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Neuroimaging and molecular genetics of
schizophrenia: pathophysiological advances and
therapeutic potential
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There is impressive evidence for the involvement of several genetic risk factors in the aetiopathogenesis of schizophrenia. Most
of these genes impact on neuropharmacological systems. Examining their relationship with brain imaging indices is arguably
the best currently available method of examining these effects in vivo. In a sample of young, initially healthy people at high
genetic risk of schizophrenia brain structure was measured with structural magnetic resonance imaging (sMRI) and brain
function was indexed with neuropsychological tests and functional MRI. Regular detailed clinical assessments established
whether subjects had developed psychotic symptoms and/or schizophrenia itself. The Catechol-O-Methyl Transferase (COMT)
Val allele increased the risk of schizophrenia in this cohort in a dose-dependent manner. Subjects with this allele had reduced
grey matter density in anterior cingulate cortex and increased fMRI activation in lateral prefrontal cortex and anterior and
posterior cingulate. The risk allele in the Neuregulin 1 (NRG1) promoter region, on the other hand, was associated with the
development of psychotic symptoms, decreased premorbid IQ and decreased activation of pre-frontal and temporal lobe
regions. The NRG1 gene appears to be a risk factor for an extended or intermediate phenotype, while the COMT Val allele,
which decreases the rate at which cortical dopamine is degraded compared to the Met allele, is associated with an increased
risk of schizophrenia in subjects at increased familial risk. We provide examples of how these advances in our knowledge could
lead to the development of new treatments for psychosis.
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Introduction

In this brief article, we will seek to relate two of the best

replicated genetic risk factors for schizophrenia with the

abnormalities known to occur in the disease on structural

and functional magnetic resonance imaging (MRI), both in

patients with schizophrenia and in subjects at high risk of

developing schizophrenia because they come from multiply

affected families. We do so in the light of the prevailing

dopamine and glutamate hypotheses of schizophrenia, and

consider how these pathophysiological insights could help

in the development of new drugs for schizophrenia.

Structural imaging phenotype

Numerous controlled studies of patients with schizophrenia

and healthy controls, and meta-analyses of them, have

conclusively demonstrated volumetric reductions in the

whole brain, parts of the prefrontal cortex (PFC) and various

parts of the temporal lobes—particularly the medial

temporal lobes and superior temporal gyrus (Lawrie and

Abukmeil, 1998; Wright et al., 2000; Lawrie et al., 2004; Gur

et al., 2007). These in vivo findings, from semi-automated

tracings of region of interest, are supported by various

automated approaches to ‘computational morphometry’

(Honea et al., 2005) and by post-mortem studies (Harrison,

1999; Harrison et al., 2003). The key question is what causes

them.

The vast majority of structural MRI studies of the relatives

of patients with schizophrenia have demonstrated reduced

volumes of the medial temporal lobes on region-of-interest

tracing that are midway between the volumes found in

healthy people and those found in patients with schizo-

phrenia (Lawrie et al., 1999; Boos et al., 2007). Computa-

tional morphometry studies of relatives have replicated these

results but more consistently found PFC abnormalities,

particularly reductions in medial PFC and anterior cingulate

grey matter density (Job et al., 2003; Gur et al., 2007).
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Schizophrenia is known to be a highly genetic disorder

(Gottesman, 1991; Craddock et al., 2005), and the volumes

of these brain regions are known to be under at least partial

genetic control (Thompson et al., 2001; Wright et al., 2002;

Glahn et al., 2007). Further, we and others have shown that

some of these regional volume decrements can be related to

genetic measures of liability to psychosis (Lawrie et al., 2001;

Steel et al., 2002; McIntosh et al., 2006; Glahn et al., 2007). It

therefore seems likely that some of this (intermediate)

phenotype is genetically mediated. Further, there are few

other plausible explanations, apart from a likely interaction

between genetic liability to schizophrenia and hypoxic

obstetric complications being associated with further

reduced volumes of the medial temporal lobes in patients

(van Erp et al., 2002). Moreover, twin studies, which can

specifically model genetic and environmental contributions,

point to both factors being relevant in the abnormalities in

PFC and medial temporal lobes (Cannon et al., 2002; Narr

et al., 2002; Wright et al., 2002; van Erp et al., 2004; van

haren et al., 2004).

