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Abstract
Context—The common P12A polymorphism in PPARG (a target for thiazolidinedione
medications) has been consistently associated with type 2 diabetes.

Objective—We examined whether PPARG P12A affects progression from impaired glucose
tolerance (IGT) to diabetes, or responses to preventive interventions (lifestyle, metformin or
troglitazone versus placebo).

Patients—3,548 Diabetes Prevention Program participants.

Design—We performed Cox regression analysis using genotype at PPARG P12A, intervention, and
their interactions as predictors of diabetes incidence. We also genotyped five other PPARG variants
implicated in the response to troglitazone and assessed their effect on insulin sensitivity at one year.

Results—Consistent with prior cross-sectional studies, P/P homozygotes at PPARG P12A appeared
more likely to develop diabetes than alanine carriers (hazard ratio 1.24, 95% CI 0.99–1.57, P=0.07),
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with no interaction of genotype with intervention. There was a significant interaction of genotype
with body mass index (BMI) and waist circumference (P=0.03 and 0.002 respectively), with the
alanine allele conferring less protection in more obese individuals. Neither PPARG P12A nor five
other variants significantly affected the impact of troglitazone on insulin sensitivity in 340
participants at one year.

Conclusions—The proline allele at PPARG P12A increases risk for diabetes in persons with IGT,
an effect modified by BMI. In addition, PPARG P12A has little or no effect on the beneficial response
to troglitazone.
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INTRODUCTION
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear hormone receptor
preferentially expressed in adipose tissue (1). Activation by its ligand causes it to
heterodimerize with the retinoid X receptor, bind specific DNA elements and induce a
transcriptional cascade that leads to adipocyte differentiation and increased sensitivity to
insulin. The PPARγ molecule is now recognized as the cognate receptor for thiazolidinediones
(2). A proline → alanine change in codon 12 of its gene PPARG (P12A) has been reproducibly
associated with a decreased risk for type 2 diabetes (3–12); the proline allele confers a ∼20%
increased risk under a recessive model. Because of its high frequency in the population, the
population attributable risk of this variant nears 25% (4). Although some studies have not
achieved statistical significance in their attempt to replicate this finding (13–21), most of them
report consistent odds ratios (OR) with overlapping 95% confidence intervals, such that a meta-
analysis of all published evidence yields a combined P value that achieves genome-wide
significance (22). How this molecular change impairs protein function and leads to an increased
risk of type 2 diabetes has not been fully elucidated (23).

The risk of type 2 diabetes conferred by PPARG P12A has also been evaluated prospectively.
The Finnish Diabetes Prevention Study (24), which randomized 522 subjects with impaired
glucose tolerance (IGT) to either placebo or a lifestyle intervention, reported a two-fold
increase in risk of developing type 2 diabetes among alanine carriers in the placebo arm when
compared to P/P homozygotes, a result which seemed to contradict the sizeable body of cross-
sectional literature described above. On the other hand, the much larger Botnia Prospective
Study (N=2,293) documented a hazard ratio (HR) for developing diabetes of 1.7 among P/P
homozygotes, a result which was statistically significant (25). Different ascertainment schemes
(IGT vs a population sample) and analytical methods (logistic regression vs Cox proportional
hazards analysis) may explain some but not all of these discrepancies.

In addition to its role in increasing risk of type 2 diabetes, the P12A variant may also affect
therapeutic response; if so, its putative impact on preventive interventions might have clinical
utility. In support of this concept, two studies have examined the effect of PPARG P12A on
response to thiazolidinediones (26,27). Blüher and colleagues treated 131 subjects with
pioglitazone for 26 weeks; the proportion of responders (defined as >15% decrease in
HbA1C levels and/or >20% decrease in fasting blood glucose when compared to baseline after
12 or 26 weeks of pioglitazone) did not differ between P/P homozygotes and alanine carriers
(26). Snitker and colleagues examined 93 Hispanic women with a previous history of
gestational diabetes enrolled in the Troglitazone in Prevention of Diabetes (TRIPOD) study,
and obtained intravenous glucose tolerance tests before and three months after treatment with
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troglitazone; genotype at PPARG P12A did not explain the variability in insulin sensitivity
observed among these women (27).

