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Abstract In this study, based on the view of statistical

inference, we investigate the robustness of neural codes,

i.e., the sensitivity of neural responses to noise, and its

implication on the construction of neural coding. We first

identify the key factors that influence the sensitivity of

neural responses, and find that the overlap between neural

receptive fields plays a critical role. We then construct a

robust coding scheme, which enforces the neural responses

not only to encode external inputs well, but also to have

small variability. Based on this scheme, we find that the

optimal basis functions for encoding natural images

resemble the receptive fields of simple cells in the striate

cortex. We also apply this scheme to identify the important

features in the representation of face images and Chinese

characters.

Keywords Robust coding � Neural codes � Natural image

processing � Neuronal variability � V1

Introduction

In natural environments, variations on the view angle,

distance and background, and deformations of images,

mean that the external inputs from the same object to

neural systems are highly fluctuated. In order to recognize

objects reliably, it is important for neural systems to extract

the important features of external inputs. Mathematically

this is expressed as statistical inference.

We write down the external inputs to a neural system as

IðxÞ ¼ f ðxÞ þ �ðxÞ, with x denoting the spatial location of

the data points in the image and f ðxÞ the important features

of external inputs which are necessary to define the stim-

ulus and �ðxÞ representing those un-important components

which are regarded as noise. We consider that f ðxÞ is

encoded as an activity pattern a in the neural system. The

goal of a neural estimator is to infer the value of a based on

the noisy input IðxÞ. Because of noise, the inferred result â

is in general different from the true value a. Robustness, or

sensitivity, of neural coding refers to the discrepancy

between â and a due to noise. Low robustness, or large

sensitivity, implies that neural responses to the same object

corrupted with different kinds of noise are dramatically

different. Clearly, in order to recognize objects reliably, it

is desired that neural coding is robust against noise.

Two issues concerning the robustness of neural codes

are explored in the present study. Firstly, we identify what

are the key factors influencing the robustness of neural

coding, and find that the overlap between neural receptive

fields plays a critical role, i.e., the larger the overlap, the

more susceptive to noise the neural responses are. This

property implies that for achieving robust coding, neural

systems should use receptive fields having as small as

possible overlap (under the proviso that external objects are

adequately encoded).

Secondly, we investigate, under the requirement of

robustness, how neuronal receptive fields are shaped in

order to encode natural images accurately. It turns out that

the obtained results resemble the localized and oriented

receptive fields of simple cells in the striate cortex (Hubel

and Wiesel 1968; Palmer 1999). This finding is very
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interesting, which provides a novel justification for the

receptive field properties of simple cells, different from

those in the literature (see, e.g., Olshausen and Field 1996;

Bell and Sejnowski 1997; van Hateren and van der Schaaf

1998; Lewicki and Olshausen 1999; Simoncelli and

Olshausen 2001; Hurri and Hyvärinen 2003; Vincent and

Baddeley 2003). The robust coding algorithm we formulate

is quite close to the well-known sparse coding approach

(Olshausen and Field 1996). The main difference is that

rather than restricting the sparseness of neural activities, we

minimize the total variability of neural responses. It turns

out that apart from predicting the similar basis functions,

our method makes the neural system being more robust to

external noise.

The organization of the paper is as follows. In Section

‘‘Statistical inferential sensitivity’’, we first study a simple

statistical inference model and elucidate the factors which

influence the sensitivity of neural responses. In Section

‘‘Robust coding for natural images’’, a robust coding scheme

which minimizes the sensitivity of neural responses to noise

is proposed. This scheme enforces the neural responses not

only to encode external inputs well, but also to have small

variability. Based on this scheme, we optimize the basis

functions for encoding natural images, and compare the

results with the receptive fields of simple cells. In Section

‘‘Discussions’’, robust coding is compared with other effi-

cient coding schemes, such as sparse coding (Olshausen and

Field 1996, 1997; Simoncelli and Olshausen 2001) and

temporal coherence (Földiák, 1991; Becker 1993; Stone

1996; Wiskott and Sejnowski 2002; Hurri and Hyvärinen

2003). Its implications on our understanding of neural

information processing are discussed. Finally, in Section

‘‘Conclusion’’, the overall conclusion of this work is given.

Statistical inferential sensitivity

Our study on the robustness of neural codes is based on a

simple model of neural encoding. It assumes that external

stimuli f ðxÞ is represented as a linear superposition of a set

of basis functions (Olshausen and Field 1996; Bell and

Sejnowski, 1997)

f ðxÞ ¼
XM

l¼1

al/lðxÞ; ð1Þ

where /ðxÞ ¼ f/lðxÞg, for l ¼ 1; . . . ;M, represent the

basis functions, and the coefficients a ¼ falg, for

l ¼ 1; . . . ;M, the representation of the stimulus f ðxÞ in the

basis set /ðxÞ. It is known that the basis functions can be

associated with neuronal receptive fields, and the variable a

to neural activities (Olshausen and Field 1996; Bell and

Sejnowski, 1997).