Functional imaging phenotype

The functional imaging phenotype of schizophrenia is a

slightly more complex issue, as the results one can obtain in

studies of patients and controls depend on the scanning

technology being used, the task being done in the scanner, if

there is one, and whether or not patients are doing this task

to a similar level as controls. Nonetheless, it cannot be

disputed that patients with schizophrenia tend to show a

generalized hypofrontality in functional brain imaging

studies, particularly in dorsal and lateral PFC (Achim and

Lepage, 2005; Glahn et al., 2005). There are, however, a

number of studies and reviews that suggest that there might

be a more general medial hyperfrontality in anterior

cingulate (Lawrie et al., 2004; Glahn et al., 2005). It is likely

that at least some of the apparently deficient activation of

PFC is attributable to a relatively overactive baseline.

There are as yet comparatively few functional imaging

studies of relatives, and most of these have been performed

in recent years with functional MRI. The majority of these

studies report a lateralized hyperfrontality in the relatives of

patients with schizophrenia (Seidman et al., 2006) on a

variety of tasks.

A brief account of the Edinburgh High-Risk Study

In Edinburgh over the past 10 years or so, we have been

involved in a prospective cohort study of young (aged 16–25

years initially) healthy subjects at genetic high risk of

schizophrenia because they had one or more close affected

relatives with the disorder. One hundred and sixty-three of

them provided clinical, behavioural and/or neuroimaging

data, and 21 of them developed schizophrenia, on average,

3.5 years after enrolment into the study. One unexpected

and intriguing observation was that about half of the

remaining sample (N¼66) had one or more transient or

partial psychotic symptoms at one or more points during

follow-up, but have not developed a formal psychotic illness

and remain with high functioning, suggesting that psychotic

symptoms in minor degree themselves may also be part of

the intermediate phenotype of schizophrenia (Johnstone

et al., 2005).

As already stated, we found reduced medial temporal lobe

volumes and anterior cingulate grey matter density in

subjects at high risk compared to healthy controls at baseline

(Lawrie et al., 1999; Job et al., 2003). We also found temporal

lobe volume reductions in those who acquired schizophrenia

(Job et al., 2005). On functional magnetic resonance

imaging, we found reduced activation of anterior cingulate,

thalamus and cerebellum in all our high-risk subjects, with

over activation of the parietal cortex in those with psychotic

symptoms (Whalley et al., 2004). Underactivations of the

medial temporal lobe, in particular, predicted subsequent

schizophrenia (Whalley et al., 2006). These findings are in

themselves of great interest but are of unclear aetiology. We

therefore sought to relate them to some of the best replicated

genetic risk factors for schizophrenia, that is, to identify

genetically mediated intermediate phenotypes as a means

of increasing our understanding of the pathophysiology of

schizophrenia.

Genetic risk factors for schizophrenia

Several genetic risk factors for schizophrenia have been

identified in recent years, based on replicated linkage

analyses (Lewis et al., 2003) and replicated association

studies (Craddock et al., 2005; Harrison and Weinberger,

2005). Two of the best, which we shall consider here, are

the catechol-O-methyl transferase (COMT) gene and the

neuregulin 1 (NRG1) gene.

COMT is a comparatively weak risk factor for schizophre-

nia but may have particularly strong effects in those from

multiply affected families (Glatt et al., 2003). The COMT

gene is located at 22q11.23, a region implicated in

schizophrenia by linkage. A common substitution of valine

by methionine in exon 4 (at amino acid 158 of the

membrane-bound form of the protein found in the brain)

affects the thermal stability of COMT, leading to conforma-

tional changes and a subsequent significant decrease in

enzyme activity in the brain (and in lymphocytes). The Met

substitution preferentially increases prefrontal extrasynaptic

dopamine because COMT provides the major clearing step

for dopamine released from the synapse in PFC. As dopamine

affects PFC neuronal activity, this leads to changes in

activation observed during functional neuroimaging using

paradigms that challenge the PFC. Moreover, COMT geno-

type places people at predictable points along the putative

inverted U-shaped curve when PFC dopamine stimulation is

graphed against neuronal activities/performance. Homo-

zygotes for the Val-encoding allele—with less synaptic

dopamine due to more COMT activity—are positioned to

the left of Met allele carriers, who seem to be located near the

optimum of that curve (Meyer-Lindenberg and Weinberger,

2006). COMT genotype also has an impact on the prefrontal

regulation of midbrain dopamine synthesis in a geno-

type-dependent direction consistent with the inverted
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U-shaped model (Meyer-Lindenberg et al., 2005). This sug-

gests that the risk for schizophrenia associated with this

common variant is due to reduced signal-to-noise in the PFC,

an idea supported by the finding that PFC activity levels on

various tasks are inversely coupled to midbrain dopamine

synthesis and directionally dependent on COMT genotype

(Meyer-Lindenberg and Weinberger, 2006). This neuroima-

ging and some emerging neurochemical evidence indicate

that COMT could contribute, along with other mechanisms,

to both cortical dopamine deficiency and mesolimbic

hyperdopaminergia in schizophrenia (Harrison and Weinberger,

2005).

