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tially useful addition to current feature extraction techniques.
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1. INTRODUCTION AND MOTIVATIONS

It is widely believed that both the underlying generators
of EEG as well as the recorded signals have at least some
nonlinear components [1–3]. Indeed, nonlinear tools and
techniques have already been usefully deployed on problems
such as the diagnosis of Alzheimer’s disease [4], Schizophre-
nia [5], and the early prediction of epileptic seizures [6–8].
However, there appears to be a lack of interest in such meth-
ods for BCI feature extraction, which remains largely depen-
dent on frequency-based methods. This is especially conspic-
uous when viewed in contrast with the enthusiastic uptake of
advanced signal processing techniques for noise and artifact
rejection (see, e.g., [9–11]).

To address this apparent shortcoming, we have experi-
mented with a number of nonlinear and complexity-based
feature extraction techniques. While our investigations are
still preliminary, we have already obtained promising results
which will hopefully encourage further progress and devel-
opment in this research direction.

The rest of the paper is structured as follows. Section 2
describes the nonlinear features investigated while Section 3
explains the simulation procedures, including the data set
used and preprocessing methods. The test results are pre-
sented in Section 4. Finally, Section 5 summarizes the find-
ings and suggests possible avenues for further investiga-
tion.

2. EEG FEATURE EXTRACTION FOR BCI

While a variety of BCI modalities are in common use, this pa-
per will focus on systems exploiting the modulation of μ (of-
ten referred to as the “sensory motor rhythm” (SMR)) and β
rhythms [12]. Often described as attenuation of the spectral
power in these bands, the associated EEG phenomena are in
fact believed to be due to the desynchronization of cortical
circuits related to motor function [13, 14]. From this per-
spective, an appropriate framework for studying these event-
related EEG phenomena might be in terms of signal complex-
ity.

Towards this end, some work has already been done in
exploiting spatial complexity for BCI [15, 16]. However, we
believe that additional information may be extracted by ex-
tending this approach to the temporal domain. As an initial
review, the following measures were chosen:

(1) singular spectral entropy (SSE),

(2) spectral profile (SP),

(3) temporal asymmetry (TA).

The above selection represents a pragmatic balance of com-
putational simplicity and a desire to approach the nonlinear
characterization problem from the complexity (SSE and SP)
and statistics-based (TA) perspectives. For comparison, we
also compute the averaged signal power in the μ (10–15 Hz)
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and β2 (23–28 Hz) bands, which will be referred to as the
“power feature” or PF. Note that at present we only consider
the high beta range (β2), as is done in a number of other
studies on this data set, for example [10, 17, 18]. The exact
frequency ranges mentioned above are based on the work de-
scribed in [17].

These features will now be briefly described.

2.1. Singular spectral entropy (SSE)

If we define complexity as the number of independent
though possibly interacting components which are active in
a signal or system at a particular time, then one way by which
complexity may be characterized is through the notion of en-
tropy. While a variety of power distributions might be suit-
able candidates for this purpose, the shape of the singular
spectrum provides an efficient representation of the con-
stituent components of a time series. The approach chosen
here is to obtain the singular spectrum of the delay embed-
ding of a time series (described in further detail below), then
to model this spectrum as a probability distribution before
calculating the entropy of the singular values; the resulting
measure will henceforth be termed the singular spectral en-
tropy (SSE). An initial study was conducted in [19], where
it was noted that imagined movements correlated with fluc-
tuations of the SSE. Unfortunately, there was no attempt to
further characterize these fluctuations or to build a classifier
based on this approach. Since then, however, SSE has been
applied to other aspects of EEG such as sleep [20] and ictal
(seizure) EEG [6]. Hence, while its use is not widespread, SSE
is a promising candidate for BCI feature extraction, motivat-
ing its use in this study.

For a time series x(t), SSE is calculated by first construct-
ing a delay embedding matrix, X, of dimension m:

X = [x(t), x(t + 1), . . . , x(t + n)
] ∈Rm×(n+1), (1)

where x(t) = [x(t), x(t−1), . . . , x(t−m)]T . Next, X is decom-
posed using singular value decomposition (SVD) to obtain

X = USVT , (2)

where U and V are orthogonal matrices, and S is a diago-
nal matrix containing the singular values of the embedding
matrix, si. These are then normalized to one and used to cal-
culate SSE as follows:

SSEm = −
m∑

i=1

si log si. (3)

2.2. Spectral profile (SP)

The intuition behind the SSE feature can equally be applied
to the frequency spectrum (in fact, an additional complex-
ity measure proposed in [21] used the entropy of the power
spectral density). However, experimentally we have found
this measure to be extremely noisy and unsuitable for use
with BCI.