We first study a simple toy model, which allows us to

analytically quantify the sensitivity of estimating a due to

noise.

A toy model study

Consider an extremely simple case, in which there are only

two coding units and the basis functions are fixed to be

Gaussian. The noises in external inputs are also assumed to

be independent Gaussian, which are written as

IðxiÞ ¼ f ðxiÞ þ �i; for i ¼ 1; . . . ;N; ð2Þ

where xi represents the ith sampling point of the stimulus,

and �i a Gaussian random number of zero mean and vari-

ance r2. N is the number of data points sampled from the

stimulus.

We consider a simple inference method, called Least

Square Error (LSE), whose estimate for â is given by

â ¼ min
XN

i¼1

IðxiÞ � a1/1ðxiÞ � a2/2ðxiÞ
� �2

; ð3Þ

that is, the inferred result is the one that has the minimum

reconstruction error for the external inputs.

It can be proved that for the above simple model, when

N is sufficiently large, the LSE satisfies a normal distri-

bution (see Appendix A),

Pðâ1; â2Þ ¼
1

Z
expf�1

2
a0TX�1a0g; ð4Þ

where the vector, a0 ¼ ðâ1 � a1; â2 � a2Þ, denotes the

decoding errors. The matrix W is the covariance matrix,

whose inverse is given by

X�1 ¼ 1

r2

P
i /1ðxiÞ2

P
i /1ðxiÞ/2ðxiÞP

i /1ðxiÞ/2ðxiÞ
P

i /2ðxiÞ2:

� �
ð5Þ

It can be checked that W is the inverse of the Fisher

information (see Appendix A). This implies that the

inferential sensitivity of LSE with respect to noise has

reached the minimum possible value. This is because,

according to the Cramér-Rao bound, the inverse of the

Fisher information is the lower bound for decoding errors

of un-biased estimators.1 Thus, our discussion below on the

statistical inferential sensitivity is independent of the

decoding method used.

1 Here we only consider un-biased estimators. A biased estimator may

achieve lower inferential sensitivity, but it is at the expense of biased

estimation.
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The sensitivity of decoding can be described by the

marginal distribution of â, which is calculated as (see

Appendix A),

PðâlÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2

l

p exp �ðâl � alÞ2

2s2
l

" #
; for l ¼ 1; 2; ð6Þ

where the variance s2
l is given by (only s1 is shown, the

result for s2
2 is similar)

s2
1 ¼

r2
P

i /2ðxiÞ2
P

i /1ðxiÞ2
P

i /2ðxiÞ2 � ð
P

i /1ðxiÞ/2ðxiÞÞ2
: ð7Þ

The magnitude of s2
l , i.e., the broadness of the marginal

distribution, quantifies the sensitivity of decoding. Intui-

tively, the broader the distribution, the more the estimate

can be expected to deviate from the true value. Large

sensitivity implies that inferred results for the same stim-

ulus corrupted with different instantiations of noise can be

dramatically different.

From Eq. (7), we see that the sensitivity of decoding is

determined by several factors, namely, the noise strength

(r2), the number of data points (N) and the overlap between

basis functions.

The overlap between basis functions is measured by (see

the denominator of Eq. (7))

OP ¼
P

i /1ðxiÞ/2ðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i /1ðxiÞ2

P
i /2ðxiÞ2

q : ð8Þ

Figure 1 illustrates that inferential sensitivity increases

with the amount of overlap. This effect is intuitively

understandable. In the overlapping region, the contribu-

tions from the two basis functions (i.e., the two statistical

components) on generating the stimulus are mixed. As a

result, data points in this region are less informative for

‘distinguishing’ the activities of the two encoding units.

More overlap leads to more ambiguity in inference. Con-

sider the extreme case when the two basis functions are

completely overlapping, there exists an infinite number of

pairs of â1 and â2, with â1 þ â2 a constant, that can equally

interpret the stimulus, and the inferential sensitivity is

infinitely large.

The moral of the toy model study

The model studied above is quite simple, but the moral it

reveals to us is profound, which has at least two important

implications:

• First, it tells us that if neural receptive fields are

overlapped, then neural responses are inevitably sensi-

tive to noise.
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Fig. 1 The results of the toy

model study. (A) An illustration

of the stimulus and two

overlapped basis functions;

(B) In the case of small overlap,

the joint and marginal

distributions of the estimation

are narrow; (C) In the case of

large overlap, the joint and

marginal distributions are

broad; (D) The inferential

sensitivity (measured by s2
1) vs.

the amount of overlap
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• Second, it tells us that if robustness is desired for neural

responses, then neural systems should choose those basis

functions having as small as possible overlap (under the

proviso that objects can be adequately encoded).

