
Abstract The hypothesis is proposed that the central

dynamics of the action–perception cycle has five steps:

emergence from an existing macroscopic brain state of

a pattern that predicts a future goal state; selection of a

mesoscopic frame for action control; execution of a

limb trajectory by microscopic spike activity; modifi-

cation of microscopic cortical spike activity by sensory

inputs; construction of mesoscopic perceptual patterns;

and integration of a new macroscopic brain state. The

basis is the circular causality between microscopic

entities (neurons) and the mesoscopic and macroscopic

entities (populations) self-organized by axosynaptic

interactions. Self-organization of neural activity is

bidirectional in all cortices. Upwardly the organization

of mesoscopic percepts from microscopic spike input

predominates in primary sensory areas. Downwardly

the organization of spike outputs that direct specific

limb movements is by mesoscopic fields constituting

plans to achieve predicted goals. The mesoscopic fields

in sensory and motor cortices emerge as frames

within macroscopic activity. Part 1 describes the

action–perception cycle and its derivative reflex arc

qualitatively. Part 2 describes the perceptual limb of

the arc from microscopic MSA to mesoscopic wave

packets, and from these to macroscopic EEG and

global ECoG fields that express experience-dependent

knowledge in successive states. These macroscopic

states are conceived to embed and control mesoscopic

frames in premotor and motor cortices that are

observed in local ECoG and LFP of frontoparietal

areas. The fields sampled by ECoG and LFP are con-

ceived as local patterns of neural activity in which

trajectories of multiple spike activities (MSA) emerge

that control limb movements. Mesoscopic frames are

located by use of the analytic signal from the Hilbert

transform after band pass filtering. The state variables

in frames are measured to construct feature vectors by

which to describe and classify frame patterns. Evidence

is cited to justify use of linear analysis. The aim of the

review is to enable researchers to conceive and identify

goal-oriented states in brain activity for use as com-

mands, in order to relegate the details of execution to

adaptive control devices outside the brain.
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Introduction

Fundamental in brain dynamics are the transactions

between levels in both directions in all cortices. The

upward transaction predominates in sensory cortices

from microscopic sensory-driven spike input to meso-

scopic wave patterns in perception; the downward

transaction predominates in motor cortices from mes-

oscopic wave patterns constituting goal states to

microscopic spike output patterns. In accordance with

Haken’s (1983) ‘‘slaving’’ principle of circular causality

the two transactions are opposite sides of the same
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coin; interactions among neurons create patterns of

activity that are called ‘‘order parameters’’ because

they impose structure on the activities of the neurons

creating them (Haken 2006). Every area of cortex

maintains background activity at all levels by contin-

uous synaptic interaction regulated by brain stem

neuromodulators. Input to sensory cortex by sensory-

driven activity is identified and measured with spikes;

output of cortex is inferred from field potentials, ECoG

and LFP. In motor cortex the output microscopic

activity is identified with action-related spikes. The

input to cortex that guides the order parameters is

inferred from the field potentials. These are the main

targets for measurement and interpretation. Studies

summarized in Part 1 show that macroscopic and

mesoscopic patterns exist in time frames in which lin-

earity and stationarity may hold to a good approxi-

mation. Already linear analysis (Freeman 1975/2004;

Wright and Liley 1996; Basar 1998; Liley et al. 1999;

Gordon 2000; Robinson et al. 2001; Haken 2006) has

been used as a tool to extract the order parameters.

The correlation between MSA trajectories and limb

trajectories is the main focus of current research on

BMI (e.g., Chapin et al. 1998; Sanchez et al. 2004;

Carmena et al. 2005; Hochberg et al. 2006). However,

microscopic spikes, mesoscopic fields and macroscopic

EEG differ not only in the forms of state variables but

also in the levels of their correlates over the five central

steps of the action–perception cycle (Part 1, Section 6).

While much is known about neural integrative pro-

cesses by which percepts emerge from sensory input,

little is known about neural differentiating processes

by which concepts and goals formulate actions. From

considerations of volume conduction and global inte-

gration in Part 1, it is clear that every extracellular

recorded signal contains contributions from all levels,

which can account for the fact that even a single

channel can support rudimentary BMI. The problem

addressed in Part 2 is how to formulate hypotheses

about downward causation in speciation of motor

output from goal states. Guidelines in the search for

solutions are derived from studies of upward causation

in generalization of perceptual states from sensory

input.

The most difficult experimental task is to distinguish

between mesoscopic and macroscopic components of

the field potentials. They mix in two ways, one by

summation of their extracellular electric currents in the

volume conductor, the other by multitasking of neu-

rons engaged simultaneously in multiple populations.

The key difference is in size. Macroscopic fields

occupy large areas of cortex and can only be seen in

the coordinated activity sampled by large arrays of

electrodes that are closely spaced yet widely distrib-

uted. Large arrays are necessary. Mesoscopic fields are

more local, corresponding to signals from cortical

modules. These require smaller arrays at very high

density. Macroscopic fields tend to last longer, recur at

lower theta rates, and have carrier frequencies in the

beta range, compared with mesoscopic fields having

carrier frequencies in the gamma range, recurrence at

high theta rates, and shorter durations (Freeman 2005).

Preprocessing techniques are the same for both mes-

oscopic and macroscopic signals, requiring low-pass

spatial filters and wide-band pass temporal filters,

compared with the high-pass spatial filters and narrow-

band basis functions commonly used to isolate micro-

scopic components.