However, as an alternative to SSE, we wish to define a
further feature based on the shape of the power spectra; it
was decided to evaluate the effectiveness of directly using the
ordinates of the frequency spectra as a feature vector. To pre-
vent the power of the signal from dominating or even affect-
ing the classification process in any way, the extracted spec-
tral components were first normalized to one before incor-
poration into the feature set. For convenience, we will refer
to this feature as the spectral profile (SP) of the trial.

To obtain the SP vector, the elements of the spectra cor-
responding to the μ and β bands were extracted then normal-
ized as follows:

μ =
{

θi∑
j∈Σμ

θ j
: i ∈ Σμ

}

,

β =
{

θi∑
i∈Σβ

θ j
: j ∈ Σβ

}

,

(4)

where θi is the ith ordinate of the power spectrum, and Σμ

and Σβ are the sets of frequency ordinates falling within the
two bands, respectively. μ and β are the sets containing the
normalized spectral ordinates and if we define μi and βj as
the enumerated elements of these sets, the SP feature vector
is then written as follows:

SPΣμ,Σβ =
[
μi, . . . ,μNμ ,βj , . . . ,βNβ

]
, (5)

where Nμ and Nβ are the sizes of sets μ and β.

2.3. Temporal asymmetry (TA)

If we assume that the desynchronization process accompany-
ing motor visualization reflects the activation of previously
dormant neuronal circuits, then this might also be accompa-
nied by a detectable increase in signatures of nonlinear dy-
namics.

One property of linear time series is that the associated
statistics remain constant under time reversal, since a lin-
ear process is essentially a combination of sinusoids which
are symmetric in time. This fact can be exploited to provide
a particularly powerful indicator of nonlinearity, temporal
asymmetry (TA); this is frequently defined as [22]

TAτ =
∑N

n=τ+1

(
x(n)− x(n− τ)

)3

[∑N
n=τ+1

(
x(n)− x(n− τ)

)2
]3/2 , (6)

where τ is the time delay. To restrict the analysis to compo-
nents of the signal which exhibit the highest variability with
respect to the classes of interest, a pair of bandpass filters was
used to extract signal components in the μ and β bands (de-
tails provided later in Section 4), from which the TA was cal-
culated and used to create a feature vector based on temporal
asymmetry.

2.4. Power feature (PF)

In addition to the features mentioned above, the power fea-
ture (PF) was included for comparison. This represents the
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conventional approach to BCI feature extraction (variations
of which are used in [10, 17, 18], e.g.) and is defined as the
spectral power contained in the μ and β bands. PF is calcu-
lated, thus

PF =
[

∑

f∈[10,15]

θ f ,
∑

f∈[23,28]

θ f

]

, (7)

where θ f is the power spectrum at frequency f .
Finally, for the calculation of the SSE and TA features,

we use bandpass filters to restrict the analysis to the μ and β
bands of the signal, as these are known a priori to be active
during motor imagery. As the actual magnitudes of the sig-
nals in these two bands are removed via normalization, we
hope to focus on the overall shape of the spectrum rather
than on particular peaks, as nonlinear phenomena are likely
to have broader spectra compared to oscillatory generators.

3. PROCEDURES

3.1. Data

To test the proposed approach, we used dataset IIA from
BCI competition 2003 [23, 24], which was provided by the
Wadsworth Center, New York State Department of Health .
The data consists of 64-channel recordings from three sub-
jects (AA, BB, and CC) for ten 30-minute sessions. Each ses-
sion consists of 192 trials in which the subject is required
to use motor imagery to guide a cursor to one of four pos-
sible target positions. As was done during the competition,
we use data from the first six sessions as the training set,
while recordings of the last four sessions were used to test
the trained classifiers.

3.2. Preprocessing and channel selections

As an initial preprocessing step, we evaluated two methods
commonly used for EEG analysis: the common average refer-
ence (CAR) and the Laplacian spatial filtering methods. The
CAR filter was found to significantly improve classification
performance and was subsequently retained as a basic first
stage in the classification process, (e.g., of its use in BCI, see
[10, 18]). The CAR filter is applied as follows:

vCAR
i = vRaw

i − 1
N

N∑

j=1

vRaw
j , (8)

where N is the number of channels in the data set, vRaw
i is the

unprocessed signal from channel number i, and vCAR
i is the

same channel after CAR filtering.
As CAR filtering is primarily for noise rejection, projec-

tion onto CSP (common spatial patterns) features is used to
further emphasize information relevant to the BCI classifi-
cation task. CSP is widely used in EEG analysis [17, 25] to
find spatial filters that maximize the variance of trials corre-
sponding to one particular class at the expense of another.

