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Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8§ (KSHV/HHV-8) RTA is an important protein
involved in the induction of KSHYV lytic replication from latency through activation of the lytic cascade. A
number of cellular and viral proteins, including K-RBP, have been found to repress RTA-mediated transac-
tivation and KSHYV lytic replication. However, it is unclear as to how RTA overcomes the suppression during
Iytic reactivation. In this study, we found that RTA can induce K-RBP degradation through the ubiquitin-
proteasome pathway and that two regions in RTA are responsible. Moreover, we found that RTA can promote
the degradation of several other RTA repressors. RTA mutants that are defective in inducing K-RBP degra-
dation cannot activate RTA responsive promoter as efficiently as wild-type RTA. Interference of the ubiquitin-
proteasome pathway affected RTA-mediated transactivation and KSHYV reactivation from latency. Our results
suggest that KSHV RTA can stimulate the turnover of repressors to modulate viral reactivation. Since herpes
simplex virus type 1 transactivator ICP0 and human cytomegalovirus transactivator pp71 also stimulate the
degradation of cellular silencers, it is possible that the promotion of silencer degradation by viral transacti-

vators may be a common mechanism for regulating the lytic replication of herpesviruses.

Kaposi’s sarcoma-associated herpesvirus (KSHV)/human
herpesvirus 8 (HHV-8) is a recently discovered human gam-
maherpesvirus that is frequently found in AIDS patients (8).
KSHYV plays an important role in the development of Kaposi’s
sarcoma (KS), which is the most common malignancy in AIDS
patients (14). KSHV is not only the etiological agent of KS but
is also associated with two other lymphoproliferative disorders,
primary effusion lymphoma and multicentric Castleman’s dis-
ease in human immunodeficiency virus type 1-infected individ-
uals (6, 36). Similar to other herpesviruses, there are two key
stages in the KSHYV life cycle, the establishment of latency and
reactivation from latency, which lead to lytic replication (22,
33). Even though latency enables the virus to establish persis-
tent infection and plays a critical role in tumorigenesis (31),
lytic reactivation also contributes significantly to the develop-
ment of disease, either through the spread of infection to new
target cells or by activating the expression of cytokines, such as
interlukin-6 (10, 15). The transition from latency to lytic rep-
lication is controlled by the KSHV replication and transcrip-
tion activator (RTA), encoded by KSHV gene open reading
frame 50 (ORF50) (29, 37). RTA expression is necessary and
sufficient to disrupt viral latency and induce lytic replication. It
has been shown that RTA is able to activate the expression of
a number of viral genes during its lytic replication, including
the early gene ORF57 (11, 28, 42).

The transactivation function of RTA was shown to be sup-
pressed by a number of viral and cellular factors, which limits
the extent of lytic replication and leads to latent and persistent
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infection. These cellular and viral factors, including histone
deacetylase 1 (HDACI), poly(ADP-ribose) polymerase 1
(PARP-1), Ste20-like kinase hKFC, interferon regulatory fac-
tor 7 (IRF-7), K-RBP (for KSHV-RTA binding protein), nu-
clear factor-kB (NF-kB), KbZIP (or K8), and latent nuclear
antigen (LANA) have been shown to downregulate RTA-me-
diated transactivation through different mechanisms. The
downmodulation of RTA-mediated transactivation by these
factors also plays an important role in suppressing RTA-me-
diated KSHV lytic replication (2, 16, 17, 21, 25, 39, 43). How-
ever, RTA can still efficiently activate the expression of its
target genes to induce KSHYV lytic replication when needed,
even in the presence of the many identified and perhaps other
unidentified repressors. How KSHV RTA can overcome these
barriers, and the mechanism involved in maintaining a balance
between lytic replication and latency is unclear.

In the past decade, a number of viral proteins were found
to direct host cell protein degradation through the protea-
some, and the degradation is required for various aspects of
viral life cycle (13). The proteasome is a multicomponent
macromolecule that is ubiquitous in eukaryotic cells and
works as a cellular machinery for degradation of proteins (38).
The proteasome degradation is usually ubiquitin dependent.
Polyubiquitin is conjugated to the target proteins through a
process involving ubiquitin-activating enzyme E1, ubiquitin-
conjugating enzyme E2, and ubiquitin ligase E3 (19). For her-
pesviruses, the transactivators of the alphaherpesvirus herpes
simplex virus type 1 (HSV-1) and the betaherpesvirus human
cytomegalovirus (HCMV) have been shown to promote cellu-
lar protein degradation through proteasomes (1, 12, 24). The
HSV-1 transactivator ICPO0 is required for efficient initiation of
viral lytic infection and reactivation from latency (5). In the
absence of functional ICPO expression, the cellular repression
mechanism silences viral transcription (23). ICPO is thought to
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counteract this process by stimulating the degradation of a
number of cellular repressor proteins via the ubiquitin-protea-
some pathway (12). ICP0O harbors two distinct E3 ubiquitin
ligase domains (HUL-1 and RING finger), and both are in-
volved in mediating ubiquitination and degradation (1, 18).
For HCMYV, the transactivator pp71 was found to direct cel-
lular pRb, p107, p130, and Daxx degradation through a ubig-
uitin-independent proteasome pathway. The degradation of
these transcriptional repressors was suggested to enhance viral
transcription and/or reactivation (20, 24).

It is likely that KSHV RTA also uses similar mechanism for
its transactivation function. Both IRF-7 and K-RBP have been
shown to suppress RTA-mediated transactivation and gene
expression in our studies (39, 43). Recently, RTA was shown to
induce IRF-7 degradation to evade the innate immune re-
sponse mediated by IRF-7 (44). In the present study, we dem-
onstrate that RTA can promote K-RBP degradation through
the ubiquitin-proteasome pathway. Moreover, RTA can down-
regulate several other repressors via the proteasome pathway.
We further demonstrate that efficient transactivation and re-
activation of viral lytic replication by RTA require the ability of
RTA to induce degradation. Our results suggest for the first
time that the regulation of KSHV transition between latency
and lytic reactivation involves a balance between repression of
lytic viral gene expression by repressors and the degradation of
repressors by viral transactivators. In concert with the studies
on HSV-1 and HCMYV, our studies suggest that KSHV RTA
shares a common mechanism in the degradation of repressors
to lead to efficient viral transcription, lytic infection, and reac-
tivation. This may be a mechanism used by a number of other
herpesviruses, and a further understanding of such mechanism
in herpesvirus pathogenesis may lead to new strategies to treat
herpesvirus-related diseases.