Use of the analytic signal to locate frames

The strategy proposed here is linear decomposition of

the data from multiple electrodes in arrays, first into

broad frequency bands by band pass filtering using

the Fourier transform and then into analytic amplitude

and phase values by use of the Hilbert transform

(Appendix 1). The hypothesis is adopted, based on

studies of perception (Freeman 2004a, b, 2005, 2006),

that the behavioral correlates of wave activity are

carried in frames by spatial patterns of amplitude

modulation of self-organized oscillations that serve as

carrier waves. The carrier frequencies are predomi-

nantly in the beta and gamma ranges, with small drift

within frames and large jumps in instantaneous fre-

quency between frames. The frames recur irregularly

at rates in the theta and alpha bands. The pass band

that is required for use of the Hilbert transform must

be broad enough to include the range of variation of

the carrier waves over successive frames in motor

control but not so broad as to include multiple coex-

isting carrier waves at different frequencies. Optimi-

zation of multiple pass bands for a given data set can be

based on maximizing the cross-spectral peak of shared

power between the several gating and carrier fre-

quency ranges (Freeman 2004a, 2005). The optimized

pass bands in appear to conform to the clinical bands

for beta and gamma oscillations, which reflect the

value of long empirical experience.

With the Hilbert transform the analytic amplitude,

Aj(t), and the analytic phase, /j(t), are calculated for

every channel, j = 1,..., n channels in each selected

carrier frequency range from the same time series.

The spatial pattern of amplitude at each digitizing

time step, t, is expressed by a normalized n · 1 feature

vector, A(t), with mean length, A(t), and by a point in
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n-space. A(t) is adopted as the order parameter

(Haken 1983), because it gives direct expression to the

high-order textured pattern of amplitude created by

interactions from experience stored by synaptic mod-

ification in attractor landscapes in the brain. The rate

of change in the order parameter, De(t) (from Eq. (5)

in Appendix 1) is approximated by the Euclidean

distance in n-space between successive points in

n-space with digitizing steps after normalization

(dividing the values in each feature vector by the

standard deviation of the n values). Large differences

show wide-ranging trajectories in n-state space during

periods of instability. Small values of De(t) show

clustering of points that indicate the location in

n-space of an attractor, which when accessed gives a

frame with a stable spatial pattern.

These clusters are one of the two bases for

identification of frames (Ohl et al. 2001); the other

basis is the analytic phase (Freeman and Rogers 2002).

The n values of analytic phase from a 2-D array,

n.5 · n.5, form a phase surface, which is fitted with a

2-D conic spatial basis function at each time step

(Freeman 2004b). The location and sign of the apex of

the cone vary unpredictably at times of rapid change in

spatial amplitude pattern between frames (high values

of De(t)). Within frames the sign (maximum lead or

lag) and spatial phase gradient are fixed, and De(t)

varies less than the distance between electrodes, which

is the limit of spatial resolution. Successive values of

the slope of the cone are averaged across the frame to

give the phase gradient, c(tc), in rad/mm where tc is the

center time of the frame. The phase difference from

the preceding value, D/j(t) = /j(t) – /j(t – 1), j = 1,...,

n, after unwrapping approximates the rate of change in

phase at each time step. Averaging over n and division

by the duration of the digitizing step in s gives the

frame frequency, x(t) in rad/s; division by 2p gives

frequency in Hz. The ratio of analytic frequency in rad/

s to phase gradient in rad/m gives phase velocity in m/s

for comparison with spike conduction velocities. The

spatial standard deviation, SDX(t), of the phase dif-

ferences, D/j(t), measures the variance of the spatial

phase pattern at each time step.

An example in Fig. 1 shows the analytic phase

differences, D/j(t), j = 1,...,64 in a time period of

400 ms. The ECoG was recorded from the visual

cortex of a rabbit trained to respond to a visual con-

ditioned stimulus and band pass filtered in the gamma

range (20–80 Hz) prior to application of the Hilbert

transform. The spikes in phase differences tend to

occur almost simultaneously over the whole array.

Between the spikes the rate of change converges to a

constant value with a low spatial variance, indicating

the relative stationarity defined by the constancy of

frequency. Nonstationarity appears in the change of

frequency from each frame to the next; the average

frequency difference between frames was 7 Hz (about

±20% of the peak spectral frequency of the pass band,

33 ± 7 Hz). Figure 2 shows the spatial standard devi-

ation, SDX(t), giving a sequence of spikes that indicate

the time locations of state transitions. During those

jumps the analytic amplitude (A(t), gray curve) tends

to low values; within the frames A(t) tends to high

values that are accompanied by low values of De(t)

(not shown). This configuration shows that the frame is

characterized by high intensity activity with a nearly

constant carrier frequency and a stable spatial pattern

Fig. 1 The raster plot shows the successive differences of the
unwrapped analytic phase, Dpj(t), changing with time (left
abscissa) and channel (right abscissa). The 8 columns of 8 rows
are aligned to show the near-coincidence of the sudden jumps
and dips given by forward and backward phase slip (Fig. 6, D in
Appendix 2) with near-zero lag across channels. Phase slip shows
the incidence of widespread state transitions; plateaus show
epochs of near-stationarity of visual cortical dynamics. From
Freeman (2004a)

Fig. 2 The gray curve shows the analytic amplitude, A(t). The
black spikes show the spatial standard deviation of the analytic
phase differences, SDX(t), in Fig. 1. See rotating vector in the
polar plot (Fig. 6, B, Appendix 2). From Freeman (2004a)
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of amplitude and phase. It forms the archetype for a

linear, stationary mesoscopic pattern of ensemble

dynamics, likely with superposition of multiple com-

ponents (Haken 2006).

