et al., 2001). In arterioles, the

application of an antibody against an extracellular epitope of

TRPC1 (T1E3) reduces the thapsigargin-induced reduction in

[Ca2þ ] by 25%, suggesting that part of thapsigargin-evoked

SOCC activity is likely to be mediated by TRPC1 (Xu and

Beech, 2001). A T1E3 antibody was also found to cause a 50%

reduction in the SOCE-mediated contraction of rat cerebral

arteries (Bergdahl et al., 2005), thus, supporting the notion

that additional TRPC subunits are likely to play a positive

role in thapsigargin-induced activation of SOCCs. More

recently, Xu et al. (2006) showed that E3-targeted externally

acting anti-TRPC5 blocking antibody (T5E3) suppressed

Ca2þ entry in arterioles only after activation in store-

operated mechanism triggered by thapsigargin in the

absence of extracellular Ca2þ , while T5E3 pre-adsorbed to

its antigenic peptide had no effect. Collectively, these

findings suggest that Ca2þ entry caused by passive store-

depletion in arteriolar VSMCs may involve TRPC1 and

TRPC5 (Xu et al., 2006).

Golovina et al. (2001) provided evidence for an up-

regulation of SOCC activity in proliferating VSMCs,

suggesting that the increased TRPC1 mRNA may underlie

Table 2 Detection of TRPC in smooth muscle of various tissues

Tissue TRPC1a TRPC2 TRPC3 TRPC4a TRPC5a TRPC6 TRPC7 References

Aorta þ þ þ þ þ þ Facemire et al., 2004
A7r5 þ þ þ Brueggemann et al., 2006
Rat mesentery artery þ þ þ Brueggemann et al., 2006
Rat renal resistance artery þ þ þ þ þ Facemire et al., 2004
Rat intralobar pulmonary arteries þ þ þ Lin et al., 2004
Rat cerebral arteries þ þ þ þ þ Flemming et al., 2003
Rabbit portal vein myocyte þ Albert and Large, 2003
Human lower oesophageal sphinctor
smooth muscle

þ þ þ þ þ Wang et al., 2003

Human coronary & cerebral artery þ þ þ þ þ Yip et al., 2004
Human pulmonary artery þ Golovina et al., 2001
Human internal mammary artery þ þ Bergdahl et al., 2005
Pig trachea smooth muscle þ þ þ Ay et al., 2004
Murine & canine smooth muscle þ þ þ Walker et al., 2001
Rat prostate smooth muscle cell line þ þ Thebault et al., 2005
Lamb fetal pulmonary smooth muscle cells þ þ þ þ Resnik et al., 2007

Abbreviation: TRPC, transient receptor potential family.

Remark: ‘þ ’-expression.

Empty cells refers to ‘particular TRPC is not expressed in the tissue’.
aIndicates that particular TRPC may involve SOCC activity. TRPC2 is a pseudogene in man.
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SOCC-dependent rises in [Ca2þ ]i during VSMC proliferation.

In addition, they also demonstrated that human pulmonary

artery myocytes treated with antisense oligonucleotides to

cleave mRNA for TRPC1 have a low expression of TRPC1, a

reduced amplitude of CPA-evoked currents and a decreased

cell growth rate (Golovina et al., 2001). The phenylephrine-

and CPA-evoked non-selective cation channel activation

mediating tonic constrictions in rabbit vena cava is asso-

ciated with oscillations of [Ca2þ ]i generated by SOCE that

may be specifically encoded by genes for TRPC1 (Liu et al.,

2000; Lee et al., 2001). However, there is not always such a

clear association between the expression of mRNA or

channel proteins and their physiological significance in

native cells. Despite a prominent role for TRPC1 as the main

candidate for SOCCs in smooth muscle, other evidence

showed that TRPC4 may be also related to SOCCs.

The mRNA for TRPC4 was found to be the most abundant

among all TRPCs detected in murine and canine smooth

muscle cells (Walker et al., 2001). In addition, other

studies also support a positive role of TRPC6 in mediating

noradrenaline-evoked cation current (Icat, ROC) in VSMCs

(Inoue et al., 2001).

The newly identified STIMs may mediate SOCE. Roos et al.

(2005) proposed that STIM1 is an essential and conserved

component of SOCC. STIM1 contains a functional EF-hand

domain for Ca2þ binding and can act as a Ca2þ sensor to

monitor the Ca2þ -loading levels inside the stores (reviewed

by Draber and Draberova, 2005; Putney, 2007). After store

depletion, STIM1 is transolocated to the plasma membrane

to activate SOCCs by the following proposed mechanisms:

(i) interaction with a putative TRP pore-forming subunit;

(ii) activation of Ca2þ entry by means of conformational

coupling to its coiled domain and (iii) assembly with

additional STIM1 monomers and other components to form

a unique functional Ca2þ channel (Liou et al., 2005; Zhang

et al., 2005b; Spassova et al., 2006).