MATERIALS AND METHODS

Plasmids. The RTA expression plasmids pcDNAORF50 and pCMVTag50,
which encode full-length RTA and Flag-tagged RTA, respectively, were de-
scribed previously (40, 41). Plasmids pCMVTag50678, pCMVTag50665,
pCMVTag50641, and pCMVTag50621, which encode Flag-tagged RTA amino
acids 1 to 678, 1 to 665, 1 to 641, and 1 to 621, respectively, were generated by
inserting the PCR amplified corresponding DNA fragments into suitable sites of
pCMV-Tag2A. Plasmid pcDNAS5OK, 5,E was described elsewhere (45) and was
kindly provided by Luwen Zhang (University of Nebraska, Lincoln). Several
RTA mutant plasmids of pcDNA-ORF50 and pCMV-Tag50 were generated
by using a QuikChange II site-directed mutagenesis kit (Stratagene, La Jolla,
CA). The oligonucleotide primers used for mutant plasmids pcDNASOH, 5L
and pcDNAS0C, 4,S were as follows: C,,;S sense, 5'-GCCTGCCTCCAGCC
ATATCTAAGCTACTACACGAAATATAC-3'; Cy4;S antisense, 5'-GTATA
TTTCGTGTAGTAGCTTAGATATGGCTGGAGGCAGGC-3'; HyysL sense,
5'-GCCATATGTAAGCTACTACTCGAAATATACACTGAAATG-3'; and
H,,sL antisense, 5'-CATTTCAGTGATTATTTCGAGTAGTAGCTTACATA
TGGC-3'. The oligonucleotide primers used for generating pCMVTag50m627-
30, pPCMVTag50m631-34, and pCMVTag50m635-38 were as follows: mRTA627-
30 sense, 5'-CTGTACCAGCTGGCCGCGGCAGCGCCTCTGCGGTCAC-3;
mRTA627-30 antisense, 5'-GTGACCGCAGAGGCGCTGCCGCGGCCAGCT
GGTACAG-3"; mRTA631-34 sense, 5'-CTGGACACGCCACCGGCTGCGGC
GGCACCCTCCCCCGCTTC-3'; mRTA631-34 antisense, 5'-GAAGCGGGGG
AGGGTGCCGCCGCAGCCGGTGGCGTGTCCAG-3'; mRTA635-38 sense,
5'-CCGCCTCTGCGGTCAGCCGCCGCCACTTCCTTCGGCCCG-3'; and
mRTA635-38 antisense, 5'-CGGGCCGAAGGAAGTGGCGGCGGCTGACC
GCAGAGGCGG-3'. Nucleotides in boldface indicate the mutated sites.

Plasmids pcDNAK-RBP and pcDNAHisK-RBP, which encode full-length and
Hiss-tagged K-RBP, respectively, were described elsewhere (41). Plasmids
pGFPLANA, pFlagKbZIP, and pcDNANF-«B p65 encoding green fluorescent
protein (GFP)-tagged LANA, Flag-tagged KbZIP, and NF-«B p65 subunit were
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kind gifts from Kenneth M. Kaye (Harvard Medical School, Boston, MA),
Hsing-Jien Kung (University of California, Davis), and Thomas M. Petro (Uni-
versity of Nebraska Medical Center), respectively. Plasmid pMT123, which en-
codes hemagglutinin (HA)-tagged ubiquitin was obtained from Dirk Bohmann
(University of Rochester, Rochester, NY). The B-galactosidase expression plas-
mid pCMV-B used for the normalization of transfection efficiency was purchased
from BD Clontech (Mountain View, CA). ORF57 promoter reporter plasmid
p57Plucl was described previously (11).

All clones with inserts that were amplified by PCR were confirmed by DNA
sequence analysis.

Antibodies and inhibitors. The anti-K-RBP antibody has been described pre-
viously (43) or was purchased (PTGLAB, Chicago, IL). The RTA antibody was
prepared by immunizing rabbit with insect cell expressed recombinant RTA
(Lampire Biological Laboratories, Pipersville, PA). The mouse monoclonal anti-
NF-kB p65 antibody and the rabbit anti-GALBD polyclonal antibody were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The mouse anti-
y-tubulin monoclonal antibody was purchased from Sigma (St. Louis, MO). The
mouse anti-Flag M2 monoclonal antibody was purchased from Stratagene. The
rabbit anti-HA polyclonal antibody and mouse anti-His monoclonal antibody
were purchased from BD Clontech. The rat anti-KSHV LANA monoclonal
antibody was purchased from Advanced Biotechnologies, Inc. (Silverdale, WA).
The mouse anti-KSHV K8 and anti-KSHV ORF45 monoclonal antibodies were
purchased from Novus Biologicals (Littleton, CO). The mouse anti-KSHV K8.1
monoclonal antibody was obtained from Bala Chandran (Rosalind Franklin
University, Chicago, IL). MG132, lactacystin, chloroquine, and leupeptin were
purchased from Sigma.

Cell culture, transfection, and luciferase assays. Human 293T cells were
maintained in Dulbecco modified Eagle medium (Invitrogen, Carlsbad, CA)
supplemented with 10% fetal bovine serum (FBS; Invitrogen) and 100 pg pen-
icillin-streptomycin (Mediatech, Manassas, VA)/ml at 37°C with 5% CO,. The
Ts20 cell line, which has a temperature-sensitive E1 ubiquitin-activating enzyme
that is inactive at 39°C, was obtained from Harvey Ozer (New Jersey Medical
School) (9). This cell line was maintained in Dulbecco modified Eagle medium
supplemented with 10% FBS with 5% CO, at 35 or 39°C. Transfection of 293T
cells and Ts20 cells was carried out by using Lipofectamine 2000 reagent (In-
vitrogen) according to the manufacturer’s recommendations. Luciferase activi-
ties were determined by a luciferase assay system (Promega, Madison, WI)
according to the manufacturer’s procedure. The data were averaged from the
results of at least three independent experiments. The transfection efficiency for
each experiment was normalized by cotransfecting B-Gal expression plasmid
pCMV-B as the internal control. BJAB is a KSHV-negative cell line. BCBL-1 is
a KSHV-positive primary effusion lymphoma cell line. TRExBJABRTA,
TREXBJAB, TREXBCBL-1RTA, and TRExBCBL-1 are BJAB and BCBL-1 cell
lines with or without a tetracycline- (or doxycycline)-inducible RTA gene (7, 32).
These cell lines were provided by Jae Jung (Harvard Medical School). These cell
lines were maintained in RPMI 1640 (Invitrogen) containing 10% FBS, 100 ng
of penicillin-streptomycin/ml, and 200 pg of hygromycin B/ml at 37°C with 5%
CO,.

IP and Western blot analysis. Cells transfected with various expression plas-
mids were harvested and lysed in ice-cold immunoprecipitation (IP) buffer (1%
Nonidet P-40, 0.5% sodium deoxycholate, protease inhibitor cocktail [Pierce],
and 1 mM phenylmethylsulfonyl fluoride in phosphate-buffered saline) at 48 h
posttransfection. MG132 at 5 pM was used to treat cells for 12 h when needed.
After centrifugation at 16,000 X g for 10 min, the cell lysates were precipitated
with 2 to 3 pg of specific antibodies, followed by incubation overnight at 4°C.
Protein G beads (Amersham, Piscataway, NJ) were used to catch antibody-
protein complex at 4°C for 2 h. The beads were then washed four times with IP
buffer. The immunoprecipitated proteins were eluted by heating in sample
buffer, analyzed by sodium dodecyl sulfate-7 to 10% polyacrylamide gel electro-
phoresis, and transferred to a polyvinylidene difluoride membrane (Amersham)
for Western blot analysis as described previously (43). The amounts of proteins
relative to control tubulin were quantified by using the NIH ImageJ software.