In brief, within each frame there may emerge a

spatial pattern of amplitude that specifies the normal-

ized feature vector, A(t), with its point in n-space. A

sequence of points gives a trajectory. A cluster of

points indicates formation and maintenance by an

attractor of either a stable spatial pattern over the

duration of a frame or a delimited trajectory within the

attractor. The feature vector at the peak amplitude of

A(t) in a frame best specifies the spatial pattern of

amplitude modulation governed by the attractor.

In extrapolation of these results in sensory cortices

to motor cortices, the brief spikes of high SDX(t) may

show the state transitions by which the intentional

control systems of the neocortex organize and dissolve

the successive neural activity patterns that execute

intended actions. The use of the LFP and ECoG for

BCI will require determination of the multiple fre-

quency ranges for the carrier waves, whose amplitude

modulations give the spatial amplitude patterns of

dendritic currents and spike densities by which com-

mands are transmitted to other areas of cortex and to

the brain stem. The LFP and ECoG thereby may

temporally and spatially localize the stationary frames

in different frequency bands prior to classification.

Newer evidence (Gonzalez et al. 2006) suggests that

epsilon activity can also be identified in scalp EEG, but

this range has been explored only in respect to basic

properties of stability (Freeman 1974).

Use of the analytic signal to classify frames

The primary aim in BCI is to use n channels of

recording at m time steps to acquire m · n-dimensional

feature vectors with high information content as control

signals. Each m · n feature vector is derived by

decomposition of an array of n electrical signals into a

set of n scalar values that specifies a set of m points

in m · n-space (Freeman 2005). The set of m · n

concomitant feature vectors can be conceived as time

functions that specify m frames of a trajectory in

n-space during the performance of an operant. The

dimensions of the m · n-space are determined in part

by the empirical number of components derived from

temporal, spatial and spectral decomposition, and in

part by the conceptual framework in which an inten-

tional action is conceived, constructed and described.

An example of mesoscopic frame classification from

sensory cortex is shown in Fig. 3A. A rabbit was

trained to discriminate each of two CS in a selected

modality (here vision), one reinforced (CS+) and the

other not (CS–) in a classic aversive conditioning par-

adigm. There appeared in the 8 · 8 ECoG from the

visual cortex to which each CS was directed a sequence

of 3 frames (Fig. 3A); in each frame the carrier fre-

quency approached a constant value in the gamma

range and the AM pattern stabilized as shown by a fall

in De(t). The order parameter, A2(t), in each AM

pattern gave a feature vector specifying a point in 64-

space.

The frames in succession differed from each to the

next within each trial but tended to cluster across the

Fig. 3 The latency and duration for each frame is shown by a
colored bar as measured by an index for pragmatic information,
He(t), derived from the analytic amplitudes of the 64 signals at each
digitizing time step of 2 ms (see legend of Fig. 4, A). The first 3
frames in a set of 20 trials were labeled by color: first, red; second;
green; third, blue. (A) Frame latencies from onset of CS+ (with
reinforcement) at t = 0 and their durations were represented by
colored bars for gamma carrier frequencies after classifier-directed

optimization of the threshold for the pragmatic information index.
A similar plot held for frames after unreinforced CS–. Gamma
bursts occurred preferentially in the first half second after CS
onset. (B) The frames with beta carrier frequencies had longer
start latencies, longer durations, and larger diameters than those
for gamma frames. At optimized thresholds for the pragmatic
information index the frames were equally likely to occur before
and after CS onsets. From Freeman (2005)
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20 trials. Therefore a 3 · 64 (m · n) normalized fea-

ture vector was constructed to represent each stimulus

category in 192-space for each trial. The hyperspace

clusters were mapped into 2-space for display of two

clusters of points that represented the differing spatial

patterns corresponding to the discriminated stimuli

(Fig. 4B). Optimal classification (Fig. 4A) was found

by dividing the feature vector at each time step by the

rate of change, De(t), giving the pragmatic information

index, He(t) (Freeman 2005). Similar results were

found in frames with carrier frequencies in the beta

range (Fig. 3B) but with significant differences as de-

scribed below.

The variance of the clusters was measured by the SD

in 2-space (circles) around the projections of the two

centers of gravity (Fig. 4B), and the goodness of clas-

sification was assayed by the shortest Euclidean dis-

tance from each point to the nearest center of gravity.

The variance in each cluster was attributed to noise in

the system, to errors of measurement, and to incre-

mental changes in the dynamics from on-going learning

with each new trial. The clusters displayed AM pat-

terns of activity that manifest nonconvergent attractors

in a high-dimensional landscape of basins of attraction.

The trajectories and clusters appeared to constitute

chaotic itinerancy among dynamical states in neocor-

tical systems (Tsuda 2001). Details of the statistical

techniques for spatial category classification have been

described (Barrie et al. 1999; Kozma and Freeman

2001; Ohl et al. 2001; Freeman, 2005, 2006).