It is possible that these studies were underpowered or that other variants in PPARG may account
for the differential therapeutic response. To examine the second possibility, the TRIPOD
investigators genotyped a set of 131 common PPARG variants in the same group of 93 Hispanic
women, and reported that eight PPARG polymorphisms were associated with response to
troglitazone, defined as an overrepresentation of the minor allele in the upper two tertiles of
insulin sensitivity (SI during IVGTT) after three months of troglitazone treatment (28). Two
of these SNPs (rs4135263 and rs1152003) also showed nominal associations with changes in
SI as a quantitative trait under recessive genetic models (28).

As a next step in clarifying the conflicting literature and evaluating the effect of PPARG P12A
on thiazolidinedione response in a large multiethnic sample, we set out to confirm the predictive
power of this variant and assess its impact on the lifestyle and pharmacological interventions
employed in the Diabetes Prevention Program (DPP) (29). We further examined the five non-
redundant SNPs which had shown positive nominal associations with response to troglitazone
in the TRIPOD study (28) for a similar effect on troglitazone response in the DPP cohort.

METHODS
The Diabetes Prevention Program

The details of study design and preventive interventions have been described elsewhere (29–
31). The DPP was a 27-center randomized clinical trial that examined whether a lifestyle
intervention directed at modifying risk factors for type 2 diabetes (overweight, and sedentary
lifestyle), or metformin would prevent or delay the development of diabetes in persons at high
risk. The DPP enrolled 3,234 nondiabetic persons with IGT and elevated fasting glucose and
randomized them to placebo, metformin 850 mg twice daily, or a lifestyle intervention
program; a fourth arm of 585 subjects assigned to treatment with troglitazone 400 mg daily
was stopped two years after the trial commenced because of hepatotoxicity (30). The principal
endpoint was the development of diabetes, confirmed on a second test using ADA criteria. The
lifestyle and metformin interventions reduced the incidence of diabetes in high-risk individuals
by 58% (95% CI 48–66) and 31% (95% CI 17–43) respectively versus placebo (29). Diabetes
incidence rates were 11.0, 7.8, and 4.8 per 100 person-years in the placebo, metformin, and
lifestyle groups respectively; treatment effects were consistent across sex and self-reported
ethnicity, and diabetes incidence did not differ across ethnic groups (29). When analyses were
restricted to the mean 0.9-year period of active troglitazone treatment, diabetes incidence rates
were 12.0, 6.7, 5.1 and 3.0 per 100 person-years in the placebo, metformin, lifestyle and
troglitazone groups respectively (P<0.001, troglitazone versus placebo) (32).

Participants
The 3,548 participants included in this study (92.9% of all DPP participants: 2,994 who
completed the trial in their originally assigned treatment groups, plus 554 originally
randomized to troglitazone) provided informed consent specific to genetic investigation. The
study was approved by the relevant Institutional Review Boards at the participating sites. Of
the participants in this study, 56.4% were Caucasian, 20.2% were African American, 16.8%
were Hispanic, 4.3% were Asian American and 2.4% were American Indian by self report.
The participants’ mean age was 51 years and mean body mass index (BMI) was 34.0 kg/m².
Subjects had semiannual measurements of fasting glucose and glycated hemoglobin, and an
annual 75-g oral glucose tolerance test (OGTT); given the early termination of the troglitazone
arm, one-year data were available in only 340 of the participants randomly assigned to
troglitazone.
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PPARG SNP selection
In addition to P12A (rs1801282), we also genotyped five of the eight SNPs reported by Wolford
et al. to have positive nominal associations with response to troglitazone (28). The TRIPOD
investigators found that, of those eight SNPs (rs13073869, rs880663, rs4135263, rs1152003,
rs6806708, rs13065455, rs13088205 and rs13088214), the first two and the last three were in
perfect linkage disequilibrium with each other, respectively (r2=1.0); we therefore selected a
non-redundant set of five SNPs for our analyses (rs880663, rs4135263 rs1152003, rs6806708
and rs13065455). We confirmed that these SNPs were indeed non-redundant in our five ethnic
groups: with the exception of rs6806708 and rs13065455, which were in near-perfect linkage
disequilibrium both in the original publication and in our samples (r2=0.9–1.0), the other SNPs
had pairwise r2 ranging from 0.0–0.2 in Caucasians to 0.1–0.4 in American Indians.