In vitro ubiquitin conjugation assay. The reaction (20 wl) was performed in
buffer (25 mM Tris-HCI [pH 7.5], 5 mM MgCl,, dithiothreitol, NaCl, 50 nM
MG132), 40 ng of purified E1 protein (Boston Biochem, Cambridge, MA), 200
ng of UbcHS5a protein (Boston Biochem), 4 g of human flag-ubiquitin (Boston
Biochem), 5 uM Ub aldehyde (Boston Biochem), 1X ATP energy solution
(Boston Biochem), and appropriate amounts of E. coli-expressed purified His-
tagged K-RBP protein. To test the E3 ubiquitin ligase activity of RTA, RTA
expressed and purified from insect cells or expressed from a TNT-coupled
transcription and translation kit (Promega) was used. Reaction mixtures were
incubated for 2.5 to 3 h at 37°C with agitation. The reaction solution was resolved
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by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on a 7% gel and
detected by Western blot analysis.

RNA extraction and RT-PCR. Total cellular RNA was extracted by using
RNeasy kit (Qiagen, Valencia, CA) according to the manufacturer’s procedure.
Reverse transcription-PCR (RT-PCR) was performed by using a SuperScript I1I
One-Step RT-PCR System (Invitrogen) according to the manufacturer’s instruc-
tions. Quantitative RT-PCR was performed by using a iScript One-Step RT-PCR
kit with Sybr green (Bio-Rad, Hercules, CA) according to the manufacturer’s
protocol. The relative amounts of DNA were calculated by using Bio-Rad iCycler
software (version 3.1; Bio-Rad Laboratories).

Protein stability analysis. For the analysis of the protein stability, 293T cells
transfected with plasmids expressing different proteins of interest were treated
with 75 pg of cycloheximide (Sigma)/ml at 24 h after transfection. The cells were
then harvested at various time points after cycloheximide treatment, the proteins
of interest were analyzed by Western blotting to determine the amount of
proteins at various time points using specific antibodies, and the amounts of
protein detected were quantified by using the NIH ImagelJ software.

RESULTS

RTA expression promotes K-RBP degradation. We have
previously demonstrated that K-RBP interacts with KSHV
RTA (41) and functions as a repressor for RTA-mediated
transactivation to negatively regulate RTA-mediated KSHV
lytic replication in KSHV-infected cells (43). During the course
of our studies, we frequently observed that the K-RBP protein
levels were much lower in the presence of RTA. Further study
demonstrated that K-RBP protein levels were reduced when
increasing amounts of RTA were coexpressed, and very low
level of RTA was sufficient to reduce K-RBP steady-state lev-
els (Fig. 1A). Interestingly, there was a portion of K-RBP
protein that is resistant to RTA-induced reduction since even
a very high level of RTA expression could not completely
remove all of the K-RBP protein (Fig. 1A). This effect was
specific since the levels of the control tubulin protein remained
unchanged. In addition, a cotransfected GAL4BD protein lev-
els were not reduced by RTA expression. The GAL4BD levels
were even increased when a high level of RTA was expressed
(Fig. 1A). The downregulation of K-RBP by RTA is not at the
transcriptional level because similar levels of K-RBP mRNA
were detected in cells that were cotransfected with both K-RBP
and RTA expression plasmids compared to cells transfected with
K-RBP and control plasmids (Fig. 1B). These results suggest that
RTA expression reduces the steady-state levels of K-RBP protein
at the posttranslational level. We then examined the turnover rate
of K-RBP in the presence or absence of RTA. The levels of
K-RBP in 293T cells cotransfected with RTA or control plasmids,
in the presence of cycloheximide treatment to prevent new pro-
tein synthesis, were determined at different time points after cy-
cloheximide treatment using tubulin as a control. The turnover
rate of K-RBP was found to be higher in the presence of RTA
expression (Fig. 1C). The half-life of K-RBP in the presence of
RTA was about 40 min compared to about 80 min in its absence.
Taken together, these results demonstrate that RTA can enhance
the K-RBP turnover rate.

We next examined whether the endogenous K-RBP protein
level was also reduced when RTA was expressed in TRExB
JABRTA cells, in which the His-tagged RTA gene is inte-
grated into the genome, and RTA expression can be induced
by doxycycline or tetracycline (7). After induction, the levels of
K-RBP and a control protein tubulin were examined at various
time points by Western blot analysis. The results showed that
the K-RBP protein levels were reduced upon RTA expression,
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but the levels of tubulin were unaffected (Fig. 1D). With the
control TREXBJAB cells without the integrated RTA gene,
K-RBP levels were found to remain constant through the stud-
ied period (Fig. 1D). Our results suggest that the reduction of
K-RBP protein is due to RTA expression and not a nonspecific
effect induced by doxycycline.

K-RBP degradation is mediated by the ubiquitin-protea-
some pathway. To determine the mechanism responsible for
the degradation of K-RBP in the presence of RTA, different
inhibitors specific for either lysosome- or proteasome-depen-
dent degradation were used to treat 293T cells transfected with
K-RBP and RTA expression plasmids. Chloroquine and leu-
peptin, which are lysosome-dependent degradation inhibitors,
did not block RTA-mediated K-RBP turnover, whereas the
proteasome inhibitor MG132 blocked the degradation of K-
RBP when RTA was coexpressed (Fig. 2A). Our results sug-
gest that RTA promotes K-RBP degradation via the protea-
some-dependent pathway. To further study the mechanism
involved in RTA-mediated K-RBP degradation, we investi-
gated whether K-RBP undergoes normal proteasomal degra-
dation in the absence of RTA expression. 293T cells trans-
fected with K-RBP expression plasmid were treated with
MG132 or vehicle control dimethyl sulfoxide (DMSO) and
then treated with cycloheximide. K-RBP levels were deter-
mined by Western blot analysis at various time points. The
results showed that the K-RBP turnover rate was much slower
in MG132-treated cells (Fig. 2B), suggesting that K-RBP un-
dergoes normal proteasomal degradation but the presence of
RTA accelerates the process.

