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The ubiquitin-like SUMO system functions by a cyclic process of
modification and demodification, and recent data suggest that
the nucleolus is a site of sumoylation–desumoylation cycles.
For example, the tumour suppressor ARF stimulates sumoylation
of nucleolar proteins. Here, we show that the nucleolar SUMO-
specific protease SENP3 is associated with nucleophosmin
(NPM1), a crucial factor in ribosome biogenesis. SENP3 catalyses
desumoylation of NPM1–SUMO2 conjugates in vitro and
counteracts ARF-induced modification of NPM1 by SUMO2
in vivo. Intriguingly, depletion of SENP3 by short interfering RNA
interferes with nucleolar ribosomal RNA processing and inhibits
the conversion of the 32S rRNA species to the 28S form, thus
phenocopying the processing defect observed on depletion of
NPM1. Moreover, mimicking constitutive modification of NPM1
by SUMO2 interferes with 28S rRNA maturation. These results
define SENP3 as an essential factor for ribosome biogenesis and
suggest that deconjugation of SUMO2 from NPM1 by SENP3 is
critically involved in 28S rRNA maturation.
Keywords: ARF tumour suppressor; NPM1/B23; desumoylation;
ribosome biogenesis
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INTRODUCTION
The post-translational modification of proteins with the ubiquitin-
like SUMO modifier has an important regulatory function in many
cellular processes, including DNA repair, cell-cycle progression
and transcription (Muller et al, 2004; Hay, 2005). Human cells
express three forms of SUMO—SUMO1, SUMO2 and SUMO3.
SUMO2 and SUMO3 are highly similar and share an identity of
97%, whereas SUMO1 and SUMO2/3 are about 50% identical.

Conjugation of SUMO to a target protein proceeds by a multistep
enzymatic pathway, which requires the E1 activating enzyme
Aos1/Uba2, the E2 conjugating enzyme Ubc9 and, in some cases,
involves E3 ligases, such as members of the PIAS family or RanBP2
(Pichler et al, 2002; Schmidt & Muller, 2003). Importantly, SUMO
modification is a highly dynamic and reversible process and, in
consequence, typically only a small fraction of a substrate is
sumoylated at a given time (Hay, 2005). The demodification
process is catalysed by SUMO-specific cysteine proteases of the
SENP family (Mukhopadhyay & Dasso, 2007). In humans, six
members of this family, known as SENP1–3 and SENP5–7, have
been identified so far. Interestingly, in mammalian cells, SUMO
paralogues (Ayaydin & Dasso, 2004; Fu et al, 2005) and the
enzymatic components of the SUMO system are compartmenta-
lized in specific subcellular regions, suggesting that sumoylation–
desumoylation cycles are primarily active at these sites
(Saitoh et al, 2006).

Recent data also implicate the nucleolus in dynamic cycles of
sumoylation and desumoylation. For example, two members of
the SENP family, SENP3 and SENP5, are specifically concentrated
in the nucleolus (Nishida et al, 2000; Di Bacco et al, 2006; Gong
& Yeh, 2006). Furthermore, enforced expression of the tumour
suppressor ARF (human p14ARF or mouse p19Arf), which also
localizes in the nucleolus, induces sumoylation of several
nucleolar proteins (Xirodimas et al, 2002; Chen & Chen, 2003;
Woods et al, 2004; Rizos et al, 2005; Tago et al, 2005). ARF
inhibits cell-cycle progression through both p53-dependent and
p53-independent mechanisms, and it has been proposed that the
latter mechanisms are related to ARF-dependent regulation of
ribosome biogenesis in the nucleolus (Sherr, 2006). In the
nucleolus, ribosomal RNA is initially transcribed as a precursor
that is subsequently cleaved in multiple steps into the mature 28S
and 5.8S rRNA of the 60S ribosome and the 18S rRNA of the 40S
ribosomal subunit (Dez & Tollervey, 2004). ARF inhibits the
maturation of the 28S rRNA by interfering with the function
of the nucleophosmin (NPM1) protein (Itahana et al, 2003;
Sugimoto et al, 2003). NPM1 has been implicated in several
cellular processes, including centrosome duplication, DNA-
damage response and ribosome biogenesis (Grisendi et al, 2006).
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In ribosome biogenesis, NPM1 is specifically required for the
processing of the 32S rRNA species to the mature 28S rRNA
form (Savkur & Olson, 1998; Itahana et al, 2003). It has been
proposed that ARF antagonizes this function by inducing the
ubiquitin-dependent degradation of NPM1 (Itahana et al, 2003).
Interestingly, NPM1 is also a target for ARF-mediated sumoylation
(Tago et al, 2005); however, the functional significance of this
process has remained unclear.