These two issues will be further explored in the study

below.

Robust coding for natural images

Our hypothesis is that to recognize objects reliably, neural

coding should be constructed to be as robust as possible against

noise. As shown above, this requires neural receptive fields to

have small overlap. To test this idea, we carry out the following

experiment. Firstly, we construct a coding scheme, which not

only encodes external inputs well, but also suppress the sensi-

tivity of neural responses to noise. Based on this scheme, we

optimize the basis functions to encode natural images, and

compare the result with the receptive fields of simple cells. This

is motivated by that the optimal basis functions for encoding

natural images under the linear framework of Eq. (1) and proper

constraints tend to resemble the receptive fields of simple cells

(Olshausen and Field 1996; Bell and Sejnowski 1997; van

Hateren and van der Schaaf 1998; Lewicki and Olshausen

1999; Simoncelli and Olshausen 2001; Hurri and Hyvärinen

2003; Vincent and Baddeley 2003).

The coding scheme

The coding scheme we consider minimizes the following

cost function,

E ¼ 1

2
½IðxÞ � a � /ðxÞ�2

� �
þ kHðaj/Þ; ð9Þ

where IðxÞ represents a natural image. The term Hðaj/Þ is

a measure about the variability of neural responses given

the basis functions u. The bracket h�i denotes averaging

over the set of natural images. The parameter k controls the

balance between the reconstruction error and the variability

of neural responses.

The choice of Hðaj/Þ

To quantify the inferential sensitivity of neural code, ide-

ally, we should set Hðaj/Þ to be the summation of the

marginal entropy of neural responses when a fixed stimulus

is presented, for instance,

Hðaj/Þ ¼
XM

l¼1

X

t

Hðalj/; StÞ; ð10Þ

where Hðalj/; StÞ is the marginal entropy of the lth

neuron’s responses given a particular stimulus St, and the

summations are over all neurons and the stimuli to be

encoded. But unlike the above toy model (where the

stimulus is fixed), here for encoding natural images, we do

not know in advance what are the important features

and what should be regarded as noise.2 Thus, the measure

Eq. (10) cannot be used.

To overcome this difficulty, our strategy is to choose

Hðaj/Þ to be the summation of the marginal entropy of

neural responses given the set of natural images, rather

than a particular important feature, i.e.,

Hðaj/Þ ¼
XM

l¼1

Hðalj/; IÞ; ð11Þ

where Hðalj/; IÞ is the marginal entropy of the lth neuron’s

responses given the set of natural images I. Hðaj/Þ
therefore measures the total variability of neural responses

for representing a set of external inputs. Our expectation is

that through properly combining the neural response vari-

ability and the reconstruction error, the neural system will,

on one hand, learn to encode the important features of

external inputs, as this is most effective for decreasing the

reconstruction error, and on the other hand, become

insensitive to those un-important components, as a conse-

quence of restricting the total variability of neural

responses (since in this case the variability of neural

responses is mainly used for the encoding of important

features). Therefore, minimizing the cost function Eq. (9)

can indirectly achieve our goal of implementing robust

coding. This idea is confirmed by the simulation result in

Section ‘‘Sensitivity of robust coding’’.

Furthermore, we choose the Renyi’s quadratic entropy

to quantify Hðalj/; IÞ (Renyi 1976), which is defined as

Hðalj/; IÞ ¼ �ln

Z
pðalj/; IÞ2dal: ð12Þ

The good point of this measure is that although we do

not know the analytic form of pðalj/; IÞ, the Renyi’s

quadratic entropy allows us to approximate Hðalj/; IÞ in a

data-dependent way, i.e., by using sampled values of al

when a number of images are presented.

Let us denote fak
l g, for k ¼ 1; . . . ;K, as the sampled

values of al after K natural images are presented and the

basis functions are u. According to the Parzen window

2 Indeed, this knowledge can be only obtained after the basis func-

tions are optimized. For instance, if the basis functions turn out to be

localized and oriented, it tells us that the bar or edge like features are

important in the representation of natural images, and other elements

are relatively un-important and can be regarded as noise.
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approximation (Parzen 1962), the distribution pðalj/; IÞ
can be approximated as

pðalj/; IÞ �
1ffiffiffiffiffiffi

2p
p

dK

XK

k¼1

exp½�ðal � ak
l Þ

2=ð2d2Þ�; ð13Þ

where the Gaussian kernel has been used in the Parzen

window approximation with d the width of the kernel.

Substituting Eq. (13) in (12), we obtain (see Appendix

B)

Hðalj/; IÞ � �ln
1ffiffiffiffiffiffi

2p
p

dK2

XK

k¼1

XK

m¼1

exp½�ðak
l � am

l Þ
2=ð4d2Þ�;

ð14Þ

which now fully depends on sampled values of al.