NRG1 is a large, multi-exon gene on chromosome 8p

with several transcripts, grouped into types I–VI according to

their 50 exon. NRG1 has multiple roles in the CNS, in

neuronal migration, myelination and in the regulation of

receptor expression and plasticity. Stefansson et al. (2002)

identified a 50 haplotype (HapICE) in the NRG1 gene

associated with an increased risk of schizophrenia, and this

was rapidly replicated in the Scottish population. Associa-

tion of NRG1 with schizophrenia has been found in most

subsequent studies, and a meta-analysis has confirmed

association of the original risk haplotype (HapICE) with

schizophrenia (Li et al., 2006). The risk-associated variants

in the NRG1 gene are primarily in non-coding intronic and

promoter regions, leading to the suggestion that the

causative variants may operate by altering gene expression

or splicing, rather than by changing protein structure. In

support of this hypothesis, Law et al. (2006) demonstrated

that genetic variation at a single-nucleotide polymorphism

(SNP) from the schizophrenia-associated HapICE haplotype

is associated with altered NRG1 expression. The risk allele

of SNP8NRG243177, which lies within the NRG1 type IV

promoter region, was found to be associated with altered

expression of NRG1 type IV in post-mortem human

hippocampal tissue. Furthermore, this risk allele alters

putative binding sites for three transcription factors in the

NRG1 type IV promoter. These results are consistent with

SNP8NRG243177 being a functional variant in NRG1 that

contributes to risk for schizophrenia by altering gene

expression.

The large number of NRG1 signalling mechanisms and

isoforms parallel the range of its effects on neural

development and plasticity, many of which could be

involved in schizophrenia. However, all NRG1 isoforms

contain an epidermal growth factor-like motif that is critical

for cell–cell signalling. In the best-described mode of NRG1

signalling, proteolytic cleavage of NRG1 releases the

N-terminal part, including the epidermal growth factor

domain, which interacts with a membrane-associated

human epidermal growth factor receptor B4 (ErbB4)-type

tyrosine kinase receptor. This interaction can lead to

receptor dimerization, tyrosine phosphorylation and activa-

tion of downstream signalling pathways (Harrison and

Weinberger, 2005). For example, NRG1 transgenic mice

have been shown to have reduced numbers of N-methyl-D-

aspartic acid receptors (Roy et al., 2007) and increased levels

of dopamine receptors (Stefansson et al., 2002) in the

PFC, as well as behavioural abnormalities consistent

with schizophrenia.

Genetic imaging in schizophrenia

Egan et al. (2001) were the first to relate a genetic risk factor

for schizophrenia to its imaging phenotype. They showed

that controls, sibs and patients all had greater activation of

dorso-lateral pre-frontal cortex (DLPFC) if they were Val/Val

homozygotes. This result has been extensively replicated (for

example, see Ho et al., 2005). Several groups have also related

COMT Val status to reduced volumes of the PFC and

temporal lobes (see especially Ohnishi et al., 2006). Intrigu-

ingly, Ho et al. (2005) found a tendency to a gene by group

interaction in prefrontal lobe CSF volumes, and Ohnishi

et al. (2006) found a significant group by gene interaction in

that those with the Val/Val SNP status have greater reduc-

tions in PFC and medial temporal lobe volumes if they were

patients than if they were controls. These again may point to

particularly strong effects in particular genetic and/or

environmental backgrounds.

Genetic imaging in the Edinburgh High-Risk Study

In contrast with this body of consistent evidence for COMT,

our study of the Edinburgh High-Risk Study (EHRS) was the

first to relate brain imaging measures to NRG1 status

(Hall et al., 2006). None of the subjects were receiving

treatment at the time of the study. Genotype information

was available for 79 high-risk subjects. There was a highly

significant effect of SNP8NRG243177 genotype on the

development of psychotic symptoms in this cohort with

100% of individuals homozygous for the risk allele (T/T)