An important distinction must be drawn between

the feature vectors from MSA at the microscopic,

sensorimotor level and the LFP and ECoG at the

mesoscopic, perceptual level. Owing to their inherently

high degree of spatial localization, the feature vectors

based in spikes give extra weight in classification to the

sites of high spike frequency (locally in time) and to the

specific electrodes (locally in space). Deletion of

channels yielding few spikes has little effect on the

rates of correct classification, so the MSA reveals high

temporospatial contrast in the classificatory value of

the information. In contrast, the channels of meso-

scopic feature vectors contribute equally to correct

classification irrespective of their amplitudes or loca-

tions. No channel is any more or less important for

classification than any other channel, which means

that perceptual information is spatially distributed

uniformly (Freeman and Viana Di Prisco 1986;

Barrie et al. 1996; Ohl et al. 2001).

An example is shown of macroscopic pattern clas-

sification in Fig. 5, in which 64 electrodes were placed

in groups of up to 16 on the visual, auditory, somato-

motor and entorhinal cortices and the olfactory bulb of

cats and rabbits (Freeman et al. 2003) trained to dis-

criminate auditory or visual stimuli in an operant

appetitive paradigm. An index (Tass et al. 1999) of the

Fig. 4 (A) The spatial AM pattern of each frame was expressed by
a feature vector given by m · n = 3 · 64 values of normalized
index, He(t) = amplitude squared divided by the rate of change in
the order parameter, Ai,j

2 (t)/De,I,j(t), 1 = 1. 3; j = 1, 64, at the time
point, t, of the maximal mean amplitude, A(t), in each frame. A
threshold, te, for He(t) was set by visual inspection of the time series
of He(t) to demarcate the beginnings and endings of frames (Fig.
3). The m · n feature vectors from 20 CS+ trials with reinforce-
ment and 20 CS– trials without reinforcement were classified with
respect to CS+/CS–. The classification level was calculated

repeatedly as the threshold was varied in search of an optimal
value. (B) The multidimensional scaling technique of nonlinear
mapping (Sammon 1969) projected clusters from n-space into 2-
space, optimizing their separation while preserving the relative
distances between all the data points. Two clusters were specified
in this example: the 1 · 192 feature vector from the first three
1 · 64 feature vectors in the CS+ trials, and the 1 · 192 feature
vector from the first three 1 · 64 feature vectors in the CS–. The
circles representing the standard deviations (SD) of the clusters
were calculated in the display plane. From Freeman (2005)
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level of global synchronization was calculated from the

analytic phase, /j(t), j = 1,..., 64, which revealed epi-

sodic increases in phase locking (Fig. 5A) particularly

in the interval between CS and CR (Freeman and

Rogers 2003).

The frames having carrier frequencies in the gamma

range occurred early after CS onset in the primary

sensory areas and were modality specific (Fig. 3); they

were found only in the sensory cortex to which the CS

were directed. The classifiable frames with carrier

frequencies in the beta range occurred >400 ms after

CS onset, had longer durations, and had greater

diameters (Freeman 2005). In subjects with widely

dispersed electrodes the 1 · 64 feature vectors from

AM patterns were optimally classified with respect to

CS when data from all cortices were used (solid curve,

Fig 5B); deletion of data from any of the four sensory

areas and the entorhinal cortex diminished the

classification (dotted curves). The somatosensory and

motor areas in the cat and rabbit are intermingled, so

the macroscopic pattern included the motor areas,

thereby offering a bridge between sensory input and

motor output that included much if not all of each

hemisphere.

In summary, linear decomposition with the Hilbert

transform of an array of ECoG serves to evaluate five

basic state variables at each point in time and space in

the array: the order parameter, A(t); its mean ampli-

tude, A(t); its rate of change with time, De(t); the rate

of change in phase with time (instantaneous frequency,

x(t)); and rate of change with space (phase gradient,

c(t)). From these can be calculated the times of start

and end of frames, durations, diameters, conduction

velocities for initiation, and the times required for state

transitions and convergence to attractors. These frames

have been observed, measured, and classified with

respect to conditioned stimuli both locally in the

several sensory cortices and globally across multiple

cortices. They have been found to coexist in at least

two carrier and gating frequency ranges. Since the beta

patterns include the motor cortices, they could provide

the macroscopic frames in which motor actions are

constructed. Owing to the low rates of change in space-

time of the carrier frequency and the order parameter,

it can be inferred that the frames reflect brief epochs of

stationarity and linearity, from which might be

extracted by linear regressors the time-varying struc-

tures of MSA and LFP that carry signals from cortex

into the brain stem for motor control, if the frames can

be found.

However, these frames are by no means obvious in

raw data streams. Other techniques are required;

remarkably two of these techniques are also linear.

One is linear decomposition based on the theory of

volume conduction (Sect. ‘‘Use of ECoG to decom-

pose LFP by distinguishing open versus closed fields’’),

and the other is decomposition based in the theory of

linear feedback systems (Sect. ‘‘Phase relation between

state variables imposed by negative feedback’’), based

on the property that the frames in the beta and gamma

bands appear to conform to the principle of superpo-

sition. This treatment may not hold for the alpha and

theta bands, which manifest the nonlinear mechanisms

that determine frame rates.