In practice, sampled values of {al}, for l ¼ 1; . . . ;M, are

easily obtained. We use the gradient descent method to

minimize the function E (for detail, see Appendix B). At

each step of updating /ðxÞ, we present K� 1 training

examples, which automatically generates K sampled values

for each al.

Finally, combining Eqs. (9) and (14), we get the cost

function

E ¼ 1
2K

PK

k¼1

½IkðxÞ � ak � /ðxÞ�2
� �

�k
PM

l¼1

ln 1ffiffiffiffi
2p
p

dK2

PK

k¼1

PK

m¼1

exp½�ðak
l � am

l Þ
2=ð4d2Þ�:

ð15Þ

Here, for clarity, we have written down explicitly the

batch of images, denoted as fIkðxÞg, for k ¼ 1; . . . ;K,

presented at each step of training. The detail of the training

procedure is presented in Appendix B.

Simulation results

For natural scenes

We first choose natural scenes, such as leaves, trees, rocks and

river etc., as external inputs. They are constructed as follows.

First, we select ten, 480 · 480 pixels, pre-whitened natural

scenes as the repository of training examples (for examples of

natural scenes and their whiten images, see Fig. 2A, B).

Then, at each step of training, we randomly choose 100 (i.e.,

the sampling size K = 100) 20 · 20 image patches from the

repository as inputs. The neural system consists of 400

neurons. Initially, all basis functions are randomly initialized

in the 20 · 20 image space. After training, these basis func-

tions are optimized, as shown in Fig. 2C.

We see that the optimal basis functions are oriented

and localized in the space, resembling the properties of

receptive fields of simple cells in the striate cortex (Hubel

and Wiesel 1968; Palmer 1999). How should we interpret

this result in the view of robustness? From Eq. (9), we see

that optimal basis functions need to satisfy two conditions,

namely, to encode natural scenes well and to maintain

small variability in neural responses. First, to encode

external inputs well, from the theory of function approxi-

mation (Bishop 1996; Schölkopf and Smola 2001), this

requires basis functions to ‘match’ the structures of the

external inputs. Second, to maintain small variability in

neural responses, this requires basis functions to have a

small overlap. It is straightforward to see that the above

localized and oriented basis functions best meet these two

requirements. Firstly, they have the same shapes as the

oriented lines and edges, the salient features in natural

scenes. Secondly, they are dispersed in the space and have

a relatively small extent of overlap.

For human faces

To validate further our analysis, we use parts of human

faces as external inputs. The advantage of these inputs is

that they have some new localized features, such as the

shapes of eye, nose or mouth, which provides us an

opportunity to check whether our coding scheme works

consistently.

The face images are taken from the ORL face database

(Olivetti Research Laboratory in Cambridge, UK), and

they are properly re-scale into a size of 70 · 70 pixels (for

examples, see Fig. 3A). Again, we first select 117 face

images as the repository, and then, at each step of training,

we randomly choose 100, 20 · 20 image patches as

training examples. The training results are shown in

Fig. 3B. We see that, apart from the shapes of localized

lines and edges, some basis functions display curved or

round shapes.

For Chinese characters

Essentially, the coding scheme Eq. (9) can also be used as a

general method for feature extraction: It selects those

important features so that the coding system non only

encodes external inputs but also has small entropy. To test

this idea, we apply this method to the representation of

Chinese characters.

Chinese characters, whose history can be tracked back

to thousands of years ago, appear to be very complicated in

terms of recognition (see, e.g., examples in Fig. 4). In fact,

however, they are composed of some simple pictographs

and ideographs in a logical way that can be easily

remembered. The most elementary component of the

Chinese character is strokes, which further compose radi-

cals or other structured components. A radical may be

Cogn Neurodyn (2007) 1:261–272 265
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shared by characters having the same category meaning.

An example of such a Chinese character, which means

‘‘chess’’ in Chinese, is illustrated in Fig. 4B. This char-

acter is left and right structured. The left part (indicated as

part 1 in the figure) is a radical, which is shared by many

characters having a meaning related to wood. The right part

is actually another character that points out the pronunci-

ation of this character but is meaningless in the structure,

being just composed of a few strokes. Many research work

including psychophysical and functional Magnetic Reso-

nance Imaging (fMRI) studies have revealed that strokes

and radicals play important roles in Chinese character

recognition (Hildebrandt and Liu 1993; Peng et al. 2004).

They are the salient features for Chinese characters, like

lines and edges for natural scenes.

We choose some of the most frequently used Chinese

characters as the training dataset, which consists 2,500

words.3 Each character is presented as a 25 · 25 pixels

image, see Fig. 4A for example. During the training, the

number of basis functions was set to 100, and at each step

of updating, 200 character images were randomly chosen

as inputs.