Briefly, the CSP filters are found as follows.

(1) Partition the full data matrix X into the two class-
specific matrices XA and Xb corresponding to the two
classes to be discriminated.

(2) Calculate the corresponding covariance matrices CA

and CB as well as the sum C = CA + CB.
(3) Find the whitening matrix W such that WTCW = I,

where W may be found via the eigenvector decompo-
sition

C = ŨTΣŨ, (9)

then W = ŨΣ−1/2. Hence,

WTCW = I =⇒ WTCAW + WTCBW = I. (10)

(4) Apply a rotation matrix Y to both sides of (10),

YT
(

WTCAW + WTCBW
)

Y = I. (11)

(5) Choose Y such that it diagonalizes WTCAW, that is,

YT
[

WTCAW
]

Y =

⎡

⎢
⎢
⎢
⎢
⎣

σ1
A 0 · · · 0
0 σ2

A · · · 0

0 0
. . . 0

0 · · · 0 σnA

⎤

⎥
⎥
⎥
⎥
⎦
. (12)

(6) From (10)–(12), it follows that YT[WTCBW]Y will
also be diagonal, and the sum of corresponding diago-
nal elements will be 1.

(7) Hence, to create a spatial filter that maximizes the vari-
ance of class A trials while minimizing the variance of
class B trials, set Y to be the eigenvectors of WTCAW.
Then, the columns of the matrix WY provide the CSP
spatial filters and may be sorted based on the eigenval-
ues.

For both of the data sets presented above, a bandpass filter
with the following passbands: 10–15 Hz (μ) and 23–26 Hz
(β) was applied. This creates two filtered signals which are
then added together. As was done in [17, 18], only classes 1
and 4 are considered at this stage. Trials belonging to these
two classes are extracted and combined to form XA and XB,
respectively. These are then used to obtain the CSP filters as
described above.

For operations requiring the power spectra, the Welch
method was used to estimate the power spectral density. This
method has been used in a number of other BCI related stud-
ies (e.g., [9], in which it was noted for producing superior
performance). A 128-point window with 50% overlap was
used. For bandpass filtering operations, we used third order
Butterworth filters as they provided frequency responses with
maximal flatness, (and hence minimal distortion of the am-
plitude spectra). The use of FIR filters was also considered for
their linear phase property. However, subsequent inspections
of the frequency responses revealed that a similar amplitude
response would have required an FIR with around 50 taps; in
comparison, the trials for subject CC are 304 samples long.

In the actual experimental setting, two CSP channels
were used at any time (the actual choice of channels used
varied with the subject, as will be described later). In addi-
tion, it was discovered that submitting the entire set of 64
channels to CSP processing resulted in problems with matrix
singularity, as many channels are highly correlated. As such,
only a subset consisting of 18 channels situated over the mo-
tor cortex was used. These were 8–10, 12–17, 19–21, 48–50,
and 52–54 [18].
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3.3. Feature translation

For feature classification, we adopt a probabilistic approach
similar to that used in [26]. However, because the present
data set is a lot larger, Gaussian mixture models (GMM) were
used in place of the single Gaussians used in [26]. Prelimi-
nary experimentations were conducted with the case of 1 and
2 Gaussians.

To train the models, the selected features were first ex-
tracted from the training data and grouped according to tar-
get classes. For each class c ∈ {1, 2, 3, 4}, we train a two-
Gaussian GMM using the expectation-maximization (EM)
algorithm.

To classify a test vector f into one of the four classes, the
maximum a posteriori (MAP) decision rule is used:

cMAP(f) = argmaxc P(c | f). (13)

P(c|f) can be found via Bayes’ theorem. Also, in this case, we
have uniform prior and constant evidence terms, hence

P(c | f) = P(f | c)p(c)
P(f)

= kP(f | c)

∝
∑

i∈{1,2}
πi,c exp

[
− (f − μi,c

)T
C−1
i,c

(
f − μi,c

)]
,

(14)

where μi,c and Ci,c are the mean and covariance of Gaussians
i in class mixture c, and πi,c are the mixing coefficients deter-
mined during training.

The effectiveness of the features can now be evaluated in
terms of the classification rates, which are calculated as fol-
lows:

Accuracy (%) = 100×
[∑n

i=1 δ
(
cMAP

(
fi
)− c(i)

)]

n
, (15)

where i is the trial index and n is the number of trials. fi and
c(i) denote the feature vector and class labels for trial i, re-
spectively, and δ(·) is Dirac’s delta function.