Pathophysiological importance of SOCE

SOCE and cardiovascular diseases

Some cardiovascular diseases are specifically associated with

a failure or malfunction of SOCE. The Ca2þ -handling

capability of the SR is defective in pulmonary hypertension

and hyperglycaemia.

Prolonged exposure to alveolar hypoxia causes pulmonary

hypertension with profound vascular remodelling and

alterations in the Ca2þ homeostasis in pulmonary artery

VSMCs (Shimoda et al., 2000). Several studies provide

evidence that pulmonary hypertension (including chronic

hypoxic pulmonary hypertension and chronic intrauterine

pulmonary hypertension) is related to SOCE. Firstly, store-

operated channels of pulmonary artery VSMCs are upregu-

lated by chronic hypoxia, and increased SOCC activity

contributes to the enhanced vascular tone in hypoxic

pulmonary hypertension. Small interfering RNA knockdown

of TRPC1 and TRPC6 specifically inhibits the thapsigargin-

and 1-oleoyl-2-acetyo-sn-glycerol-induced cation entry. Re-

moval of extracellular Ca2þ or inhibition of SOCE by La3þ

and SKF-96365 prevent the elevated levels of [Ca2þ ]i in

pulmonary artery VSMCs and inhibit the augmented

vascular tone in pulmonary arteries of chronic hypoxic rats.

In contrast, nifedipine has a negligible effect (Lin et al.,

2004). Secondly, hypoxia-related pulmonary vasoconstric-

tion requires SOCE in isolated rat lungs, since the enhanced

vascular tone can be inhibited by SK&F-96365, NiCl2 or

LaCl3 (Weigand et al., 2005). Thirdly, the platelet-derived

growth factor-mediated proliferation of pulmonary arterial

smooth muscle cells is associated with c-Jun/STAT3-induced

upregulation of the TRPC6 expression. The resultant increase

in SOCE raises [Ca2þ ]i, which facilitates the return of Ca2þ

to the SR and augments pulmonary artery VSMC growth (Yu

et al., 2003). Lastly, chronic intrauterine pulmonary hyper-

tension increases SOCE and acute normoxia normally

diminishes SOCE in fetal lamb pulmonary artery VSMCs.

Under normoxic conditions, the expression of TRPC1, 3, 5

and 6 is greater in normotensive than hypertensive VSMCs

(Resnik et al., 2007). The SOCCs may thus represent an

additional target for therapeutic intervention.

Hyperglycaemia also attenuates SOCE in VSMCs following

depletion of intracellular Ca2þ stores (Rivera et al., 1995);

the underlying mechanisms may be related to altered PKC

activity as PKC-dependent phosphorylation was thought

to be contributory to the inactivation of SOCE (Parekh

and Penner, 1995). Reduced SOCE in the retinal arterioles

from streptozotocin-treated rats may also be related to the

channel modulation by PKCb (Curtis et al., 2003).

Organ culture and SOCE

Blood vessel preparations kept in organ culture are viable for

several days and maintain their contractility with little

evidence of a significant change in phenotype from the

contractile to the synthetic state when vessels are cultured in

the absence of supplementary growth factors (Hellstrand,

1998; Lindqvist et al., 1999). On the other hand, organ

culture of human saphenous vein and porcine aorta leads to

the formation of a neointima, a lesion that is characteristic

of restenosis after angioplasty (Soyombo et al., 1990; Koo and

Gotlieb, 1991). The synthetic phenotype of smooth muscle

cells is of importance in clinical situations where growth and

proliferation of VSMCs, such as neointima formation, is part

of the atherosclerotic process (Ross, 1993).

Since the distinction between contractile and synthetic

smooth muscle phenotypes was made largely based upon

ultrastructure (Owen, 1995; Thyberg et al., 1996), the issue

arises as to what roles alterations of ion channel properties

and intracellular Ca2þ stores may play in this process.

Changes in Ca2þ handling capacity in intact arteries, similar

to those observed in cultured VSMCs are likely to influence

cell excitability and SOCC pharmacology, making SOCC a

potential target for the prevention or even treatment of

hypertension and atherosclerosis.