Genotyping
DNA was extracted from peripheral blood leukocytes through conventional procedures and
quantitated by picogreen analysis (Molecular Probes). Genotyping of PPARG P12A was
performed in the forward and reverse directions by allele-specific primer extension of single-
plex amplified products, with detection by matrix-assisted laser desorption ionization-time of
flight mass spectroscopy on a Sequenom platform as previously described (33); the five other
PPARG SNPs were genotyped in the same manner but with single-direction primers only. Our
genotyping success rate was 99.8% and there were no discordant genotypes on forward and
reverse primer extension. The allele frequencies of all six SNPs in each of the five ethnic groups
were in Hardy-Weinberg equilibrium (P>0.01).

Quantitative traits
Data from the baseline and one-year OGTTs were used to calculate measures of insulin
secretion and insulin sensitivity, which were expressed using glucose and insulin measured in
conventional units (milligrams per deciliter and microunits per milliliter, respectively) as
previously described (34). The insulinogenic index (35) was calculated as [(insulin at 30 min)
− (insulin at 0 min)]/[(glucose at 30 min) − (glucose at 0 min)]). The insulin sensitivity index
(ISI, reciprocal of insulin resistance by the homeostasis model assessment (36)) was calculated
as 22.5/[fasting insulin × (fasting glucose/18.01)]. In addition, we examined fasting glucose
and 2-hour OGTT glucose at baseline and one year.

Statistical analysis
Time to onset of diabetes was the primary endpoint. Because the previous literature consistently
reports a recessive model of risk transmission for proline carriers at PPARG P12A, P/A and
A/A individuals were grouped into one genotypic category (A/X). We examined Cox
regression models with genotype, intervention and their interactions as the independent
variables predicting time to diabetes. These models were also examined with baseline BMI,
waist circumference, age, gender and self-reported ethnicity as covariates. Analyses were
repeated in the subset of ethnic groups that had comparable allele frequencies (Caucasians,
Hispanics and Asian Americans), and in Caucasians only; whether we restricted our analysis
to these subgroups or tested for a genotype × ethnicity interaction, we detected no significant
effect of self-reported ethnicity in any of our analyses.

For the quantitative trait comparisons, we first obtained baseline measures in the entire cohort
according to genotype at PPARG P12A. Differences between means in the two genotypic
groups (P/P and A/X) were tested using t tests. For the one-year measurements, a general linear
model was examined with and without 3-way interactions (treatment group, genotype, and
baseline value of each trait). Least square means were adjusted for baseline values; two-sided
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nominal P values are reported. The SAS analysis system version 8.2 was used for all analyses
(SAS Institute, Inc., Cary, NC).

In order to determine the potential effects of genotype on responsiveness to troglitazone, we
calculated the ISI in the 340 DPP participants who completed one year of troglitazone treatment
at baseline and one year. In accordance with the previous classification (28), we divided this
group into tertiles of change in ISI (one-year ISI minus baseline ISI) and assigned the top two
tertiles as “responders” and the bottom tertile as “non-responders”; we then examined allelic
frequency differences between the two groups by chi square analysis. In addition, we compared
change in ISI as a quantitative trait according to genotype at all five loci by means of the non-
parametric Kruskal-Wallis test; if nominally significant differences were found, pairwise
comparisons between genotypic groups were performed with a Wilcoxon test, with P values
adjusted by Holm’s procedure as previously described (37). We also compared one-year ISI
as a quantitative trait according to genotypic group at all five loci, adjusted for baseline ISI,
under the additive and recessive models. Finally, in order to control for allele frequency
differences among populations, we repeated these analyses in the largest group (Caucasians)
only.

RESULTS
Allele frequency distribution

For PPARG P12A, the frequency of the minor alanine allele in DPP US Caucasians (0.10) was
comparable to that previously reported in other Caucasian populations (4,6,8,16). We found
significant differences in minor allele frequencies in African Americans (0.02) and American
Indians (0.19) when compared to Caucasians; therefore, analyses for incidence of diabetes
were performed both with and without these two ethnic groups.