The training results are shown in Fig. 5, which

demonstrate that the optimal basis functions resemble the

shapes of strokes, the salient features of Chinese charac-

ters, supporting that our method can extract the important

features of external inputs.

Discussions

Relationship with other efficient coding schemes

The idea of assuming neural codes are designed to satisfy

certain efficient criteria is a valuable top–down method for

us to explore the properties of neural information

processing (see, e.g., Attneave 1954; Barlow 1961;

Laughlin 1981; Atick 1992; Field 1994; Li and Atick 1994;

Lewicki and Olshausen 1999). This kind of method is of

3 We follow the recommendation of Modern Chinese Language
Frequently Used Characters.

Fig. 2 Simulation on natural

images. (A) Two examples of

natural scenes. (B) Whitened

images of (A). (C) The obtained

optimal basis functions. The

parameters used are k ¼ 0:13,

d ¼ 0:3
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particular importance at the current stage since we do not

have much knowledge about the detail of neural systems.

In this study, we assume that neural codes are constructed

to be as robust as possible against noise. Based on this

hypothesis, we show that the receptive fields of simple cells

may be justified as the consequence of encoding natural

images optimally. We should point out that our work is

neither the only one nor the first that predicts these simple-

cell like basis functions. Indeed, quite a few methods based

on different efficiency criteria have successfully achieved

this, which particularly include sparse coding (Olshausen

and Field 1996, 1997), independent component analysis

(ICA) (Bell and Sejnowski 1997; van Hateren and van der

Schaaf 1998), temporal coherence (Hurri and Hyvärinen

2003) and energy-efficient coding (Vincent and Baddeley

2003).

Sparse coding was the first approach to make this

breakthrough, whose fundamental assumption is that the

neural system interprets external stimuli by using very few

statistically independent components, and hence neural

responses should be sparse. For natural images, these

statistically independent components happen to be the

oriented lines and edges. ICA, when applied to analyze

natural images, has a similar spirit to sparse coding.

Temporal coherence, on the other hand, has the same

origin as robust coding, in the sense of that it also assumes

the robustness of neural codes. But, unlike the formulation

here which restricts the variability of neural responses,

temporal coherence imposes the robustness constraint in a

different way, which takes into account that in natural

environments, temporal sequences of images, such as

videos, vary slowly. It is therefore reasonable to assume

that the variations between two temporally consecutive

Fig. 3 Simulation on face images. (A) Examples of face images from

ORL database, the size of the images is 70� 70 pixels. (B) The

obtained optimal basis functions. The parameters used are k ¼ 0:13,

d = 0.3

Fig. 4 Chinese characters. (A) Examples of Chinese character

images, the dataset is the most frequently used 2,500 Chinese

characters, the size of the images is 25 · 25 pixels. (B)

Decomposition of a typical Chinese character, which means

‘‘chess’’. This left and right structured character is composed of a

radical (part 1) at the left side and another character at the right

side. For the right component, it is composed of four kinds of

strokes (parts 2–5)
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inputs are mainly due to noise, and enforce neural systems

to respond least to such changes. Temporal coherence and

robust coding can be seen as two complementary

approaches demonstrating that robustness is important in

the construction of neural coding.

It is worth further clarifying the difference between

robust and sparse coding. Although both schemes predict

the same, or similar, basis functions for encoding natural

images, their natures are different. In the formulation of

sparse coding, the cost function is set to be

E ¼ 1

2
½IðxÞ � a � /ðxÞ�2

� �
þ k

X

l

SðalÞ; ð16Þ

where S(al) is the sparseness constraint, which can be

chosen to be, e.g., SðalÞ ¼ logð1þ a2
l Þ. S(al) takes small

value when the neural activity al are small. Thus, sparse

coding tends to restrict the total activity of neurons (under

the proper forms). This is different to robust coding,

where the total variability of neurons is restricted (see

Eq. (14), robust coding tends to minimize the difference

between the activities of individual neurons when

different inputs are presented, i.e., it is to minimize

ðak
l � am

l Þ rather than the absolute value of al.). This

difference will be confirmed by the simulation in Section

’’‘‘Sensitivity of robust coding’’.

In some sense, the coding scheme Eq. (9) is to imple-

ment the minimum entropy code under the constraint that

external inputs are adequately encoded (Barlow 1989).

Sparse coding can be also interpreted equally, but it eval-

uates the entropy based on a specific assumption about the

distribution of neural responses, that is, this distribution is

peaked at zero and has heavy tails (Lewicki and Olshausen

1999). Here, for robust coding Eq. (9), the entropy is

evaluated based on the sampled data when a set of images

are presented. We should point out that the idea of using

the Renyi’s formula to estimate entropy in a data-depen-

dent way has been used in other places, for instance,

Principle et al. use this strategy to solve the blind source

separation problem (Principe et al. 2000). But here, it is the

first time this strategy is used to impose a robustness

constraint for investigating the encoding of natural image.