Fig. 5 (A) An index of synchrony revealed intermittent global
synchronization across multiple cortices between onsets of CS
and CR. From Freeman and Rogers (2003). (B) Classification of
frames was based on Euclidean distances between feature
vectors, A(t), from reinforced CS+ and unreinforced CS–.
Deletion of the EEG data from each cortical area reduced the
classification assay in the test period but had no significant effect
in the control period. The strongest effect was by removal of the

olfactory signals, while the least was by deletion of the entorhinal
signals. The window was 128 ms stepped at 64 ms. The mean t:c-
ratios (test:control) from the control period from 1.6 to 2.4 s and
the test period from 3.6 to 4.4 s were derived after the deletions
specified as follows. None: 0.34 vs. 2.71. EC: –0.01 vs. 2.36. VC:
0.01 vs. 2.17. SM: 0.00 vs. 2.04. AC: 0.01 vs. 1.60. OB: 0.07 vs.
0.74. From Freeman and Burke (2003)
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Use of ECoG to decompose LFP by distinguishing

open versus closed fields

The relations between ECoG, LFP and MSA are

obscured by the overlap in the volume conductor of the

dendritic currents from multiple neuronal populations.

The tissue in which neurons are embedded is an elec-

trically conducting medium with specific resistance that

is far less than the membrane resistance of the neurons,

which explains the low amplitudes of extracellular

signals from flows of dendritic current. The electric

current fields established by neuron populations result

from loop currents that exit neurons at ‘‘sources’’ and

re-enter the same neurons at ‘‘sinks’’. The potential

differences from the extracellular limbs of the current

loops all sum in the volume conductor, with contribu-

tions at every point from every neuron but in varying

amounts dependent on distance from the sources and

sinks in accordance with Coulomb’s inverse square law.

The alignment and lamination of neurons in cortex is

prerequisite for the summation of the potential fields

from sources and sinks that are intense enough to

measure as population state variables. The summation

of potentials from all populations in the volume con-

ductor is linear and instantaneous. This fact is greatly

to the advantage of analyzing the contributions of

multiple overlapping populations. In principle the

contribution of the dendrites of every neuron to the

LFP can be distinguished by linear decomposition,

provided one knows the waveform of its activity

and that one has sufficient recording sites within

and around the field of every neuron for sufficiently

long time.

However, in practice, the low-frequency dendritic

potentials of single neurons can only be extracted by

intracellular recording, which reflects intimately the

synaptic input from the surround. The LFP is especially

complex and is extremely sensitive to the depth of the

recording site. Researchers in the field should adopt a

convention of subscripting ECoG records by site (e.g.,

motor cortex, Brodmann Area 4, as in ECoGBA4) and

LFP records also by depth (for example, LFPBA4,950

microns, preferably after post-mortem verification by

layer, as in LFPBA4,V). The ECoG is far less complex.

When it is recorded at points on the surface of the

cortex overlying the sites of depth recording with

respect to a far distant reference site, it can be used to

partition the LFP into local versus remote components.

The reason is clear from an understanding of the

geometry of the loop currents generated by electro-

chemical activity of neurons.

The source-sink pair for each neuron (equal but

opposite in sign as parts of the same current loop)

tends to either of two idealized forms. Pyramidal cells

have axial symmetry, so that the source and sink are

separated and typically of equal density; they generate

a dipole field called ‘‘open’’, which extends instanta-

neously throughout the cortex to its surface and

throughout the brain to the scalp. Each cell has a

dipole axis. When the axes of the cells are randomly

oriented as in the reticular formation, their dendritic

fields sum to zero at the mesoscopic level, and their

activity can only be detected from their spikes. High-

amplitude open fields appear only when the individual

dipoles are aligned parallel to each other and with cell

bodies in a tight layer. That is why cortex forms the

EEG, and basal ganglia do not. Stellate cells have

radial symmetry, so that the source and sink for each

cell tend to be concentric; the polarity of the field of

potential is dominated by the source or sink with the

highest density. The field is called ‘‘closed’’ because it

is not detectable outside the anatomical radii of the

axons and dendrites of the stellate cell type. Closed

fields sum within the layer of cells of the same type, but

the sums tend to have low amplitudes, owing to the

cancellation of the potential fields of the concentric

sources and sinks (Freeman 1975/2004).

The open fields tend to span the cortical depth with

one pole in the most superficial ‘‘marginal’’ layer and

the other pole in the deeper layers, and with the zero

isopotential surface between the poles, at which the

dipole field cannot be detected. This surface is

observed as the ‘‘turn-over’’ where the field potential

reverses polarity when recorded from a penetrating

electrode. Closed fields tend to have maximal ampli-

tudes close to the zero isopotential surface of the open

field; they have no ‘‘turn-over’’ (p. 246, Fig. 4.44 in

Freeman 1975/2004). LFP are mixtures of the closed

and open fields, whereas ECoG are solely from open

fields that are dendritic in origin in the frequency range

<300 Hz and spike in origin for frequencies >300.