At PPARG P12A, genotypic frequencies were equally distributed among the four treatment
arms and two gender groups. We found no significant differences in baseline age or BMI, but
P/P homozygotes appeared to have a smaller waist circumference (Table 1).

Incidence of diabetes
Consistent with previous cross-sectional case/control results, the DPP showed that individuals
who were homozygous for the proline allele appeared to progress more rapidly from IGT to
diabetes than alanine carriers (HR 1.24, 95% CI 0.99–1.57, P=0.07). We found no interaction
between genotype and intervention (P value for the genotype × metformin interaction, 0.89;
P value for the genotype × lifestyle interaction, 0.61). Hazard ratios were similar across all
treatment arms (Fig. 1). In the placebo group, the hazard ratio was slightly higher but had wider
95% confidence intervals (HR 1.28, 95% CI 0.90–1.82, P=0.17). When the sample was
restricted to the Caucasian group only, the overall hazard ratio for all treatment groups
combined was statistically indistinguishable, but again with wide 95% confidence intervals
possibly due to the smaller sample size (HR 1.18, 95% CI 0.89–1.57, P=0.24).

When baseline BMI was added to the model, we noted a nominally significant genotype × BMI
interaction (P=0.03), such that alanine carriers were more susceptible to the deleterious effect
of BMI on diabetes incidence than proline homozygotes (Fig. 2). Addition of the BMI
interaction term to the model did not significantly alter the overall effect of genotype. Similar
effects were noted for waist circumference (which is highly correlated with BMI in this cohort):
there was a nominally significant interaction between genotype and waist circumference
(P=0.002), and in a model adjusting for baseline waist circumference P/P homozygotes were
more likely to progress to diabetes than alanine carriers (HR 1.27, 95% CI 1.01–1.60, P=0.04).
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Quantitative traits
At baseline, proline homozygotes and alanine carriers had indistinguishable indices of insulin
sensitivity and insulin secretion (Table 1). At one year, the lifestyle intervention, metformin
and troglitazone all led to significant improvements in insulin sensitivity, as previously
reported (32,34); however, there were no significant differences in the magnitude of these
improvements by genotype at PPARG P12A (Table 2). Examination of fasting and 2-hour
glucose levels after OGTT both at baseline and at one year did not reveal significant differences
between proline homozygotes and alanine carriers across all treatment groups (Table 1 and
data not shown).

Response to troglitazone
In addition to PPARG P12A, we examined the five PPARG SNPs rs880663, rs4135263
rs1152003, rs6806708 and rs13065455 for association with response to troglitazone. The
median (25th –75th percentile) ISI (expressed in [(μU/ml) × (mmol/L)]−1) for participants
randomly assigned to troglitazone treatment at baseline was 0.163 (0.119–0.232). After one
year of troglitazone treatment, participants in the bottom tertile of change in ISI (“non-
responders”) did not show any improvement in ISI (one-year ISI minus baseline ISI, −0.070
± 0.088, mean ± SD), whereas “responders” in the middle and upper tertiles did (one-year ISI
minus baseline ISI, +0.047 ± 0.028 and +0.252 ± 0.180, respectively). There were no significant
allele frequency differences at any of the five loci between troglitazone “responders” and
troglitazone ”non-responders” after one year (Table 3).

When we analyzed change in ISI at one year as a continuous trait, we noted a nominally
significant higher change in ISI in rs880663 heterozygotes when compared to homozygotes
for either allele (P=0.02–0.04); no other nominally significant differences were found at any
of the four remaining SNPs (Table 3). Similar results were obtained when we compared one-
year ISI (adjusted for baseline ISI) across genotypic groups. Furthermore, in contrast with the
results of Wolford et al. (28), homozygotes for the minor allele at all five SNPs had one-year
ISI levels (adjusted for baseline ISI) indistinguishable from major allele carriers (P=0.10–
0.84). Adjustment for gender, baseline age, baseline BMI or self-reported ethnicity did not
change the results. Analyses restricted to the largest ethnic group (Caucasians only, N=201)
did not reveal any statistically significant differences in the response to troglitazone.