Ubiquitination of target proteins and subsequent degrada-
tion by the proteasome is a well-characterized pathway for
proteasome-dependent degradation. Since K-RBP appears to
be degraded via the proteasome pathway, we investigated
whether K-RBP can be modified by ubiquitin. 293T cells were
cotransfected with His-tagged K-RBP together with HA-
tagged ubiquitin in the presence or absence of MG132 treat-
ment. The His-tagged K-RBP protein was immunoprecipitated
with anti-His antibody and analyzed by immunoblotting with
anti-K-RBP serum to detect all K-RBP species (Fig. 3A) or
with an anti-HA antibody to specifically detect ubiquitinated
K-RBP (Fig. 3B). In both cases, higher-molecular-weight ubiq-
uitinated K-RBP molecules were detected, suggesting that K-
RBP is modified by ubiquitin. Similarly, the higher-molecular-
weight species of K-RBP was also found in cells cotransfected
with both K-RBP and HA-tagged ubiquitin expression plas-
mids when lysates were immunoprecipitated with anti-HA an-
tibody and then Western blotted by anti-K-RBP antibody to
specifically detect ubiquitinated K-RBP (Fig. 3C). The most
robust ubiquitination of K-RBP was found in cells transfected
with both HA-ubiquitin and K-RBP expression plasmids in the
presence of MG132 treatment (Fig. 3, the third lane in each
panel), which inhibited degradation of the highly ubiquitinated
proteins. Taken together, these results suggest that K-RBP
protein can be ubiquitinated and undergoes ubiquitin-depen-
dent proteasomal degradation in vivo.

Ubiquitination of K-RBP in the presence of RTA. RTA has
been reported to promote IRF-7 degradation by stimulating
IRF-7 ubiquitination (44). Since our results demonstrated that
K-RBP can be modified by ubiquitin and degraded by RTA
through the proteasome pathway, they suggest that RTA may
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FIG. 1. Expression of RTA reduces K-RBP protein level. (A) Degradation of K-RBP by RTA. 293T cells were cotransfected with fixed amount
of His-tagged K-RBP (1 pg), GAL4BD (0.3 pg), and increasing amounts of Flag-tagged RTA plasmids (0, 0.1, 0.25, 0.5, and 1.0 pg). The cell
lysates were prepared and immunoblotted with anti-K-RBP (top), anti-Flag (upper middle), anti-y-tubulin (lower middle), or anti-GAL4BD
(bottom) antibodies. The numbers below the figure indicate the relative intensities of the K-RBP protein. (B) In the top panel are shown the results
of an RT-PCR analysis of the K-RBP mRNA isolated from cells either mock-transfected, transfected with K-RBP plus RTA, or control plasmids.
Equivalent amounts of RNA were used in the RT-PCR for each experiment, as confirmed by RT-PCR of GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) mRNA, which was used as an internal control. The bottom panel shows the results of a quantitative RT-PCR analysis of K-RBP
mRNA in the presence or absence of RTA expression. Con, control. (C) The top panel shows the turnover of K-RBP in the presence or absence
of RTA. 293T cells transfected with His-tagged K-RBP expression plasmid in the presence of control or RTA plasmids were harvested at different
time points after pretreatment with 75 pg of cycloheximide (CHX)/ml. The cell lysates were immunoblotted using anti-K-RBP (top), anti-RTA
(middle), or anti-y-tubulin (bottom) antibodies. In the bottom panel, a graph depicts the densitometric analysis of the band intensities. The K-RBP
band intensities normalized to tubulin at time zero were fixed as 1. (D) RTA expression reduces endogenous K-RBP levels. TRExBJABRTA or
TREXBJAB cells were treated with 1 uM doxycycline, and cells were harvested at various time points. The cell lysates were analyzed by Western
blot analysis using anti-K-RBP (top), anti-His (middle), or anti-y-tubulin (bottom) antibodies. The numbers below the figure indicate the relative
intensities of the K-RBP protein.

enhance the degradation of K-RBP by promoting ubiquitina- tion of ubiquitinated K-RBP. In the presence of proteasome
tion of K-RBP. To explore this possibility, we examined the inhibitor MG132, higher levels of ubiquitinated K-RBP were
ubiquitination state of K-RBP in the presence or absence of detected when RTA was coexpressed (Fig. 4A). To confirm the
RTA expression in 293T cells. In the absence of MG132 treat- induction of K-RBP ubiquitination by RTA, we determined
ment, the expression of RTA led to a lower level of polyubig- the ubiquitination state of K-RBP in the presence of RTA in
uitinated K-RBP detected, possibly due to enhanced degrada- vitro. K-RBP protein expressed in and purified from E. coli can be
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FIG. 2. K-RBP undergoes proteasomal degradation. (A) RTA in-
duces K-RBP degradation via proteasome pathway. 293T cells were
cotransfected with 1.5 wg of His-tagged K-RBP plus 0.5 pg of Flag-
tagged RTA or control plasmids in the presence or absence of indi-
cated inhibitors after treating for 12 h. The cell lysates were prepared
and immunoblotted with anti-K-RBP (top), anti-RTA (middle), or
anti-y-tubulin (bottom) antibodies. The numbers below the figure in-
dicate the relative intensities of the K-RBP protein. (B) K-RBP was
targeted for proteasomal degradation in the absence of RTA. 293T
cells were transfected with His-tagged K-RBP plasmid, treated with 75
g of cycloheximide/ml in the presence of MG132 or vehicle control
DMSO, and harvested at various time points after cycloheximide
(CHX) treatment. The cell lysates were analyzed by Western blotting
with anti-K-RBP and anti-y-tubulin antibodies. The numbers below
the figure indicate the relative intensities of the K-RBP protein.

3 4 5

ubiquitinated in the presence of purified RTA protein, El,
UbcH5a, and ubiquitin (Fig. 4B), further suggesting that RTA
can simulate K-RBP ubiquitination. Furthermore, ubiquitination
of K-RBP was observed using in vitro transcription and transla-
tion lysate in the presence of ubiquitin, E1, and UbcH5a (Fig.
4C). The presence of in vitro-expressed RTA protein also led to
enhancement of ubiquitination of K-RBP (Fig. 4C, lanes 3 and 4).
Higher levels of ubiquitinated K-RBP were detected after IP of
the His-tagged K-RBP using anti-His antibody, followed by West-
ern blot analysis with anti-Flag antibody to detect ubiquitinated
K-RBP (Fig. 4D, lanes 2 and 3). However, there are also non-
specific proteins precipitated by anti-His antibody, and they are
present even in the absence of K-RBP (Fig. 4D, lane 4).