Therefore, the separation of open field components in

LFP from closed field components is facilitated by

recording the ECoG with respect to a distant site from

an electrode on the cortical surface at the site of entry

of a microelectrode into the cortical depth. However,

this decomposition does not guarantee that the LFP

contains the dendritic correlate of the spike activity; in

fact, the optimal recording site is at the trigger zone of

a pyramidal cell with axial symmetry, where the dipole

field has its maximal spatial rate of change at the zero

isopotential, so there is no LFP component at all. Small

shifts in position can give dramatic changes in com-

ponents, hence the label of depth is highly desirable for

interpretation and replication of field potential

recording.
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A common misconception holds that field potentials

are the envelopes of spikes. The individual spike has a

source-sink-source along an axon with a wavelength

that is given by the product of the propagation velocity

and the duration (e.g., 10 m/s · 1 ms = 1 cm). When

the axon has axial symmetry, the field is open and

extends instantaneously throughout the brain. How-

ever, most axons are short (<1 mm) with low velocity

and with multiple branches tending to radial symmetry.

The compound action potential is detectable as a

diphasic or triphasic waveform only when (a) many

axons in a parallel bundle are excited simultaneously

and (b) then only briefly as in the far-field brain stem

auditory evoked potential, before the many action

potentials disperse owing to differing propagation

velocities and to spatial divergence of axonal branches.

These two conditions do not hold for the spike corre-

lates of endogenous cortical field potentials. The spikes

of individual cortical neurons are statistically related to

LFP and ECoG, and their sum is detectable in the

noise >300 Hz, but the action currents do not sum to

contribute to the LFP and ECoG in the oscillations

<300 Hz. As far as contributions by volume conduction

are concerned, the MSA and ECoG yield independent

state variables respectively from axons (inputs and

outputs of cortical neurons) and dendrites (intracorti-

cal operators) by which to assess the underlying neural

activity patterns.

Phase relation between state variables imposed

by negative feedback

However, the optimal correlate of spike firing may be

found reliably in the ECoG, and this may support

extraction of a time-lagged correlate of the firing in the

LFPBAx,V. Cortical oscillatory waveforms in the beta

and gamma ranges are generated by the interactions

among populations of excitatory and inhibitory neu-

rons; the most crucial evidence is that the oscillations

of the inhibitory neurons lag those of the excitatory

neurons on average by p/2 rad (90�), not in phase (0�)

as predicted by models based on cellular properties

(Traub et al. 1996; Kopell et al. 2000; Whittington et al.

2000). This is because the two most important contri-

butions to LFP and ECoG are the dipole fields from

excitatory pyramidal cells and the closed fields from

inhibitory interneurons. These two laminar populations

interact by negative feedback. Owing to the 90� phase

lag (on average) of the output of the feedback limb

from the output of the forward limb, the contributions

of the dipole and closed fields are linearly separable

(Freeman 1975/2004), just as the cosine function is

uncorrelated with its derivative, the sine function.

Modeling the interaction with differential equations in

a KII set supports the experimental proof that the

excitatory and inhibitory populations oscillate at the

same instantaneous frequency, and that the inhibitory

oscillation on average lags the excitatory oscillation by

a quarter cycle (Freeman 2000).

This relation underlies the utility of the Hilbert

transform, because the quadrature of the recorded

pyramidal cell dendritic output predicts the interneu-

ronal dendritic output. When the pyramidal cell output

can be approximated by a cosine, the inhibitory output

can be predicted by a negative sine wave at the same

frequency. The crosscorrelation between the two

waveforms tends toward zero despite the functional

interdependence of the two populations, so they are

easily separated by PCA or ICA. The phase relation

often deviates from p/2 owing to co-existing feedback

by mutual excitation among pyramidal cells and

mutual inhibition among interneurons. There is

another reason for deviation. Phase differences be-

tween signals at differing locations commonly deviate

from zero or p/2 lag in the same interactive populations

owing to conduction delays from propagation veloci-

ties averaging 2.24 ± 1.18 m/s in rabbit neocortex and

2.62 ± 1.16 m/s in human neocortex, giving phase gra-

dients of 13.2 ± 4.1 rad/mm in rabbit ECoG (Freeman

2004b) and 7.9 ± 2.4 rad/mm in human ECoG (Free-

man 2006). The range of phase differences with phase

dispersion, when expressed as a fraction of the cycle

duration of the carrier wave, seldom exceeds ±1/8 of a

cycle (p/4), which is the half-power level

(cos2 ± 45� = 0.5). These phase lags do not manifest

true traveling waves, but instead they reveal the delays

in cortical activation imposed by communication using

propagated action potentials. The standing wave

property is important, because traveling waves could

not sustain the amplitude patterns illustrated for fea-

ture vectors in Figs. 3B and 4B. Within the 1/8 cycle

dispersion limit the deviations from the assumption of

time-invariance on which use of PCA and ICA is based

appear to be negligible.

Conclusions

The major unsolved problem in BCI/BMI is to model

the descending macro-meso-micro limb of the reflex-

arc/action-perception-cycle, where decisions are made

on what actions to take and how to take them. Neither

MSA recording, nor empirical engineering, nor neu-

ropsychological theorizing is likely to solve it; system-

atic acquisition and analysis of data from records of
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dendritic potentials are essential. Investigation of the

ascending micro-meso-macro limb indicates that the

operations and transformations of neural activity are

conducted in episodic, ‘‘cinematographic’’ sequences

of frames. Remarkably, it turns out that, despite the

obvious nonlinearities in neocortical dynamics, the

neural activities within frames and their observable

manifestations in electric fields are readily susceptible

to linear analysis (Freeman 1975/2004; Basar 1998;

Haken 2006). In this respect the temporal coherence of

phase-locked waveforms is just as important as the

laminar alignment of sources and sinks for the forma-

tion of LFP and ECoG. In order to extract useful

information from the underlying dendritic fields of

potential it is necessary to decompose the recordings

from electrode arrays into the distinctive waveforms

from identified populations in the mix. Within frames

linear decomposition appears to be the method of

choice.