developing psychotic symptoms (auditory hallucinations or

persecutory ideas) across the course of the study. This effect

was selective to SNP8NRG243177 and was not seen for other

markers from the deCODE haplotype; nor was there an

association with symptoms such as visual hallucinations

(which are not typical of schizophrenia). During functional

magnetic resonance imaging, subjects performed the Hay-

ling sentence completion task, a task known to activate

frontal and temporal brain regions. Subjects with the risk (T/

T) genotype showed significantly decreased activation of

right medial PFC (and right posterior medial temporal gyrus,

as a failure of deactivation) relative to those without the risk

allele in the contrast of sentence completion versus rest,

even though there was no difference between groups

in behavioural measures on this task. Finally, using

the National Adult Reading Test (NART), a measure of

pre-morbid intelligence quotient (IQ), we found a significant

effect of the same genotype on IQ, with the T/T group

having a significantly decreased IQ compared to the C/T and

C/C groups. A similar pattern of IQ deficits was seen using

the Wechsler Adult Intelligence Scale (WAIS), a measure of

current IQ, although this effect failed to reach statistical

significance. This study therefore demonstrated that a

specific genetic variant in the NRG1 gene was associated

with the development of psychotic symptoms and abnorm-

alities in cortical function and cognition. That the associa-

tion was with psychotic symptoms whether or not subjects

developed syndromal schizophrenia suggested that variation

in NRG1 contributes risk for an intermediate or extended
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phenotype—a liability to psychotic symptoms, which only

in some individuals translates into schizophrenia.

Our COMT results deliver a complimentary picture

(McIntosh et al., 2007). This study sought to clarify the

effects of the COMT Val158Met polymorphism on structure

and function of brain and risk of developing schizophrenia

in the 78 people at high genetic risk of schizophrenia who

provided all the necessary data. Intriguingly, the COMT Val

allele increased the risk of schizophrenia in this cohort in a

dose-dependent manner. Subjects with the COMT Val allele

had reduced grey matter density in anterior cingulate cortex

on structural MRI. In addition, there was evidence of

increased activation on functional magnetic resonance

imaging in lateral PFC and anterior and posterior cingulate,

with increasing sentence difficulty on the Hayling task, in

those with the COMT Val allele despite a similar level of

performance. At least in the EHRS, therefore, the COMT Val

allele is associated with an increased risk of schizophrenia in

subjects at increased familial risk, in whom it has demon-

strable effects on prefrontal brain structure and function.

Therapeutic potential

These imaging indices and gene variants could be used as

‘biomarkers’ to identify individuals at particularly high risk

for schizophrenia. These people could be targeted for close

monitoring and early intervention with existing pharmaco-

logical and psychosocial therapies as they wished.

The insights these novel techniques have provided could

also aid in the development of new treatments. NRG1

potential targets include the downstream signalling path-

ways. It may be possible, for example, to develop molecules

to sequester the ligand NRG1, or compounds that inhibit

binding to the ErbB3/ErbB4 receptor, or that inhibit the

ErbB3/ErbB4 receptor dimerization or tyrosine kinase

activity (Philibert and Gershenfeld, 2007).

There are also a number of approaches to pharmacological

intervention based on the COMT enzyme. CNS-penetrant

COMT inhibitors such as tolcapone are, however, not

generally suitable for long-term use. An alternative strategy

would be to seek to increase extracellular dopamine

concentrations in the PFC by blocking the noradrenaline

reuptake system, a secondary mechanism responsible for the

disposal of dopamine from synaptic clefts in the PFC. As

Apud and Weinberger (2007) have observed ‘drugs to

improve executive cognitive function by selectively increas-

ing dopamine load in the frontal cortex but not in

subcortical territories, and the possibility that response to

them may be modified by a COMT polymorphism, provide a

novel genotype-based targeted pharmacological approach

without abuse potential for the treatment of cognitive

disorder in schizophrenia and in other conditions involving

prefrontal cortex dysfunction’.

Conclusion

In conclusion, we know that schizophrenia is highly genetic

and associated with reduced volumes and disturbed function

of PFC and medial temporal lobe in particular. These

alterations in structure and function, which are otherwise

difficult to explain, can be related to genetic risk factors for

schizophrenia. In our study, in particular, we found evidence

that an NRG1 risk genotype may be associated with an

extended phenotype of schizophrenia that increases risk

rather than being linked to the disease per se, whereas COMT

was associated with characteristic features of the disorder

and the development of schizophrenia itself. A number of

interacting pharmacological factors are likely to provide a

link between these genetic and brain imaging abnormalities,

and could also provide new therapeutic interventions. We

did not have enough power in our study to specifically

examine interactions between different genes, but it is likely

that these occur in complex multi-factorial pathways to the

disease. These interactions will require large multi-centre

collaborative studies to have sufficient power to identify

them. As these pathways and interactions are elucidated, we

should be in a better position to rationally diagnose our

patients and perhaps predict treatment response, and in time

perhaps move towards early detection and more effective

intervention.
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