4. RESULTS AND OBSERVATIONS

The procedures and features described in the preceding sec-
tions were applied to the BCI data and classification accuracy
evaluated according to (15). For SSE, an embedding dimen-
sion of m = 15 was used, while for the delay parameter in
TA, τ = 2 was used. These values were selected based on an
evaluation of a range of potential combinations. The perfor-
mances of all four features are compared in Tables 1 and 2 for
the 1 and 2 Gaussian cases, respectively.

As can be seen, the classification performance obtained
using both SSE and SP is encouraging when compared to
the performance of PF. SSE in particular is more accurate
than both SP and PF. SP also produced higher classification
rates compared to PF though the disparity was a lot narrower.
However, PF has better classification rates in the case of sub-
ject CC when compared with SP.

On the negative side, the TA feature performed very
poorly. However, while disappointing, this result is not sur-
prising considering that measures based on high-order statis-
tics are notoriously sensitive to noise. In most cases, TA is

Table 1: Feature-wise classification accuracy using 1 Gaussian (%).

Features
Subjects

AA BB CC Mean

SSE 68.5 52.3 68.6 63.2

SP 61.3 54.7 62.5 59.5

TA 36.8 27.9 35.0 33.2

PF 57.7 49.9 64.6 57.4

Table 2: Feature-wise mean classification accuracy using 2 Gaus-
sians (%).

Features
Subjects

AA BB CC Mean

SSE 68.4 52.3 68.7 63.1

SP 62.5 54.7 62.1 59.8

TA 36.3 29.9 35.5 33.9

PF 55.2 52.1 67.4 58.2

used only in combination with surrogate data and then only
to establish the presence of nonlinearity, not to characterize
it.

Finally, in terms of the classification algorithm, the per-
formance of the 1 and 2 gaussian models did not appear to
differ very much. Henceforth, for brevity, we only present
results produced by the two Gaussian models, which per-
formed slightly better. However, it must be noted that the
choice of either of these two models does not appear to be
critical.

4.1. Detailed comparisons of SSE, SP, and PF

Given the disappointing classification rates obtained using
TA, we exclude it from further discussions and focus now on
the relative performances of SSE, SP, and PF. To better under-
stand the performance characteristics of these three features,
the per-session classification accuracies for each of the three
features are presented in Table 3. For comparison, the aver-
age online accuracies (this is the success rate of the subject
in hitting the target) obtained during the actual recording at
the Wadsworth centre have also been included.

Some observations were as follows.

(1) As mentioned before, SSE was the best all-round per-
former, producing the best classification rates in 7 out
of 12 sessions. SP was superior to PF in 9 sessions.

(2) However, SP emerged as the best feature in only 2 ses-
sions, compared to 3 sessions in the case of PF. PF per-
formed particularly well with subject CC, especially in
session 7 where it had by far the best results. For sub-
ject BB, PF had the best classification rate for session 7
while its accuracy for session 8 was clearly better than
SSE and comparable to SP.

(3) Similarly, though the overall results obtained using
SSE were the best, SP produced the highest average
classification rate for subject BB.

(4) This variability in the results implies that SSE, SP, and
PF are monitoring independent aspects of the signal
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Table 3: {SSE, SP, PF}: Classification accuracy (%). Scores in bold are top scores for the respective sessions.

Features
Sessions

Subjects 7 8 9 10 Mean Online

SSE
AA 67.4 67.9 71.2 67.0 68.4 73.4

BB 52.6 52.1 54.2 50.5 52.3 77.2

CC 55.4 78.6 67.2 73.6 68.7 69.0

SP
AA 65.6 62.4 68.4 53.5 62.5 73.4

BB 58.9 54.2 53.1 52.6 54.7 77.2

CC 53.9 67.6 60.7 66.4 62.1 69.0

PF
AA 55.2 58.9 55.7 51.0 55.2 73.4

BB 60.9 52.6 43.2 51.6 52.1 77.2

CC 68.8 70.8 51.6 78.6 67.4 69.0

and that a classifier which combines the information
extracted using these different features might be of
value. To test this idea, we have conducted some pre-
liminary tests, the results of which are described in
Section 4.2.

(5) One curious result was that the offline classification
rates almost seemed to be inversely related with the on-
line classification rates. For example, EEG recordings
from subject BB, who was the highest scorer during
online tests, proved to be the most difficult to analyze
and resulted in the lowest offline scores. It is unclear
what the cause of this inconsistency was, but we note
that the same trend is observed in other studies which
use this data set [10, 17, 18].