All the above coding schemes we discussed focus on

exploring how the input statistics determine the coding

properties of neurons. In reality, however, the neural cod-

ing strategies are also strongly influenced by the tasks the

neural systems aim to perform. In a recent work (Salinas

2006), Salinas has shown how the output statistics may

shape the neuronal tuning curves. It will be interesting in

our future to combine the robustness constraint and the

specific task requirements.

We should also note that the coding model we consider is

different from the de-noising method in image processing

(e.g., Hyvärinen 1999). Here, we do not care about how to

remove noise in external inputs (although the scheme can

have this effect), but instead how to construct a code so that

the responses of coding units are robust against input noise.

Sensitivity of robust coding

To confirm that the coding scheme Eq. (9) indeed sup-

presses the sensitivity of neural responses to noise, we

carry out the following experiment.

The noisy inputs to the neural system are generated as

follows (Li and Wu 2005). First, we choose a large-size

natural image as a seed, and randomly down-sample this

image 100 times with a rate of 25% (this can be done, for

instance, by randomly and uniformly choosing 25% data

points from the seed image). These down-sampled images

are almost visually indistinguishable, and can be regarded

as noisy inputs from the same object (for examples of

down-sampled images, see Fig. 6A, B). Then, we calculate

the neural responses to these noisy inputs, which are

obtained by minimizing E with the basis functions fixed to

be optimal. The sensitivity of coding is measured by the

variance of the neural responses.

For comparison, we also calculate the sensitivity of

sparse coding and a scheme using Gaussian functions as

the basis. The Gaussian basis functions are chosen to be

GlðxÞ ¼ Aexp �jjx� lljj2=2d2
h i

, for l ¼ 1; . . . ;M, with

the center ll being at each pixel in the image space. To

ensure that the comparison is fair, we normalize all basis

functions, including the optimal and the Gaussian ones, i.e.,

Fig. 5 Simulation results on Chinese character images. The training

set is chosen as the most frequently used 2,500 Chinese characters,

the size of the images is 25 · 25 pixels. The obtained optimal basis

functions are shown here with the parameter setting k ¼ 0:13 and

d = 0.3
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R
/lðxÞ

2dx ¼ C, for l ¼ 1; . . . ;M and C a constant. This is

to avoid the problem that under the transformations of
~/ðxÞ ¼ k/ðxÞ and ~a ¼ a=k, the reconstruction error is

invariant, but the variance of a decreases 1/k2 times. Also,

for the coding scheme using Gaussian basis functions, we

set the width d of Gaussian functions to be the value, such

that it has the same reconstruction error as robust coding.

The basis functions used in the three coding schemes are

illustrated in Fig. 6C.

Figure 7 shows the distribution of the variation of neu-

ronal responses to their mean values, i.e., ðak
l � haliÞ, for

l ¼ 1; . . . ;M and k ¼ 1; . . . ;K, where hali is the mean

activity of the lth neuron. We observe that: (1) The scheme

using Gaussian basis functions has the broadest distribu-

tion, indicating that in this scheme neural response is most

sensitive to noise. This is understandable, since its basis

functions are not optimized and have the largest overlap.

(2) The neural response variation in robust coding is much

more sharply distributed than that in sparse coding,

although they have the similar basis functions. This indi-

cates that in robust coding neural responses are much more

robust to noise, confirming our analysis. The sensitivities of

the three schemes, measured by hðak
l � haliÞ2i, are calcu-

lated to be 0.0021, 0.025 and 0.076 for robust coding,

sparse coding and Gaussian basis functions, respectively.

How robust can neural coding be?

We argue that neural codes are constructed to be robust

against noise and also show that the overlap between

receptive fields critically determines the sensitivity of

neural responses. Then, an interesting question is: how

robust can neural codes be? This turns out that the

robustness of neural codes depends on the statistical

property of external inputs to be encoded. Let us consider

first an extreme case where a coding system only needs to

encode a single object, then we can easily construct a set of

non-overlapping basis functions with the minimum sensi-

tivity to represent the object well, e.g., by simply dividing

the image space into N non-overlapping pieces. In practice,

however, the task the neural system faces is to use a single

set of basis functions to encode a large number of objects

with varied structures. In such a case, in order to achieve

high encoding accuracy, it is important for the basis

functions to match the coherent structures of external

inputs, and the overlap between basis functions becomes

inevitable.4 That is, there is in general a trade-off between

encoding accuracy and inferential sensitivity. The situation

for natural images seems to be a little bit special, where the

external inputs happen to have some salient features which

are oriented and localized in the space, and this property

enables the neural system to encode natural images well at

a cost of relatively low statistical inferential sensitivity.