RESULTS
NPM1 is a major binding partner of SENP3
To identify interaction partners of SENP3, a Flag-tagged version of
the enzymatically inactive SENP3 protein—in which the catalytic
cysteine residue at position 532 was changed to serine—was
expressed in human embryonic kidney (HEK)293T cells and
proteins associated with SENP3C532S were affinity purified on anti-
Flag beads, separated by SDS–polyacrylamide gel electrophoresis
and analysed using mass spectrometry (Fig 1A). In addition to the
bait protein SENP3 and ribosomal subunit proteins, a major band
migrating at 37 kDa was identified as NPM1 (supplementary Fig 1
online). To verify this finding, anti-Flag immunoprecipitates from
cells expressing wild-type Flag-SENP3 were probed with an NPM1
antibody. Consistent with the result from mass spectrometry, a
37 kDa band co-precipitating with Flag-SENP3 was detected by
the NPM1 antibody (Fig 1B, left). The interaction of both proteins
was confirmed at their endogenous levels of expression, when
SENP3 was immunoprecipitated from HeLa cells with an SENP3
antibody followed by anti-NPM1 western blotting (Fig 1B, right).
A physical interaction of NPM1 with SENP3, but not other members
of the human SENP family (SENP1, SENP2 or SENP5), was also
detected in the yeast two-hybrid system (Fig 1C). Subsequent
experiments with fragments of NPM1, which corresponded to
functional domains of NPM1, delineated a region spanning amino
acids 1–186 as being sufficient for binding to SENP3 (supplemen-
tary Fig 2 online). In line with data on the physical interaction of
NPM1 and SENP3, immunofluorescence experiments showed
colocalization of both proteins in the nucleolus (Fig 1D).

SENP3 catalyses desumoylation of NPM1
Recent work has reported that NPM1 is modified by SUMO (Tago
et al, 2005). Accordingly, a SUMO modified form of endogenous
NPM1 was recovered on Ni-NTA beads from HEK293T cells
expressing His-SUMO1 or His-SUMO2 (supplementary Fig 3
online). ARF has been shown to stimulate the SUMO modification
of NPM1 and, in particular, to induce its multisumoylation.
Consistently, on expression of p14ARF with haemagglutinin (HA)-
NPM1 and either SUMO1 or SUMO2, two high-molecular-weight
anti-HA-reactive NPM1 forms migrating at 50 kDa and 65 kDa
were detected in addition to the major 37 kDa NPM1 form
(Fig 2A, lanes 3,7). Expression of SENP3 slightly reduced the level
of NPM1–SUMO1 conjugates, but induced a complete loss of
NPM1–SUMO2 forms (Fig 2A, lanes 4,8). As ARF can also induce
ubiquitination of NPM1 (Itahana et al, 2003), we wanted to
formally distinguish whether SENP3 acts on ARF-induced SUMO
or ubiquitin conjugates. Therefore, HA-NPM1 and p14ARF were
coexpressed in the absence or presence of SENP3 with His-tagged
SUMO2 or His-ubiquitin, which allowed for affinity purification
of the respective conjugates on Ni-NTA beads. On expression of

His-SUMO2, the 50 kDa and 65 kDa NPM1 conjugates, as well as
high-molecular-weight material, presumably corresponding to
chains of SUMO2 on NPM1, were enriched on Ni-NTA beads
(Fig 2B, lane 2). Mono- and diubiquitinated forms of NPM1
were found at 45 kDa and 55 kDa, respectively, and polymeric
His-ubiquitin–NPM1 conjugates were detected as a typical high-
molecular-weight ladder of bands (Fig 2B, lane 5). Importantly, on
expression of SENP3, the SUMO2–NPM1 conjugates completely
disappeared, whereas the ubiquitin–NPM1 conjugates remained
unaltered, indicating that SENP3 counteracts ARF-mediated
sumoylation—but not ubiquitination—of NPM1 (Fig 2B, lanes 3,6).
Notably, expression of p14ARF did not affect the association of
NPM1 with SENP3, making it unlikely that ARF-mediated
sumoylation acts by displacing SENP3 from NPM1 (supplementary
Fig 4A online). Interestingly, however, the expression of p14ARF