(6) The choice of CSP-based spatial filter was highly de-
pendent on the subject being tested. For EEG record-
ings of subjects AA and CC, CSPs specific to class 1
provided the best discrimination performance, while
for subject BB, the CSPs specific to class 4 were a lot
more suitable.

4.2. Combination classifier

Based on the variability in the results, we decided to test a
combination classifier incorporating all three features {SSE,
SP, PF}.

As creating a combination feature vector would greatly
increase the number of parameters to be optimized, we
adopted the approach used in [10], which was to train clas-
sifiers on each of the feature sets, then combine these us-
ing a committee machine. As in [10], the combined output
was generated by averaging the predictions of the individual
classifiers. While relatively simple, this method is acceptable
as the performances of the experts do not differ too signifi-
cantly.

The results of this approach are shown in Table 4. The
overall impression is that the results seem to have benefited
from using the combination approach. Some more detailed
observations are as follows.

(1) In general, the results of the combination classifier are
a lot more robust compared to the results of the in-
dividual classifiers. Even though the relative perfor-
mances of the three component classifiers vary quite

Table 4: Combination: classification accuracy (%).

Subjects
Sessions

7 8 9 10 Mean Online

AA 69.3 69.9 69.5 61.7 67.6 73.4

BB 59.9 59.4 53.1 53.6 56.5 77.2

CC 63.4 80.0 65.5 76.5 71.3 69.0

a bit, the performance of the combination classifier ei-
ther exceeds or is very close to the best of the three.
This helps to confirm that the proposed features are
more robust in respect to noise or variability in the
data and moreover enables us to extract information
which is simply not present in the power features.

(2) Similarly, on a session-by-session basis, the results of
the combination classifier frequently exceeds that of
any of the three component classifiers. By comparing
the results in Table 3 with the results in Table 4, it can
be seen that in five out of twelve sessions, the com-
bination classifier is better than all three component
classifiers.

(3) The classification performance of the combination
classifier was comparable to results published in [10,
18]. In both cases, the combination classifier produced
the best classification rate in the case of subject CC but
did not fare as well in the cases of subjects AA and BB.
However, the winning entry to the competition still
had better performance [17], though this was obtained
using a higher resolution feature extraction procedure
based on dividing the trials into smaller time segments.
As will be explained in Section 5, increasing the time
resolution of the proposed method is certainly one of
our current objectives.

(4) Similarly, the second placed entry in the competition
[18] included an “energy accumulation function” to
improve performance, while in [10] independent com-
ponent analysis (ICA) is used to help remove noise
from the signal. As a future work, we might certainly
incorporate some of these enhancements but this is be-
yond the scope of the present paper.
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5. DISCUSSIONS

While preliminary, the results presented here suggest that
features which allow for nonlinear dynamics are promising
and potentially useful in the development of BCI systems.

As the tests were conducted using offline recordings,
our initial objective was not to directly compare the pro-
posed features with existing frequency-based techniques. Be-
cause these were used as the online control signals, sub-
jects might have been conditioned to directly modulate the
power spectrum, thus biasing the results in favour of tradi-
tional approaches. As such, we did not perform extensive op-
timization of the feature extraction parameters; in any case,
though this might have produced slight improvements to
the results, it could also have resulted in overfitting or over-
customization to a particular subject and was thus avoided.

Rather than obsessing with the final classification figures,
our main aim was to demonstrate the general feasibility of
complexity-based feature extraction. On this count, it ap-
pears that the proposed method is potentially useful for BCI.
As far as we know, this is the first publication which seriously
studies the performance of a temporal complexity measure
on a BCI problem. If the results presented in this paper can
be supported by further studies, it will provide an efficient
new set of features for use with motor-imagery-based BCI
systems. However, many issues need to be investigated before
the practical utility of the method can be established. In par-
ticular, it should be noted that the experiments decribed in
this paper process entire trials at a time to produce the clas-
sifications. While this is consistent with the approach taken
in [18], a shorter-time window needs to be considered before
the method can be tested for online (real-time) scenarios.

At present, we are either actively investigating or seriously
considering a number of avenues for further investigation. In
particular, we are interested in extracting SSE features from
shorter-time windows (e.g., in the BCI experiments for this
data, time windows of 200 ms were used to control the cur-
sor motion). A separate but important issue is to find and
test other practical measures of system complexity, for exam-
ple, approximate entropy. If found to be promising, findings
and results of these ongoing investigations will be described
in a further publication in the hope of stimulating broader
interest and development in this area.
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