The Cys/His-rich domain and C terminus of RTA are re-
quired to induce K-RBP degradation. It has been suggested
that the Cys/His-rich domain between amino acids 118 and 207
of RTA is important for IRF-7 degradation, and several mu-
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treated with 5 WM MG132 or vehicle control DMSO for 12 h before
harvesting. The cell lysates were immunoprecipitated using anti-His
antibody, and the immunoprecipitates were analyzed by Western blot-
ting with anti-K-RBP antibody. (B) K-RBP is ubiquitinated in vivo.
The immunoprecipitate described in panel A was analyzed by Western
blotting with anti-HA antibody. (C) K-RBP was ubiquitinated in vivo.
Transfection and treatment were carried out as described for panel A.
The cell lysates were immunoprecipitated with anti-HA antibody and
analyzed by using anti-K-RBP antibody.

tants of RTA in this domain, such as RTAC,,,;S and RTA
H,,sL, are inactive in promoting IRF-7 degradation (44). We
therefore tested whether RTAC,,,S and RTA H, 5L also lose
their abilities to induce K-RBP degradation. Interestingly,
both mutants were found to induce K-RBP degradation but
were not as efficient as wild-type RTA in the transfected 293T
cells (Fig. 5A). Another RTA mutant with a single amino acid
change in this region, RTAK,s,E, completely lost its ability to
induce K-RBP degradation (Fig. 5A). These results suggest
that efficient degradation of K-RBP requires the Cys/His-rich
domain of RTA.
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FIG. 4. RTA promotes K-RBP ubiquitination in vivo and in vitro. (A) 293T cells were transfected with His-tagged K-RBP plasmid, HA-tagged
ubiquitin plasmid plus RTA, or control plasmids. Cells were treated with 5 wM MG132 or vehicle control DMSO for 12 h before harvesting. The
cell lysates were immunoprecipitated by anti-His antibody and then analyzed by Western blotting with anti-HA antibody. (B) In vitro K-RBP
ubiquitination was carried out as described in Materials and Methods using E1, UbcHS5a, insect cells expressed purified RTA, E. coli expressed
His-tagged K-RBP, and Flag-tagged ubiquitin as indicated. Western blot analysis of the lysates was performed with anti-K-RBP antibody. The solid
arrow indicates the unmodified K-RBP, and the empty arrow indicates a nonspecific band. (C) In vitro K-RBP ubiquitination was performed as
described for panel B except that RTA was expressed from an in vitro transcription and translation system (TNT) and the RTA/TNT lysate was
used. The reaction mixtures were analyzed by Western blotting with anti-K-RBP antibody. The solid arrow indicates the unmodified K-RBP, and
the empty arrow indicates a nonspecific band. (D) In vitro K-RBP ubiquitination was performed as described for panel C. The reaction mixtures
were immunoprecipitated with anti-His antibody and analyzed using anti-Flag antibody.

In addition to the Cys/His-rich domain, the C-terminal do-
main of RTA was also found to be critical for K-RBP degra-
dation. The RTA truncation mutant RTA621 was inactive in
inducing K-RBP degradation, and mutant RTA641 can only
induce K-RBP degradation at a high concentration (0.5 pg)
but not at a lower concentration (0.25 pg) of the expression
plasmid (Fig. 5B and C). This result suggests that the ability of
RTAG641 to induce K-RBP degradation is partially impaired.
Deletion mutant RTA665 still induced degradation of K-RBP
even at a lower concentration similar to wild-type RTA. These
results suggest that the domain between amino acids 621 and
641 of RTA plays an important role in mediating K-RBP
degradation. To further identify the amino acids in this region
that are involved, several other mutants with multiple amino
acid substitutions were tested (Fig. 5B and D). The importance
of this domain was further confirmed with the clones
mRTA631-634 and mRTA635-638 containing four amino acid
substitutions. Both were partially impaired in their abilities to
degrade K-RBP (Fig. SD). Another mutant with changes from
amino acids 627 to 630 of RTA had no effect and degraded

K-RBP as efficiently as wild-type RTA (Fig. 5D). Notably,
most of these RTA mutants have higher expression levels
than that of wild-type RTA, a finding consistent with the
previous finding that RTA also regulates its own stability
(44). To rule out the possibility that the different abilities to
induce degradation of K-RBP is due to the different expres-
sion levels among RTA and its mutants, we coexpressed
K-RBP expression plasmid with 1 pg of RTA or 0.25 or 0.5
g of RTA621 expression plasmid to compensate for their
differences in expression levels and found that only wild-
type RTA can degrade K-RBP when the RTA and RTA621
protein levels were comparable (Fig. SE). In addition, using
in vitro-translated RTA mutants, we found that these mu-
tants could not enhance K-RBP ubiquitination as efficiently
as wild-type RTA (data not shown). We also examined the
in vivo K-RBP ubiquitination levels in the presence of
RTAG621 and RTAK,5,E and found that they did not affect
K-RBP ubiquitination levels (Fig. 5F). Together, these re-
sults confirm the importance of these regions of RTA in
inducing K-RBP degradation.
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FIG. 5. RTA domains responsible for K-RBP degradation. (A) 293T cells were transfected with His-tagged K-RBP plus RTA or its mutants
the RTAC,,; S, RTAH,,sL, and RTAK,s,E plasmids. The cell lysates were analyzed by Western blotting with anti-K-RBP antibody (top),
anti-RTA antibody (middle), or anti-y-tubulin antibody (bottom). The numbers below the figure indicate the relative intensities of the K-RBP
protein. (B) Schematic diagrams of the RTA C-terminus mutants. The number of “+” symbols after each mutant indicates its ability to induce
K-RBP degradation. The “—” symbol represents no degradation. (C) 293T cells were transfected with the indicated amounts of His-tagged K-RBP
and Flag-tagged RTA or its mutant plasmids. The cell lysates were then analyzed by Western blotting with anti-K-RBP antibody (top), anti-Flag
antibody (middle), or anti-y-tubulin antibody (bottom). The numbers below the figure indicate the relative intensities of the K-RBP protein.
(D) 293T cells were transfected with His-tagged K-RBP plus Flag-tagged RTA or mutant plasmids. The cell lysates were analyzed by Western
blotting with anti-K-RBP antibody (top), anti-Flag antibody (middle) and anti-y-tubulin antibody (bottom). The numbers below the figure indicate
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at the indicated amounts. The cell lysates were analyzed by Western blotting with anti-K-RBP antibody (top), anti-Flag antibody (middle), and
anti-y-tubulin antibody (bottom). The numbers below the figure indicate the relative intensities of the K-RBP protein. (F) RTA621 and RTAK,5,E
did not enhance K-RBP ubiquitination. 293T cells were transfected with His-tagged K-RBP plasmid, HA-tagged ubiquitin plasmid plus RTA621,
RTAK,s,E, or control plasmids. Cells were treated with 5 uM MG132 for 12 h before harvesting. The cell lysates were immunoprecipitated by
anti-His antibody and then analyzed by Western blotting with anti-HA antibody.
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Ability of RTA to mediate degradation correlates with its
transactivation ability. We next tested whether the degrada-
tion ability of RTA correlates to its transactivation function,
since both IRF-7 and K-RBP can repress RTA-mediated
transactivation (39, 43). If there is a correlation, we expect that
increasing the amounts of RTA will overcome K-RBP suppres-
sion. We used the KSHV ORF57 promoter, which can be
activated by RTA, to test this possibility. A fixed amount of
K-RBP expression plasmid, an increasing amount RTA expres-
sion plasmid or control plasmid, and the ORF57 luciferase
reporter were cotransfected into 293T cells. The repression
function of K-RBP was examined. The result showed that an
increasing amount of RTA diminished the repression by K-
RBP from 74 to 17% (Fig. 6A). We also tested the transacti-
vation ability of the ORF57 promoter by RTA mutants that are
impaired in inducing K-RBP degradation. As expected, there
is a good correlation between the ability of RTA to activate
ORFS57 promoter and to degrade K-RBP. The three mutants,
RTAC,,,S, RTAH, ,sL, and RTAK,s,E, that were impaired in
K-RBP degradation were also impaired in their transactivation
function compared to wild-type RTA (Fig. 6B and 5A). Simi-
larly, the C-terminal RTA mutants, including RTA621,
RTA641, mRTA631-635, and mRTA635-638, were also not
able to transactivate the ORF57 promoter efficiently compared
to wild-type RTA (Fig. 6C). The impairment in transactivation
of these mutants was not due to defects in the protein expres-
sion since all mutants were expressed at a similar or higher
level than the wild-type RTA (Fig. 5C). Since RTA641 could
induce K-RBP degradation at high levels, we tested the trans-
activation ability of RTA641 at lower (250 ng) and higher (500
ng) concentrations of the expression plasmid and compared
that to wild-type RTA. The results indicated that the presence
of more RTA641 showed an increase in transactivation but not
to the same level as the wild-type RTA (Fig. 6D). It is possible
that there are additional factors, in addition to its ability to
degrade K-RBP, that may have affected the transactivation
function of this RTA mutant.