Fig. 6 (A) & (B) Two down-sampled images at the rate of 25% from the same seed. (C) Examples of basis functions in three coding schemes:

(1) robust code, (2) sparse code, and (3) Gaussian

4 This is similar to the situation of using radial basis function net-

works for function approximation, in which the overlap between basis

functions reflects the smooth structure of inputs (Bishop 1996;

Schölkopf and Smola 2001).
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Conclusion

The present study investigates the robustness of neural

codes, an issue of critical importance for our understanding

of neural information processing. Based on the view of

statistical inference, we show that the overlap between

neural receptive fields critically determines the sensitivity

of neural responses. We then investigate the optimal basis

functions for encoding natural images under the require-

ment of robust coding, and find that they resemble the

receptive fields of simple cells. This provides a new

justification for the receptive fields of simple cells. Inter-

estingly, we find that that although both robust and sparse

coding predict the same, or similar, optimal basis functions

for encoding natural images, the neural response’s vari-

abilities the two scheme are different. This may provide a

clue for future research to clarify which one is more bio-

logically plausible. Through investigating the encoding of

Chinese characters, we also show that the coding scheme

we propose may serve as a general method for feature

extraction. This issue will be studied in the future work.
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Appendix A: The Fisher information

and the performance of LSE

The Fisher information

Since noise is independent Gaussian, the conditional

probability of observing data I(x) given a is written as

pðIjaÞ¼ 1

ð
ffiffiffiffiffiffi
2p
p

rÞN
expf� 1

2r2

XN

i

½IðxiÞ�a1/1ðxiÞ�a2/2ðxiÞ�2g;

ð17Þ

where N is the number of data points and r2 the noise

strength.

The Fisher information matrix F is calculated to be

Fmn ¼ �
Z

o2ln PðIjaÞ
oamoan

PðIjaÞdI; for m; n ¼ 1; 2; ð18Þ

where Fmn is the element in the mth row and nth column of

F.

It is straightforward to check that

F ¼ 1

r2

P
i /1ðxiÞ2

P
i /1ðxiÞ/2ðxiÞP

i /1ðxiÞ/2ðxiÞ
P

i /2ðxiÞ2
� �

ð19Þ

According to the Cramér-Rao bound, the inverse of the

Fisher information defines the lower bound for decoding

errors of un-biased estimators. Consider the covariance

matrix for estimation errors of an un-biased estimator is

given by Xmn ¼ hðâm � amÞðân � anÞi . The Cramér-Rao

bound states that X � F�1 , or more exactly, the matrix

ðX� F�1) is semi-positive definite. Intuitively, this means

that the inverse of the Fisher information quantifies the

minimum inferential sensitivity of un-biased estimators.

The asymptotical performance of LSE

It is straightforward to check that for independent Gaussian

noise, LSE is equivalent to maximum likelihood inference,

i.e., its solution is obtained through maximizing the log

likelihood, ln pðIjaÞ (comparing Eq. (3) with Eq. (17)).

This implies the solution of LSE satisfies the condition,

oln pðIjâÞ
oal

¼ 0; for l ¼ 1; 2: ð20Þ

Consider â is sufficiently close to the true value a, the

above equations can be approximated as (the first-order

Taylor expansion at the point a)
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Fig. 7 The distribution of the variation of neuronal responses for three coding schemes. The variation of the lth neuron is calculated to be

hðal � haliÞ2i, where the symbol hi denotes the average over all stimuli. The figure shows the distribution of the variances of all neurons
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o ln pðIjaÞ
oal

þ o2 ln pðIjaÞ
oa2

l

ðâl � alÞ þ
o2 ln pðIjaÞ
oaloam6¼l

ðâm � amÞ

� 0; for l;m ¼ 1; 2:

ð21Þ

By using Eq. (17), the above equations can be simplified as

o ln pðIjaÞ
oal

þ
X

i

/lðxiÞ2

r2
ðâl � alÞ þ

X

i

/lðxiÞ/m 6¼lðxiÞ
r2

ðâm � amÞ � 0; for l;m ¼ 1; 2:

ð22Þ

Since noise are independent Gaussian, we have

o ln pðIjaÞ
oal

¼
X

i

�i

r2
/lðxiÞ; for l ¼ 1; 2; ð23Þ

where �i, for i = 1,...,N, are independent Gaussian random

numbers of zero mean and variance r2.