recruits SUMO2 into the nucleolus (supplementary Fig 4B online).
To study further the involvement of endogenous SENP3 in
desumoylation of NPM1, SENP3 was depleted from cells by using
two independent short interfering RNA (siRNA) duplexes and
efficient downregulation of the protein was verified by immuno-
blotting with an SENP3 antibody (Fig 2C, lanes 2,3). Importantly,
depletion of SENP3 by each of the siRNA duplexes led to a strong
increase in His-SUMO2–NPM1 conjugates that were recovered
on Ni-NTA beads, indicating that at physiological levels of
expression SENP3 reverses modification of NPM1 by SUMO2
(Fig 2C, lanes 2,3). It is noteworthy that depletion of SENP5—the
closest homologue of SENP3 in humans—does not affect the
sumoylation of NPM1 (Fig 2C, lane 4).

To analyse whether SENP3 directly exerts protease activity on
NPM1–SUMO conjugates, we set up an in vitro sumoylation–
desumoylation assay. To modify NPM1, the 35S-labelled protein,
generated by in vitro transcription/translation, was incubated with
recombinant components of the sumoylation machinery. In the
control reaction, which lacked SUMO, a major band of NPM1
migrating at 37 kDa was detected (Fig 2D, lane 1), whereas several
high-molecular-weight forms, which corresponded to either
NPM1–SUMO1 or NPM1–SUMO2 conjugates, became apparent
in the presence of the E1 enzyme, the E2 enzyme and either
SUMO1 or SUMO2 (Fig 2D, lanes 2,7). To test whether SENP3
catalyses the cleavage of NPM1–SUMO conjugates, the reactions
were subsequently incubated with wild-type or catalytically
inactive forms of either SENP3 or SENP5. NPM1–SUMO1
conjugates were not influenced by the addition of either form of
SENP (Fig 2D, lanes 3–6), whereas NPM1–SUMO2 conjugates
were lost on incubation with the wild-type SENP3 protein (Fig 2D,
lane 8), but remained stable in the presence of the catalytically
inactive protein (Fig 2D, lane 9). In comparison, SENP5 did not
significantly reduce the amount of NPM1–SUMO2 conjugates
(Fig 2D, lane 10).

Together, these data show that SENP3 catalyses desumoylation
of NPM1 and, in particular, cleaves SUMO2/3–NPM1 conjugates.

Downregulation of SENP3 inhibits rRNA processing
NPM1 is an essential factor in the nucleolar rRNA processing
pathway. The main steps in rRNA processing are summarized in
Fig 3A. NPM1 controls the maturation of the 28S rRNA species,
possibly by inducing the cleavage of the 32S rRNA intermediate
within the ITS2 region (Savkur & Olson, 1998; Itahana et al, 2003).
To investigate a potential involvement of SENP3 in rRNA
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processing, we depleted the protein from HeLa cells by using two
independent siRNA duplexes (Fig 2C), and the effect on rRNA
processing was studied by in vivo labelling of nascent rRNA using
32P-orthophosphate (Fig 3B). For comparison, rRNA processing
was also monitored in cells that were depleted of NPM1;
depletion of the respective proteins was verified by immuno-
blotting (Fig 3B, bottom panel). To study pre-rRNA processing, RNA
was prepared, separated by denaturing agarose gel electrophoresis
and metabolically labelled rRNA species were visualized by
autoradiography. The 47S and the 32S precursor rRNAs, as well as
the 28S and 18S mature rRNA forms, were detected in all samples.
In untransfected cells or cells transfected with a control siRNA, the
mature 28S rRNA species was the most prominent form and was
typically more abundant than its 32S rRNA precursor. By contrast,
and consistent with the role of NPM1 as a 32S processing factor,
knockdown of NPM1 caused a marked decrease in the amount of
mature 28S species (Fig 3B, lane 3). Intriguingly, depletion of
SENP3 phenocopies this defect and severely compromises the
production of the mature 28S rRNA form (Fig 3B, lanes 4,5).
Similar results were also obtained in U2OS cells on depletion of
SENP3 with the same siRNA duplexes or two other independent
siRNA sequences (supplementary Fig 5A,B online). Importantly,
depletion of SENP5 in either HeLa or U2OS cells did not affect the
amount of 28S rRNA. To establish whether SENP3 and NPM1 are
part of a common pathway in rRNA processing, we performed a
siRNA-based epistasis analysis by co-depletion of both proteins
from HeLa or U2OS cells (Fig 3C; supplementary Fig 5C online).
Quantification of the 32S and 28S rRNA species showed that
co-depletion did not enhance the 32S processing defect observed
on the depletion of SENP3 or NPM1 individually. This indicates

that SENP3 and NPM1 act in a common and not a parallel
pathway of 32S rRNA processing.