The major steps in linear decomposition are

provided by selective recording of open and closed

fields in the volume conductor; time-lagged correlation

to distinguish contributions from phase-locked oscilla-

tions of excitatory and inhibitory populations having

identical frequencies with on average 90� lag between

them; multiple pass bands using spatial and temporal

filtering using Fourier techniques; and the identifica-

tion using the Hilbert transform of the sequence of

state transitions in the beta and gamma ranges of the

brain activity. The value of this step inheres in the

finding that the rates of change in frequency and in AM

pattern are often relatively constant within the epochs

bracketed by high rates of change. Not only are the

frequencies of oscillation relatively constant; the max-

imal phase dispersion across multiple recordings of the

oscillatory waveform is under a quarter cycle, the half-

power soft boundary condition (Freeman 2004b),

which facilitates transmission of cortical output

through divergent-convergent pathways. Those path-

ways perform spatiotemporal integration that reduces

noise in the transmission of spatially coherent signals.

Additionally, use of the rate of change, De(t), in the

order parameter, A(t), given by Eq. (5) in Appendix 1

shows that the spatial AM patterns are stable under

temporal integration. Therefore, linearity and spatio-

temporal stationarity appear to hold to a good

approximation within such segments, and the classic

techniques for decomposition that assume linearity,

stationarity, and statistical independence may be

applicable to signals within these segments, most

importantly FFT for spectral decomposition and PCA

for spatial decomposition. ICA will be inapplicable to

individual frames, if the number of digitizing steps in

the duration of a typical segment is less than the

number of electrodes, as in domains of stationarity.

However, ICA applied to ECoG and LFP segments

including the CS/CR time interval and decomposed

into the temporal frequency pass bands of interest

might facilitate localization of stationary frames.

Warning should be given that typically sparse

electrode arrays that under-sample the spatial textures

of ECoG and LFP will not reveal clear-cut inverse

relations between the two components of the analytic

signal, A(t) and /(t), and the AM patterns, because

multiple frames commonly overlap with differing

carrier frequencies. Large high-density arrays and

multiple spectral pass-bands in both temporal and

spatial frequency domains will be needed to bridge

from expressions of desired goals in neocortical activity

to control of neuroprostheses. The real mystery is how

neural masses speciate action patterns from generic

states. Solution of that mystery may come through the

next stage of BMI/BCI, which is the extraction from

subjects of usable feature vectors, and the implemen-

tation of that information to train neural networks as

universal function generators to drive adaptive control

devices in desired tasks toward stated ends.

Appendix 1 The Hilbert Transform

Brain waves are commonly treated as if they were the

sum of the outputs of a set of neural oscillators, each of

which has a constant frequency and variable amplitude.

This treatment is based on the assumption that brain

dynamics is linear and time-invariant, which is clearly

not the case. The advantage conveyed by this

assumption is the ease with which Fourier analysis can

be applied to brain waves using the Fast Fourier

Transform (FFT) to decompose segments of brain

waves into frequency components. The disadvantage is

the inability of linear analysis to capture and display

the nonlinear state transitions by which brains operate.

An alternative linear transform is the Hilbert trans-

form, which when applied to a brain wave recording in

effect calculates the rate of change in the amplitude at

each time step of the digitized signal. This operation

effectively re-expresses an oscillation as a vector that

rotates counterclockwise in the complex plane. The

amplitude is expressed by the length of the vector,

A(t), and the rate of change is expressed by the angular

velocity of the rate of rotation of the vector about the

origin of the complex plane. The rate of rotation is

expressed as a rate of change in phase in degrees/sec-

ond, radians/second (rad/s), or cycles/second (Hz). The

immediate advantage is that the Hilbert transform
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decomposes a brain wave into an analytic amplitude,

A(t), and an analytic phase, /(t). The change in phase

in rad with each time step divided by the digitizing

interval in s approximates an instantaneous frequency

that can vary, unlike the frequencies that are extracted

by Fourier decomposition. The disadvantage is that the

Hilbert transform is very sensitive to noise of many

kinds; it only works well after band pass filtering of a

brain wave. Criteria for optimal band pass filtering

have been described elsewhere (Freeman 2004a, b;

2005; 2006).

The application of the Hilbert transform to each

intracranial recording from an array of microelectrodes

is a multi-step procedure. First, a high pass filter set at

~400 Hz extracts the MSA, and a low pass filter set at

~400 Hz extracts the LFP from the same n microelec-

trode recordings. Second, the low pass data are down-

sampled from ~40,000/s to 200/s and normalized to zero

mean for every channel and unit standard deviation

(SD) for all channels, trials and data sets to give the

normalized LFP. Third, the demeaned, normalized

LFP are band pass filtered in the classic empirical

ranges: theta (3–7 Hz), alpha (7–12 Hz), beta

(12–30 Hz), gamma (30–60 Hz), and high gamma

(60–200 Hz), and the n channels in each pass band are

segmented to save the data from each trial with ~3 s

preceding and ~3 s following each CS onset (Fig. 6A).