DISCUSSION
A limited number of common genetic variants have been consistently associated with type 2
diabetes (22): these include PPARG P12A, the E23K polymorphism in the gene encoding the
islet ATP-sensitive potassium channel Kir6.2 (KCNJ11) and SNP44 in the gene that encodes
calpain 10 (CAPN10). More recently, a common allele in the TCF7L2 gene has been
convincingly associated with type 2 diabetes, with an estimated allelic relative risk of 1.56 and
high statistical significance (38). While these validated associations have been usually tested
in case/control samples, few studies have examined them prospectively and/or in regard to
their effect on therapeutic interventions.

The DPP is a unique study in which to carry out such analyses. It differs from other diabetes
prevention trials (39,40) in that it included both lifestyle and pharmacological interventions;
in addition, its multiethnic design reflects the diversity of the US population. Moreover, its
large sample size makes it adequate for genetic studies where variants are thought to confer
modest risk. An important distinction with other large observational trials (25) is the DPP’s
interventional design and the exclusive enrollment of individuals with IGT, which suggests
the presence of some degree of genetic risk at baseline and may introduce selection bias by
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imposing constraints at ascertainment. We have recently validated the association of common
variants in TCF7L2 with development of diabetes in this cohort (33).

Genetic studies in multiethnic cohorts raise the issue of population stratification (41). We have
addressed this possible confounder by repeating the analyses in the ethnic groups which have
comparable allele frequencies, further restricting the analyses to the largest ethnic group alone,
and explicitly testing for a genotype × ethnicity interaction. In addition, we note that in the
short interval and high-risk population studied in the DPP there were no significant differences
in diabetes incidence across ethnic groups (29); thus, it is unlikely that differences in allele
frequencies across populations have confounded our phenotypic results.

In agreement with both the Botnia Prospective Study (25) and the preponderance of the cross-
sectional literature (and in contrast with the Finnish Diabetes Prevention Study (24)), we also
observed a modest genetic risk conferred by the homozygous P/P genotype at PPARG P12A.
Although the P values we obtained do not quite reach conventional statistical significance, the
very high prior probability that PPARG P12A increases risk of type 2 diabetes makes us believe
that the hazard ratios we have noted here represent a real effect. Possible reasons for its lower
magnitude in the DPP include the initial high-risk characteristics of the DPP cohort and the
limited 3-year window of the IGT-to-diabetes transition examined during this study. It is also
possible that this variant may exert a stronger effect on the transition from normoglycemia to
IGT, rather than in the progression from IGT to diabetes.

By detecting a strong genotype × obesity interaction we have been able to clarify some of the
heterogeneity found in the literature, where studies conducted in leaner populations tend to
report higher odds ratios for risk associated with the P/P genotype (3,5). Our data show that
the protective effect of the alanine allele disappears at BMIs above ∼35 kg/m2. Indeed, this
might partially explain the apparent lack of a protective effect of the alanine allele in the Finnish
Diabetes Prevention Study (24), where A/A homozygotes were more obese than P/P
homozygotes at baseline (BMI 33.0 ± 6.3 versus 31.1 ± 4.4 kg/m2 [mean ± SD], respectively).
This interaction of PPARG P12A with BMI is also consistent with the increased skeletal muscle
glucose uptake seen in lean but not obese (BMI >27 kg/m2) alanine carriers when compared
to P/P homozygotes (42).

Despite the well-documented effect that this missense polymorphism (in a gene that encodes
the molecular target for thiazolidinedione medications) has on type 2 diabetes, we have been
unable to detect a discernible impact of this variant on quantitative glycemic traits such as
fasting glucose, 2-hour glucose after an OGTT, or validated measures of insulin secretion and
insulin sensitivity. In addition, both a lifestyle intervention and troglitazone treatment for one
year improved insulin sensitivity in proline homozygotes and alanine carriers to a similar
degree. Our findings support similar results reported in smaller groups of 131 German subjects
with type 2 diabetes treated with pioglitazone for 26 weeks (26) or 93 Hispanic women with
a history of gestational diabetes treated with troglitazone for 3 months (27), although the length
of exposure to thiazolidinediones was modest for all three studies. If the small non-significant
differences we observed between genotypic groups are real, we estimate that at least 3,995
subjects would be needed to have 80% power to detect this difference at an alpha of 0.05, which
in turn raises the question of its clinical relevance.