In rat basilar and tail arteries, the intracellular Ca2þ release

upon depletion of SR stores is increased after 3–4 days in

serum-free organ culture (Dreja et al., 2001), which is not

associated with any increase in basal [Ca2þ ]i. The voltage-

dependent Ca2þ currents are reduced but SOCE is augmen-

ted in organ-cultured basilar arteries. SOCE is enhanced and

vascular contractility is maintained in rat cerebral arteries
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kept in culture for several days. Under these conditions,

there is also a 50% increase in the nifedipine-insensitive

currents that are activated by store depletion. The mRNA

levels for TRPC1 and TRPC6 increase significantly after organ

culture, and a polyclonal TRPC1 antibody against an

extracellular epitope (T1E3 antibody) inhibits contractility

by 50% (Bergdahl et al., 2005). In segments of the human

internal mammary, artery kept in organ culture for 24 h and

then exposed to balloon dilatation in vitro, followed by

further culture for 48 h, the mRNA expression of TRPC1 and

TRPC6 mRNA is higher as compared with the undilated

segments (Bergdahl et al., 2005), suggesting that organ

culture or mechanical injury could impact on the plasticity

of TRPC and cellular Ca2þ handling in blood vessels.

NO and SOCE

The endothelial production of NO accounts for endothelium-

dependent vasodilatation in response to dilator agonists.

Several mechanisms have been proposed to explain NO-

dependent modulation of [Ca2þ ]i in VSMCs, which is the

primary regulator of vascular tone. NO affects voltage-

dependent activation of smooth muscle L-type Ca2þ chan-

nels either directly or indirectly through opening Kþ

channels and ensuing hyperpolarization (Robertson et al.,

1993; Archer et al., 1994; Bolotina et al., 1994). While other

studies indicate that NO is capable of modulating the activity

of voltage-independent SOCCs. NO induces a rapid decrease

in [Ca2þ ]i by accelerating sequestration of Ca2þ into

intracellular stores via SERCA; as a result, refilled Ca2þ stores

inhibit SOCE and reduce vascular tone (Cohen et al., 1999).

NO-mediated inhibition of SOCCs and ROCCs is impaired in

chronic hypoxia-induced pulmonary hypertension (Jernigan

et al., 2006). Considering that a rise in [Ca2þ ]i is the major

stimulus for contraction, gene expression and proliferation of

VSMCs, such impaired NO signalling may have important

implications in the regulation of not only pulmonary

vascular tone but also arterial wall remodelling; both are

jointly involved in the development of pulmonary hyper-

tension associated with chronic hypoxia. In contrast, ex-

cessive NO interferes with the release of Ca2þ from

thapsigargin-sensitive stores and reduces SOCE into VSMCs

subsequent to depletion of Ca2þ stores in the mesenteric

vascular bed of bile duct-ligated rats (a model of liver

cirrhosis). This mechanism may mediate the reduced pressor

response reported in cirrhosis (Atucha et al., 2005). It appears

that NO modulates the SOCC activity via a cGMP-dependent

pathway because sodium nitroprusside, which releases in-

tracellular cGMP by activating guanylyl cyclase, was found to

inhibit non-selective cation currents activated by store

depletion in the mouse anococcygeus smooth muscle cells

(Wayman et al., 1996b). Moreover, sodium nitroprusside,

S-nitroso-N-acetyl-DL-penicillamine and 8-bromo-cGMP inhibit

a Ca2þ -permeable, non-selective cation current activated by

endothelin-1 in rat aortic smooth muscle cells (Minowa et al.,

1997). Therefore, regulation of the agonist-activated SOCE is

another mechanism responsible for NO-mediated vasodilata-

tion. More importantly, the Ca2þ -permeable non-selective

cation channels are important targets for nitrovasodilators.

Conclusions

Capacitative Ca2þ entry via SOCCs, along with VOCCs and

ROCCs, plays an important role in the regulation of smooth

muscle tone. The relative contribution of SOCE to excita-

tion/contraction coupling depends on the smooth muscle

type and appears to be greatest in tonic smooth muscle.

However, many questions remain unanswered and need full

resolution. The most important areas of future research are

(i) identification of selective activators/inhibitors that act

directly on SOCCs for further pharmacological characteriza-

tion of these channels and their potential therapeutic value;

(ii) elucidation of cellular mechanisms that link depletion of

the SR to the opening of SOCCs in the plasma membrane

and (iii) elucidation of a complete molecular structure, a

crucial step towards full understanding of the channel

function. It is important to determine not only the

expression of TRP proteins in VSMCs but also their tendency

to heteromultimerise in native cells. SOCCs in arterioles

have a distinct pharmacological profile. Knowledge of this

profile provides support for the hypothesis that there exist

multiple types of SOCCs in smooth muscle and will facilitate

comparisons with heterologously expressed genes that

encode putative subunits of SOCCs. The results presented

in this review favour the proposal that arteriolar SOCCs are

likely to be TRPC1 and TRPC5. Finally, are there mechanisms

of store-operated entry involving additional means of

activation (excluding Stim1) and other store-operated chan-

nels (excluding Orais)? The existence of distinct SOCCs in

VSMCs may aid in developing target-specific novel thera-

peutic drugs.
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