To further confirm a correlation between ubiquitin-protea-
some degradation and the RTA transactivation function, two
other studies were carried out. The first was the overexpression
of ubiquitin, and the second was the use of Ts20 cells with a
temperature-sensitive E1 ubiquitin-activating enzyme. We ex-
pected that overexpression of ubiquitin would enhance RTA
function, whereas its function would be impaired in Ts20 cells
at the restrictive temperature. Indeed, when the 293T cells
were cotransfected with ubiquitin, RTA, and ORF57 promoter
constructs, RTA-mediated transactivation of the ORF57 pro-
moter was enhanced up to fivefold upon overexpression of
ubiquitin (Fig. 6E). Cotransfection of Ts20 with RTA expres-
sion plasmid and ORF57 promoter constructs at 39°C when E1
is inactive resulted in a lower level of transactivation of the
ORF57 promoter by RTA compared to that at 35°C when E1
is active (Fig. 6F) (9), even though the basal level of ORF57
promoter activity was similar at both temperatures (data not
shown). These results together confirmed that the ubiquitin-
proteasome pathway plays an important role in RTA-mediated
transactivation.

RTA promotes degradation of other repressors. In addition
to K-RBP and IRF-7, a number of other cellular and viral
proteins have been shown to repress RTA-mediated transac-
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tivation and/or KSHV lytic replication. They include KSHV
latent protein LANA, early protein KbZIP, and cellular pro-
teins NF-kB, HDACI1, PARP-1, and hKFC (2, 16, 17, 21, 25).
It was of interest to determine whether RTA also mediates
degradation of other repressors. Plasmids encoding KbZIP,
LANA, and NF-«kB were cotransfected with RTA expression
plasmid or control plasmid in the absence or presence of
MG132. Western blot analysis showed that the presence of
RTA readily downregulated the steady-state levels of these
proteins (Fig. 7). However, we found that RTA was not able to
reduce HDACI expression level (data not shown), which sug-
gests that RTA downregulates some but not all repressors of
RTA. For KbZIP, LANA and NF-kB, it is unlikely that RTA
acts by repressing the expression of these repressors at the
transcriptional level because the expression of these proteins is
under the control of the CMV promoter similar to K-RBP. As
shown in Fig. 1B, there is no repressive effect of RTA on
K-RBP expression mediated by the CMV promoter. Interest-
ingly, we also found that MG132 can prevent RTA-mediated
degradation of KbZIP and LANA (Fig. 7A and B), suggesting
that proteasomal degradation is involved in the degradation of
these two proteins by RTA. Similarly the expression of RTA
was found to reduce NF-«kB expression level in cotransfection
study (Fig. 7C). However, in contrast to KbZIP and LANA,
MG132 was unable to block NF-kB degradation induced by
RTA (Fig. 7C). This suggests that the reduction of NF-kB
levels may involve other mechanism.

Involvement of ubiquitin-proteasome pathway in RTA-me-
diated KSHYV reactivation. Based on our findings that KSHV
RTA induces the degradation of K-RBP and several other
repressors through the proteasome pathway, we hypothesized
that interference with the proteasomal degradation pathway
would affect RTA-mediated KSHYV reactivation from latency.
We then determined whether K-RBP is downregulated when
RTA is expressed in the context of KSHV lytic replication. We
again used KSHV-positive TREXxBCBL-1RTA and TRExB
CBL-1 cells for this purpose. In TREXBCBL-1RTA cells, DNA
encoding His-tagged RTA is integrated into the cellular ge-
nome, and the expression of RTA is tightly controlled by doxy-
cycline (32). The induction of RTA expression initiates KSHV
lytic replication. The cell line TRExBCBL-1 without integrated
RTA gene was used as a control. Upon RTA induction in these
cells by doxycycline, K-RBP levels were detected at various
time points. Western blot analysis showed a reduction of K-
RBP level upon RTA expression in TRExXBCBL-1 RTA cells
but not in control TREXBCBL-1 cells (Fig. 8A). We then
investigated whether KSHYV lytic replication can be affected if
the degradation of repressors through the proteasome is in-
hibited. TREXxBCBL-1RTA cells were treated by MG132 to
inhibit the ubiquitin-proteasomal degradation pathway or by
control DMSO before the cells were treated with doxycycline.
Cells were collected at various time points after doxycycline
treatment and Western blot analysis was performed to detect
cellular and viral protein expression. The expression of viral
lytic proteins, KbZIP, ORF45, and K8.1 as indicators for lytic
replication, was significantly reduced in MG132-treated cells
(Fig. 8B). The His-tagged RTA expression levels from inte-
grated RTA gene were equivalent in both MG132- and
DMSO-treated cells during the time course we examined (Fig.
8B) and suggests that MG132 did not affect doxycycline-in-
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FIG. 6. Correlation of RTA-mediated transactivation and degradation. (A) 293T cells were transfected with the reporter construct p57Plucl
(10 ng), an increasing amounts of pCMVTag50, and with a fixed amount (1,000 ng) of pcDNAK-RBP or control plasmid. The luciferase activities
were measured at 24 h after transfection. The luciferase reporter activities are expressed as a percentage of activation, with activation by RTA
alone equal to 100% at each concentration of RTA expression plasmid. The error bars indicate the standard deviations. The percentages of
inhibition of RTA-mediated ORF57 promoter activation by K-RBP at each concentration of RTA expression plasmid are indicated. (B) 293T cells
were transfected with the reporter construct p5S7Plucl (10 ng) and various amounts of pcDNAORF50 or the indicated mutants. The luciferase
activities were measured at 24 h after transfection. Luciferase reporter activities are expressed as percentages of activation, with activation by
wild-type RTA equal to 100% for each concentration of RTA expression plasmid used. The error bars indicate the standard deviations. (C) 293T
cells were transfected with the reporter construct pS7Plucl (10 ng) and various amounts of pCMVTag50 or the indicated mutants. The luciferase
activities were measured at 24 h after transfection. Luciferase reporter activities are expressed as percentages of activation, with activation by
wild-type RTA equal to 100% for each concentration of RTA expression plasmid used. The error bars indicate the standard deviations. (D) 293T
cells were transfected with the reporter construct p57Plucl (10 ng) and the indicated amounts of pCMVTag50 or pPCMVTag50641. The luciferase
activities were measured at 24 h after transfection. Luciferase reporter activities are expressed as percentages of activation, with activation by
wild-type RTA equal to 100% for each concentration of RTA expression plasmid used. The error bars indicate the standard deviations.
(E) Ubiquitin enhances RTA-mediated transactivation. 293T cells were transfected with the reporter construct p57Plucl (10 ng), pcDNAORF50,
and increasing amounts of ubiquitin expression plasmid pMT123. Luciferase activities were measured at 24 h after transfection. The error bars
indicate the standard deviations. (F) RTA-mediated transactivation was reduced in cells with an inactivated ubiquitin pathway. Ts20 cells were
transfected with the reporter construct p57Plucl (100 ng) and pPCMVORF50. The cells were incubated at either 39 or 35°C. Luciferase activities
were measured at 24 h after transfection. The error bars indicate the standard deviations.
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FIG. 7. Expression of RTA reduces several other RTA repressor
levels. (A) RTA expression reduces KbZIP protein level in a protea-
some-dependent manner. 293T cells were cotransfected with 1.0 pg of
Flag-tagged KbZIP plus 1.0 pg of Flag-tagged RTA or control plas-
mids, with or without 5 uM MG132 for 12 h. The cell lysates were
prepared and immunoblotted with anti-Flag (top and middle) or anti-
y-tubulin (bottom) antibodies. The numbers below the figure indicate
the relative intensities of the KbZIP protein. (B) Experiments were
performed as described for panel A except that green fluorescent
protein (GFP)-tagged LANA plasmid was used, and anti-LANA anti-
body was used for Western blotting to detect LANA expression.
(C) Experiments were performed as described for panel A except that
NF-«kB p65 plasmid was used, and anti-p65 antibody was used for
Western blotting to detect NF-kB p65 expression.