Sumoylation of NPM1 prevents 28S rRNA maturation
To investigate whether an alteration in SUMO modification of
NPM1 affects rRNA processing directly, we tested NPM1K263R,
which has been reported to be devoid of SUMO modification,
for its ability to mediate 28S rRNA processing (Liu et al, 2007).
By using a knockdown/knock-in strategy (Holzel et al, 2007),
we depleted cells from endogenous NPM1, reintroduced siRNA-
resistant versions of Flag-NPM1WT or Flag-NPM1K263R and
performed an in vivo labelling experiment as described above.
Both Flag-NPM1WT and Flag-NPM1K263R fully complemented the
depletion of endogenous NPM1 (supplementary Fig 6A online).
However, subsequent experiments showed that NPM1K263R is
still efficiently modified by SUMO in vitro and undergoes
ARF-mediated sumoylation in vivo (supplementary Fig 6B
online), indicating that mutation of Lys 263 does not abrogate
sumoylation of NPM1.

As a more direct approach to determine whether a failure in
deconjugation of SUMO2 from NPM1 affects its function in rRNA
processing, we mimicked constitutive sumoylation by linearly
fusing SUMO2 to NPM1. Cells depleted of endogenous NPM1
were complemented with either Flag-NPM1WT or Flag-NPM1–
SUMO2 (Fig 4A). Intriguingly, in contrast to Flag-NPM1WT,
re-expression of Flag-NPM1–SUMO2 could not rescue the defect
in 28S maturation caused by the depletion of endogenous NPM1
(Fig 4B), although Flag-NPM1–SUMO2 was expressed homo-
genously at a level comparable to Flag-NPM1 and showed normal
localization to the nucleolus (Fig 4C). It is noteworthy that
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Flag-NPM1–SUMO2 retained the ability to interact with endo-
genous NPM1 (supplementary Fig 7 online, upper panel, compare
lanes 7 and 8) and associated normally with known binding
partners of NPM1, such as p14ARF, retinoblastoma protein,
poly(ADP-ribose) polymerase-1 or histone H3 (supplementary
Fig 7 online, lower panel, compare lanes 7 and 8). These
observations indicate that tethering of SUMO2 to NPM1 does not
generally affect the structure and functions of NPM1, and thus
validate the fusion protein as a suitable system to mimic persistent
modification by SUMO2. In summary, the data are consistent with

the idea that a defect in desumoylation of NPM1 directly interferes
with the correct processing of the 32S rRNA species.

DISCUSSION
Eukaryotic ribosome synthesis is a tightly controlled multistep
process that requires the coordinated action of a series of cellular
components. Here, we have shown that SENP3 is crucial for 32S
rRNA processing. Furthermore, we have shown that SENP3
catalyses the deconjugation of SUMO2 from NPM1 and provided
evidence that this process is a critical step for 28S maturation.
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The related nucleolar SUMO protease SENP5 is unable to catalyse
demodification of NPM1 and does not affect 32S processing.
However, the loss of SENP5 reduces the amount of the primary
47S rRNA transcript (supplementary Fig 5B online; M.H. and S.M.,
unpublished data), indicating that both SENP3 and SENP5
function in ribosome biogenesis, but control distinct steps in
this process by acting on specific substrates. Importantly, the
involvement of the SUMO system in ribosome biogenesis seems to
be an evolutionarily conserved mechanism, as genetic studies in
the yeast Saccharomyces cerevisiae provide evidence that
both sumoylation and desumoylation are required for the
efficient formation and nuclear export of pre-ribosomal particles
(Panse et al, 2006).