It is possible that other genetic variants at PPARG may affect thiazolidinedione response, even
though none of them has been convincingly associated with type 2 diabetes. Recently, a
comprehensive set of common variants in PPARG was genotyped in the TRIPOD group of 93
Hispanic women with a history of gestational diabetes, and examined for their impact on
response to troglitazone. Allele frequencies at eight PPARG SNPs differed between the 63
responders and 30 non-responders, although the sample was small and the P values modest
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(28). We have been unable to reproduce these findings of association for five of those SNPs
in our larger cohort of 340 subjects. This lack of replication may be due to the differences in
duration of troglitazone treatment (three months in TRIPOD versus 1 year in the DPP), differing
estimates of insulin sensitivity (SI from IVGTT versus ISI from OGTT), phenotypic
heterogeneity (gestational diabetes versus IGT), ethnic variation or statistical fluctuations:
nevertheless, because the 95% confidence intervals between both studies overlap, we cannot
exclude that the results are mutually consistent. The nominally significant higher change in ISI
at one year in rs880663 heterozygotes in the DPP does not conform with the published data
and does not follow a clear genetic model; given the multiple tests performed, this finding
likely represents a false positive result. The next logical step will be to test comprehensively
all common variation at PPARG in the various ethnic groups of the DPP.

In summary, we have confirmed the modest protection from type 2 diabetes conferred by the
alanine allele at PPARG P12A, we have shown a significant interaction of this variant with
BMI and waist circumference, and in examining the largest cohort studied to date we have not
detected any significant effect of genotype at PPARG P12A in response to troglitazone.
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Figure 1.
Incidence of diabetes per treatment arm and genotype at PPARG P12A in the Diabetes
Prevention Program. A, all arms; B, placebo; C, metformin; D, lifestyle intervention.
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Figure 2.
Interaction of BMI with genotype at PPARG P12A on diabetes risk. The bar plot (left axis)
shows incidence of diabetes (cases/100 person-years) in the placebo arm by quintile of baseline
BMI for either alanine carriers or proline homozygotes at PPARG P12A. The line plot (right
axis) shows the hazard ratio (HR, P/P versus A/X) in the full DPP cohort by quintile of baseline
BMI. The protective effect of alanine seems to disappear at BMI >34.5 kg/m2.
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Table 1
Demographic characteristics and baseline quantitative traits according to genotype at PPARG P12A in the
Diabetes Prevention Program

Genotype

Baseline trait P/P (n=2,942) A/X (n=605) P*

Treatment
 Placebo 831 (83.1) 169 (16.9) 0.14
 Metformin 831 (84.0) 158 (16.0)
 Lifestyle 839 (83.6) 165 (16.4)
 Troglitazone 441 (79.6) 113 (20.4)

Male 957 (81.7) 214 (18.3) 0.18
Age in years 50.8 ± 10.5 50.9 ± 10.9 0.83
Body mass index (kg/m2) 34.0 ± 6.7 34.2 ± 6.4 0.41
Waist (cm) 105 ± 14.5 107 ± 14.5 0.002

Glycemic trait
 Ins Index [(μU/ml)/(mg/dl)] 1.24 ± 0.93 1.23 ± 0.90 0.73
 ISI [(μU/ml)x(mmol/L)]−1 0.194 ± 0.130 0.194 ± 0.126 0.93
 Fasting glucose (mg/dl) 106.9 ± 8.2 106.7 ± 8.1 0.60
 2-hour glucose (mg/dl) 164.8 ± 17.0 164.5 ± 17.3 0.66

Plus-minus values are means ± SD, other values are n (%).

*
Based on t-tests for continuous variables and chi-square for categorical variables; traits were log transformed for statistical analyses where appropriate.

Ins Index, insulinogenic index; ISI, insulin sensitivity index. One sample failed genotyping.
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