Fourth, the Hilbert transform is applied to get the

analytic signal, Vj(t), with a real part (blue curve), the

filtered LFP, vj(t), and an imaginary part (red curve),

i uj(t), the output of the Hilbert transform:

VjðtÞ ¼ vjðtÞ þ i ujðtÞ; j ¼ 1; . . . ; 64; ð1Þ

where the Hilbert transform of vj(t) in the time seg-

ment, t¢,

Fig. 6 (A) A representative segment on a typical channel was
selected from visual cortical beta EEG after band pass filtering
(20–50 Hz). The blue curve shows the spatial ensemble average
of the real part representing the excitatory neuronal output (v(t)
in Eq. (1)). The red curve shows the imaginary part representing
the inhibitory neuronal output (u(t)). (B) The real part of the
analytic signal (abscissa) is plotted against the imaginary part
(ordinate) as a vector. Time is implicit in counterclockwise
rotation of the vector tip starting from the asterix just to the right

of the origin where the axes cross. (C) The blue curve shows the
average analytic amplitude, A(t), in Eq. (3) giving the length of
the vector). (D) The blue sawtooth curve shows the average
analytic phase, /(t), given by Eq. (4). The red curve shows the
average unwrapped phase, p(t). The analytic frequency x is
taken from the slope in rad/s. The deviations from the average
slope show ‘‘phase slip’’ which is due to repeated state
transitions. A reinforced conditioned stimulus (CS+, full field
dim light flash) was delivered at 0 ms. From Freeman (2004a)
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ujðtÞ ¼ 1=pPV

Z þoo

�oo

vjðt0Þ=ðt � t0Þdt0; ð2Þ

where PV signifies the Cauchy Principal Value. The

imaginary part is also known as the quadrature of the

signal, because each cosine component in the recorded

signal is transformed to a sine component; taking the

derivative by the transform is equivalent to shifting the

phase of v(t) by 90� (p/2 rad) to get u(t).

Fifth, the square root of the sum of squares of the

real and imaginary parts gives the analytic amplitude,

Aj(t), for each channel, j = 1,...,n,

AjðtÞ ¼ ðv2
j ðtÞ þ u2

j ðtÞÞ
:5; ð3Þ

and the arctangent of the ratio of the imaginary part

divided by the real part gives the analytic phase, /j(t)

(Fig. 6B):

/jðtÞ ¼ a tanðujðtÞ=vjðtÞÞ; j ¼ 1; 64: ð4Þ

The mean of the square of amplitude, Aj
2 (t) over n

gives the mean power, A2(t) (Fig. 6D), and the set of n

scalar values of Aj(t) divided by A(t) gives the nor-

malized feature vector at each time step, A(t). The

feature vector provides a measure of the order

parameter of the ensemble of cortical neurons that is

under observation. A(t) specifies the normalized spa-

tial pattern formed in the pass band by the signals from

the n channels, and it designates a point in n-space that

is occupied by the tip of the feature vector as it

describes a trajectory through infinite brain state space

that is projected into n-space by measurement.

Sixth, the rate of change in the normalized order

parameter, De(t), is calculated from the analytic power

by calculating the Euclidean distance between the tips

of the feature vectors in n-space at each successive

digitizing step:

DeðtÞ ¼ jA2ðtÞj � jA2ðt � 1Þj: ð5Þ

De(t) is a measure of the stability and stationarity of

the normalized spatial pattern. Successive points in

time specified by A(t) form clusters, whereas epochs of

rapid change are manifested by a wide trajectory

through n-space. The ratio of the rate of energy dissi-

pation estimated by mean analytic power, A(t), divided

by the rate of change in the order parameter, De(t),

gives a quantity called the ‘‘pragmatic information’’,

He(t), which is maximal when the LFP amplitude peaks

and when concomitantly the spatial pattern of the LFP

is optimally stabilized.

HeðtÞ ¼ A2ðtÞ=DeðtÞ: ð6Þ

Seventh, the analytic phase, /j(t). is unwrapped by

adding p radians at each break point where the arc-

tangent goes to infinity (Fig. 6D), and the analytic

frequency, xj(t), is estimated by calculating the phase

difference between successive digitizing steps in the

unwrapped analytic phase, D/j(t), time series and

dividing that difference by the duration of the digi-

tizing step, Dt. The mean analytic frequency, x(t),

and its spatial standard deviation, SDX, are calculated

over the n channels at each time step. Typically in

neocortical data the values of x(t) and SDX are

nearly constant for time periods of 60–120 ms indi-

cating stationarity, and they fluctuate over the n

channels in brief time periods that demarcate sudden

transitions in analytic frequency, power, and spatial

pattern. The implication is that areas of neocortex

function in near-linear, stationary dynamics most of

the waking state, but undergo brief state transitions

3–10 times each second. During the transitions the

analytic amplitude, A(t), drops to a low level, and the

variances of the analytic frequency, x(t), given by

SDX(t) increases briefly but dramatically (Fig. 1) in

what is known as ‘‘phase slip’’ (Pikovsky et al. 2001).

A state transition appears to be required to initiate

the formation of a new spatial pattern, A(t), which is

the order parameter manifesting a nonconvergent

‘‘chaotic’’ attractor in the landscape of basins of

attraction sustained by an area of cortex.
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