SUMO modification of nucleolar proteins has been proposed
to control their distribution between the nucleolus and the
nucleoplasm. For example, a SUMO-dependent re-localization
from the nucleolus to the nucleus has been postulated for
topoisomerase I (Mo et al, 2002). Although it has been reported
that a presumed non-sumoylatable mutant of NPM1 (NPM1K263R)
shows an altered nuclear/nucleolar distribution (Liu et al, 2007),
we were unable to reproduce these data (supplementary Fig 6D
online). Furthermore, we could not confirm the reported loss
of sumoylation with NPM1K263R. Although SUMO-dependent

partitioning of nucleolar regulators is an attractive concept, we did
not observe a change in NPM1 localization on depletion or
overexpression of SENP3 (data not shown), indicating that
enhanced modification of NPM1 by SUMO2/3 affects NPM1
function within the nucleolus. In line with this idea, expression of
p14ARF triggers accumulation of SUMO paralogues in the
nucleolus (Tago et al, 2005; supplementary Fig 4B online).
Therefore, we propose a nucleolar modification–demodification
cycle of NPM1, which involves p14ARF in the conjugation process
and requires SENP3 for deconjugation. Furthermore, we suggest
that the balanced conjugation/deconjugation of NPM1 and
possibly other nucleolar proteins is part of the regulatory network
controlling ribosome synthesis and cell proliferation.

Accumulating evidence indicates that ribosome synthesis is
coupled with cell-cycle progression (Dez & Tollervey, 2004).
Interestingly, SENP3 was recently identified in an siRNA screen as
a potential component of the spindle assembly checkpoint,
indicating that it is also involved in the control of mitotic
processes (Stegmeier et al, 2007). Similarly, SENP5 is essential for
the proper progression of mitosis and cytokinesis (Di Bacco et al,
2006). It will be exciting to study whether SENP3 and SENP5
might indeed represent cellular factors that coordinate ribosome
biogenesis with the cell division cycle.
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METHODS
Immunoprecipitation, Ni-NTA pulldown and western blotting.
For purification of SENP3-associated proteins, 4� 108 HEK293T
cells were transfected with Flag-SENP3C532S or empty control
vector. At 48 h after transfection, cells were lysed in buffer A
(50 mM HEPES pH 7.2, 150 mM NaCl, 2 mM EDTA, 0.1% NP-40).
Cell lysates were incubated with anti-Flag agarose beads
(Sigma-Aldrich, St Louis, MO, USA) for 3 h, washed three times
with buffer A and bound proteins were eluted with Flag
peptide (100 mg/ml; Sigma-Aldrich). For the immunoprecipitation
of transfected or endogenous SENP3, 1.5� 106 HEK293T or
HeLa cells were used. Western blotting and Ni-NTA pulldown
experiments were carried out as described previously (Muller et al,
2000; Ledl et al, 2005).
In vitro sumoylation and desumoylation. 35S-labelled NPM1 was
generated by in vitro transcription/translation using the TNT Quick
Coupled T7 kit (Promega, Madison, WI, USA) and sumoylation
was carried out as described previously (Schmidt & Muller, 2002).
For demodification, SENP3 and SENP5, generated by in vitro
transcription/translation, were added to the in vitro modification
reactions and samples were incubated for an additional 90 min
at 30 1C. Proteins were separated on SDS gels and detected
by autoradiography.

Knockdown/knock-in experiments, RNA analysis and 32P in vivo
labelling. Knockdown/knock-in experiments and metabolic
labelling of rRNA were carried out as described previously
(Holzel et al, 2005, 2007) with some minor modifications (see
supplementary information online). Sequences of siRNA duplexes
are listed in the supplementary information online.
Immunofluorescence. For immunofluorescence, cells were fixed
in 3.4% paraformaldehyde and processed using standard
protocols. Images were acquired with an AX10 microscope (Zeiss,
Jena, Germany). Antibodies are listed in the supplementary
information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Fig 4 | Constitutive SUMO2 conjugation of NPM1 interferes with pre-ribosomal RNA processing. (A) HeLa cells expressing Flag-NPM1 or Flag-NPM1–

SUMO2 from a tetracycline-inducible promoter were transfected with an siRNA duplex targeting NPM1 or a control siRNA. At 72 h after transfection,

in vivo labelling and processing of the samples was carried out as described in Fig 3. (B) The signal intensities were quantified as described in Fig 3D.

(C) Homogenous expression and localization of Flag-NPM1 or Flag-NPM1–SUMO2 was monitored by indirect immunofluorescence. EtBr, ethidium

bromide; NPM1, nucleophosmin; siRNA, short interfering RNA.
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