Combining Eqs. (22) and (23), we obtain the estimation

error of LSE. Here, we only show the result for â1 (the case

for â2 is similar), which is given by,

â1�a1¼�
P

iei/1ðxiÞ
P

j/2ðxjÞ2�
P

iei/2ðxiÞ
P

j/1ðxjÞ/2ðxjÞ
P

i/1ðxiÞ2
P

j/2ðxjÞ2�ð
P

i/1ðxiÞ/2ðxiÞÞ2
:

ð24Þ

It is easy to check LSE is un-biased, i.e.,

hðâ1 � a1Þi ¼ 0: ð25Þ

The variance of â1 is calculated to be

hðâ1 � a1Þ2i ¼
r2
P

i /2ðxiÞ2
P

i /1ðxiÞ2
P

i /2ðxiÞ2 � ð
P

i /1ðxiÞ/2ðxiÞÞ2
:

ð26Þ

According to the Central Limiting Theorem, when the

number of data points N is sufficiently large, the random

variable ðâ1 � a1Þ will satisfy a normal distribution with

the variance given by Eq. (26).

The covariance between the estimation errors of the two

components can also be calculated, which is given by

hðâ1 � a1Þðâ2 � a2Þi

¼ �r2
P

i /1ðxiÞ/2ðxiÞ
P

i /1ðxiÞ2
P

i /2ðxiÞ2 � ð
P

i /1ðxiÞ/2ðxiÞÞ2
:

ð27Þ

It is straightforward to check that the covariance matrix of

estimation errors of LSE, given by Xmn ¼ hðâm � amÞ

ðân � anÞi, for m,n = 1,2, is the inverse of the Fisher

information matrix F, i.e., XF ¼ 1. This implies LSE is

asymptotically efficient.

Appendix B: Optimizing the basis functions of robust

coding

The sensitivity measure H(a)

We choose the Renyi’s quadratic entropy to measure the

variability of neural responses when natural images are

presented, which is given by

H ajIð Þ ¼ �ln

Z
p ajIð Þ2da: ð28Þ

Here for simplicity, we use a to replace al, for

l ¼ 1; . . . ;M.

Suppose we have K sampled values of a which are

obtained when K natural images are presented, then

according to the Parzen window approximation (with the

Gaussian kernel), pðajIÞ can be approximated as

p ajIð Þ ¼ 1ffiffiffiffiffiffi
2p
p

dK

XK

k¼1

e�
ða�ak Þ2

2d2 ; ð29Þ

where fakg, for k = 1,...,K, represents the sampled values,

and d is the width of Gaussian kernel.

Note that

R
p ajIð Þ2da ¼

R
1ffiffiffiffi

2p
p

dK

PK

k¼1

e� a�akð Þ2=2d2

� 1ffiffiffiffi
2p
p

dK

PK

m¼1

e� a�amð Þ2=2d2

da;

¼ 1ffiffiffiffi
2p
p

dK2

PK

k¼1

PK

m¼1

e�
ak�amð Þ2

4d2 :

ð30Þ

Thus, we have

H ajIð Þ ¼ �ln
1ffiffiffiffiffiffi

2p
p

dK2

XK

k¼1

XK

m¼1

e�
ak�amð Þ2

4d2

" #
; ð31Þ

which fully depends on the sampled values.

The training procedure

Minimizing Eq. (15) is carried out by using the gradient

descent method in two alternative steps, namely, (1)

updating a while fixing u and (2) updating u while fixing a.
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(1) Updating a

To apply the gradient descent method, the key is to

calculate the gradient of E with respect to ak
l , for

l ¼ 1; . . . ;M and k = 1,...,K.

For the first term in Eq. (15), we have

o

oak
l

1

2K

XK

k¼1

Ik xð Þ � ak/ xÞð Þ
�� ��2¼ �1

K
IkðxÞ � ak/ðxÞ
� �

/lðxÞ:

ð32Þ

For the second term, we have

o

oak
l

kH að Þ ¼ k
XK

m¼1

e�ða
k
l�am

l Þ
2=4d2ðak

l � am
l Þ
.

d2
XK

j¼1

XK

m¼1

e�ða
j
l
�am

l Þ
2=4d2

" #
:

ð33Þ

Combining Eqs. (32) and (33), we obtain the update rule

for a:

ak
l ðnewÞ ¼ ak

l ðoldÞ þ gDak
l ; for l ¼ 1; . . . ;M;

and k ¼ 1; . . . ;K;
ð34Þ

where g is the learning rate, and Dak
l is given by

Dak
l ¼ 1

K IkðxÞ � ak/ðxÞ
� �

/lðxÞ

�k
PK

m¼1

e�ða
k
l�am

l Þ
2=4d2ðak

l � am
l Þ= d2

PK

j¼1

PK

m¼1

e�ða
j
l
�am

l Þ
2=4d2

" #
:

ð35Þ

(2) Updating u
Similarly, the update rule for u is given by

/lðxÞðnewÞ ¼ /lðxÞðoldÞ þ g
K

XK

k¼1

ak
l I xð Þ � ak/ xð Þ
� �

;

for l ¼ 1; . . . ;K:

ð36Þ
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