duced RTA expression. In addition, a more specific protea-
some inhibitor lactacystin treatment also inhibited KSHV re-
activation in TREXBCBL-1 RTA cells (data not shown). As a
control, the cellular protein tubulin was not affected (Fig. 8B).
Interestingly, the levels of latent protein LANA were also
similar in MG132-treated and untreated cells. This could be
due to a combination of the effects of RTA-mediated degra-
dation and the activation of LANA expression by RTA (26,
30). To further demonstrate that the reduction in KSHV re-
activation is due to a block of the lytic gene expression at the
transcriptional level, we examined the mRNA levels of viral
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lytic genes. The results showed that the mRNA levels of
KbZIP and K8.1 were lower in the presence of proteasome
inhibitor (Fig. 8C), suggesting that the reduction in lytic viral
protein levels is due to less-efficient transcription of these
genes in the presence of proteasome inhibitor. Our overall
results indicate that proteasomal degradation is involved in
regulating KSHV switch between latency and lytic replication.
Since RTA appears to be the sole transactivator of KSHYV Iytic
replication and we show that RTA also induces repressor deg-
radation, it is likely that RTA utilizes the proteasomal degra-
dation pathway to acquire maximal lytic replication during
reactivation.

DISCUSSION

The mechanism and domains of RTA involved in promoting
K-RBP degradation. It has been reported that RTA harbors
E3 ubiquitin ligase activity and induces IRF-7 ubiquitination
and degradation (44). In the present study, we found that RTA
can promote ubiquitination of K-RBP by in vitro and in vivo
ubiquitin conjugation assays, suggesting a similar mechanism is
used by RTA to degrade K-RBP. However, we do not know at
this point whether this degradation is mediated by RTA func-
tioning as an E3 ubiquitin ligase itself or it is via a cellular E3
ubiquitin ligase that associates with RTA. Since the RTA was
expressed from TNT system or insect cells in our in vitro
K-RBP ubiquitination assay, we could not rule out the possi-
bility that certain E3 ubiquitin ligases may be copurified with
RTA from insect cells or presence in the TNT lysates. In fact,
RTA is known to interact with a number of cellular factors
(42). We found that two domains in RTA are required for the
degradation of K-RBP, the C-terminal region located at the
end of activation domain and the Cys/His-rich region at the N
terminus that was suggested to be required for IRF-7 degra-
dation (44). It is likely that the mutations in these regions that
render RTA inactive in inducing degradation are due to the
disruption of the E3 ubiquitin ligase activity of RTA or dis-
ruption of the association with cellular factors that are impor-
tant for the ubiquitination of target proteins by RTA, since
these mutants cannot enhance K-RBP ubiquitination.

We have consistently observed that RTA itself can be sta-
bilized by proteasome inhibitor and several RTA mutants that
cannot induce K-RBP degradation have much higher expres-
sion levels than wild-type RTA. These results are consistent
with previous findings from another study demonstrating that
there is an enhanced level of RTA in the presence of protea-
some inhibitors (44). We have thus carried out an experiment
to test whether RTA is modified by ubiquitin in transfected
cells. However, we did not find ubiquitinated RTA species in
this experiment, suggesting that RTA itself may not be conju-
gated by ubiquitin but can be degraded by proteasome (data
not shown).

RTA-mediated degradation of other repressors. In addition
to K-RBP, the steady-state levels of several other RTA repres-
sors, NF-kB, KbZIP, and LANA (2, 21, 25), were also found to
be downmodulated in the presence of RTA, either through
proteasome-dependent or a proteasome-independent path-
way. Thus, K-RBP is only one of a number of repressors
downmodulated by RTA. It is interesting that RTA can induce
LANA and KbZIP degradation since RTA can activate KbZIP
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FIG. 8. The ubiquitin-proteasome pathway is involved in RTA-mediated lytic replication. (A) RTA expression reduces endogenous K-RBP
levels during KSHYV lytic replication. TRExBCBL-1RTA or TREXBCBLI cells were treated with 1 wM doxycycline, and cells were harvested at
various time points. The cell lysates were analyzed by Western blot analysis with anti-K-RBP (top), anti-RTA (middle), or anti-y-tubulin (bottom)
antibodies. The numbers below the figure indicate the relative intensities of the K-RBP protein. (B) MG132 treatment inhibits KSHV lytic
replication. TREXxBCBL-1RTA cells were treated with or without 5 wM MG132 and 1 nM doxycycline. Cells were harvested at various time points.
The cell lysates were analyzed by Western blot analysis with different antibodies as indicated. (C) MG132 treatment inhibits KSHV lytic replication.
TREXBCBL-1RTA cells were treated with or without 5 puM MG132 and 1 pM doxycycline. Cells were harvested at various time points. RT-PCR
analysis of the indicated mRNA isolated from different time points was performed with equivalent amounts of total RNA. GAPDH mRNA was

used as an internal control.

and LANA expression at the transcriptional level during
KSHYV lytic replication (4, 26, 30). It is possible that RTA
positively regulates LANA and KbZIP at the transcriptional
level but negatively regulates them at the posttranslational
level to maintain different levels of these two proteins at dif-
ferent stages of viral life cycle. In fact, even though LANA
transcription increases during KSHV lytic replication (30), the
protein level is not significantly enhanced (32). In addition, the
KbZIP protein levels were found to be stable during the later
part of KSHV lytic replication (32). It is likely that RTA
evokes multiple regulation strategies during KSHV lIytic repli-
cation.

Another interesting finding is that RTA can reduce NF-«xB
p65 level, whereas high NF-«B activity is required for efficient
KSHYV virion production during lytic replication (35). It is
possible that the level of p65 protein may vary during various
stages of lytic replication. Its levels may be low during the onset
of lytic replication to favor KSHV lytic replication but could
increase again during the late stage of lytic replication, which
is required for virion production (35). We indeed found that
NF-kB p65 was reduced early upon KSHV reactivation in

TRExBCBL1 RTA cells, but its level increased at later time
points (unpublished data), suggesting that other viral and cel-
lular factors may counteract the effect of RTA-mediated down-
regulation of p65 during KSHV lytic replication. Moreover,
even though p65 levels were reduced in the presence of RTA,
the reduction is independent of the proteasome degradation
pathway since MG132 had no effect. This suggests that the
proteasome-dependent pathway is likely to be only one of
several mechanisms that RTA utilizes for the degradation of its
target proteins. It will be interesting to elucidate the other
pathways that are involved.

A potential problem in the use of proteasome inhibitors in
our study is they may affect cellular transcription and KSHV
reactivation independent of RTA. However, since RTA is the
key activator of KSHV lytic gene expression and lytic viral
replication, and it has been shown to be involved in the ubig-
uitination and proteasome pathway, it is likely that the RTA-
dependent proteasomal degradation pathway is playing a role.
However, other mechanisms that affect lytic viral replication
may also be involved. These could include proteasome path-
ways independent of RTA. It will be of interest to determine
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FIG. 9. Proposed model on how RTA promotes degradation of repressors for transactivation and KSHV lytic replication.

what other pathways are affected by proteasome inhibitors in
KSHYV replication.

Correlation between RTA-mediated degradation and trans-
activation. It is likely that the ability of RTA to transactivate
the expression of its target promoter is coupled to its ability to
degrade the negative regulators that may be associated with
RTA or with the transcriptional complex. For example, the
mutants that cannot induce degradation or partially lose their
ability to induce K-RBP degradation could not activate the
KSHV ORF57 promoter efficiently compared to wild-type
RTA. In fact, RTA is associated with a number of cellular
factors other than K-RBP, including IRF-7, PARP-1, LANA,
KbZIP, and HDACI1. Many of these factors inhibit RTA-me-
diated transactivation (16, 17, 21, 25, 39, 43, 44). The degra-
dation of these proteins by RTA could counteract the inhibi-
tory effect caused by these factors for RTA-mediated
transactivation. At this point, it is not clear whether RTA
induces repressor degradation to achieve transactivation spe-
cifically or indirectly via activating cellular degradation path-
ways, which in turn induces the degradation of these repressors
nonspecifically. The results from our group and others favor
the former possibility, since RTA induces degradation selec-
tively and does not induce HDAC1 degradation (data not
shown) and IRF-3 degradation (44). However, it is likely that
the degradation of these repressors by RTA is one of a number
of mechanisms that RTA utilizes to achieve efficient transac-
tivation and activate lytic viral replication from latency. The
other mechanisms that RTA utilizes to acquire efficient trans-
activation include, but may not be limited to, binding to DNA,
binding to cellular cofactor, and oligomerization (3, 11, 27),
and one or more of these mechanisms could be involved. A
better understanding of these mechanisms may lead to new
strategies to block KSHYV lytic replication.

Other potential consequences of RTA-mediated degrada-
tion. It is likely that RTA-mediated degradation may affect
other aspects of the KSHV replication in addition to transac-
tivation. The degradation of IRF-7 by RTA was found to
suppress IRF-7-mediated IFN- promoter activation (44), and
it was suggested that it antagonizes antiviral type I interferon
production. In addition, we found that RTA can mediate

NF-kB downregulation. NF-kB is known to be involved in the
regulation of type I interferon production in concert with IRFs
(34). We actually found that RTA suppresses NF-kB-depen-
dent luciferase reporter promoter in BJAB cells (unpublished
data). The results together suggest that RTA-mediated IRF-7
and NF-kB degradation may play a role in modulating the
innate immune response. It is also likely that RTA may direct
the degradation of cellular proteins that have other regulatory
functions in KSHYV infection, replication, and pathogenesis.

Role of repressor degradation in KSHYV reactivation from
latency in KSHV-infected cells. Based on the findings in the
present study, we proposed that the degradation of cellular and
viral repressors by RTA is required for its maximal transacti-
vation and lytic replication induction ability (Fig. 9). With this
model, using ORF57 promoter as examples of an RTA target
promoter, cellular and viral repressors such as K-RBP suppress
RTA-mediated transactivation and reactivation. However,
RTA can promote the degradation of these repressors to ac-
tivate KSHV gene expression and lytic replication. The estab-
lishment of either latency or lytic viral replication thus involves
a regulatory loop to maintain a balance between RTA and
repressors. During the onset of KSHV reactivation, when RTA
expression levels are low, the repression by these repressors
may lead to abortion of the lytic replication. However, RTA
expression may be robust enough in some cells to degrade
those repressors, overcome the suppression, and induce lytic
replication. It is possible that RTA induces degradation of
proteins in addition to those identified here and uses other
mechanisms to induce degradation. Further studies will be
needed to substantiate this model, as well as to identify other
RTA degradation targets and other potential mechanisms
RTA uses to induce degradation.

Alphaherpesvirus HSV-1 transactivator ICP0 and betaher-
pesvirus HCMV transactivator pp71 have been shown to utilize
the proteasome-dependent pathway to induce cellular protein
degradation to modulate viral replication. The degradation of
proteins that silence viral gene expression was proposed as a
mechanism for the lytic infection of these viruses (12, 20, 24).
Our study suggests that gammaherpesvirus KSHV also uses its
transactivator RTA to eliminate the cellular and viral silencers
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for efficient transactivation and lytic replication. Thus, it is
likely that the degradation of repressors through various mech-
anisms by transactivators of herpesviruses to acquire full lytic
infection may be a common mechanism for herpesviruses. Fur-
ther studies will be needed to examine whether other herpes-
viruses also use similar mechanism.
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