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Epstein-Barr virus (EBV)-associated, undifferentiated type of nasopharyngeal carcinoma (NPC) is charac-
terized by intensive leukocyte infiltration. Interaction between the infiltrating cells and the tumor cells has
been considered crucial for NPC development. Recruitment of the infiltrates can be directed by certain
chemokines present in the NPC tissues. It is unknown whether and how EBV lytic infection regulates
expression of the chemokines. Using an antibody array, we first found that several chemokines secreted from
EBV-infected NPC cells are increased upon EBV reactivation into the lytic cycle, and interleukin-8 (IL-8) is the
chemokine upregulated most significantly and consistently. Further studies showed that the EBV lytic trans-
activator Zta is a potent inducer of IL-8 in NPC cells, augmenting secreted and intracellular IL-8 proteins, as
well as IL-8 RNA. Zta upregulates Egr-1, a cellular transcription factor that has been involved in upregulation
of IL-8, but the Zta-induced IL-8 expression is independent of Egr-1. The ability of Zta to transactivate the IL-8
promoter is important for the induction of IL-8, and we have identified two Zta-responsive elements in the
promoter. Zta can bind to these two elements in vitro and can also be recruited to the IL-8 promoter in vivo.
DNA-binding-defective Zta mutants can neither activate the IL-8 promoter nor induce IL-8 production. In
addition, Zta-expressing NPC cells exert enhanced chemotactic activity that is mainly mediated by IL-8. Since
IL-8 may contribute to not only leukocyte infiltration but also multiple oncogenic processes, the present study
provides a potential link between EBV lytic infection and pathogenesis of NPC.

Recent studies have recognized that a chronic inflammatory
microenvironment can be an incubator for cancer development
(2, 51). The local inflammation with recurrent destruction-
reconstruction of tissues results in frequent DNA damage and
the accumulation of genomic aberrations, which facilitates the
initiation of tumor cells. In addition, a complex network of
inflammatory mediators, produced by infiltrating immune cells
and cancer or precancer cells, may promote the growth, sur-
vival, angiogenesis, invasion, and metastasis of tumors. Among
the inflammatory mediators, several cytokines and chemo-
kines, such as tumor necrosis factor, interleukin-1 (IL-1), IL-6
and IL-8, have been documented for their potent roles in
tumorigenesis (2, 5).

Undifferentiated carcinoma, the most frequent histological
type of nasopharyngeal carcinoma (NPC) in areas of endemic-
ity, is closely associated with Epstein-Barr virus (EBV) infec-
tion (61). Notably, this type of NPC exhibits several inflamma-
tion-like features in the tumor tissues, including intensive
leukocyte infiltration, abundant expression of inflammatory cy-
tokines, and constitutive activation of inflammation-associated
transcription factors (16, 35, 42). In the inflammation-like mi-

croenvironment, the interaction between infiltrating immune
cells and tumor cells may be crucial for the development of
NPC. The interaction can be mediated by several inflammatory
chemokines or cytokines (42, 70). Another way of the interac-
tion may involve cell contact through ligand-receptor binding
(1). For example, tumor-infiltrating T cells may provide a sur-
vival signal to NPC cells through CD40-CD40 ligand interac-
tion, preventing the tumor cells from CD95-triggered apopto-
sis (63). In addition, a clinical report has correlated the highly
intratumoral infiltration of certain T cells with poor prognosis
of NPC, supporting an impact of the immune infiltrates on
NPC progression (57).

Being an initial step to establish the inflammation-like mi-
croenvironment of NPC, recruitment of infiltrating immune
cells can be directed by certain chemotactic factors. Expression
of several chemokines has been demonstrated in NPC tumors,
including IL-8, macrophage inflammatory proteins (MIPs),
macrophage chemoattractant proteins (MCPs), and RANTES
(11, 70, 75). Considering that EBV may promote chemokine
production in B lymphocytes (49), an issue is raised as to how
EBV infection of the epithelial tumor cells contributes to the
production of chemokines and the recruitment of leukocytes in
NPC. Previous studies have focused on the effects of EBV
latent infection and revealed that viral latent membrane pro-
tein 1 (LMP1) is a chemokine inducer. LMP1 can upregulate
IL-8, RANTES, and MCP-1 in epithelial cells, mainly through
a NF-�B-mediated mechanism (11, 22, 75). Since LMP1 pro-
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tein is not always detected in NPC biopsies (23, 76), it is worth
examining whether other EBV gene products may be also
involved in the regulation of chemokines.

Several clues have indicated that EBV reactivation into the
lytic cycle plays certain roles in development of NPC. Elevated
antibody titers against EBV lytic antigens, representing EBV
reactivation in vivo, correlate with advanced cancer stages,
poor prognosis, or tumor recurrence of NPC (21, 34). The
serologic marker of EBV reactivation also serves as a risk
factor of NPC (17). In addition, the EBV lytic cycle can be
induced in vitro by extracts of some foodstuffs or plants that
have been associated with a high incidence of NPC (9, 66).
Although EBV infection is predominantly latent in NPC tu-
mors, a small subset of the tumor cells may exhibit sporadic
lytic EBV infection (20, 55, 59). There is still a question as to
how the lytically infected cells exert their contribution to the
whole NPC tumors.

During EBV reactivation, Zta and Rta are the two immedi-
ate-early transactivators that essentially induce the expression
cascade of downstream lytic genes (24). The ectopic expression
of either Zta or Rta has been shown to sufficiently initiate the
EBV lytic cycle (24, 32, 60). Through binding to the Zta-
responsive element (ZRE) and the Rta-responsive element
(RRE) in the target promoters, respectively, Zta and Rta can
stimulate the transcription of many EBV lytic genes (25, 38, 47,
58). Apart from the viral genes, Zta and Rta can regulate
several cellular genes whose promoters contain ZRE and
RRE, respectively, suggesting that certain cellular activities
may be affected by the EBV lytic proteins (13, 26, 37, 45, 54).
Notably, previous studies have shown that Zta and Rta can
augment production of inflammatory cytokines such as IL-6
and IL-10, implying an association of the EBV lytic cycle with
inflammatory events (46, 54).

The present study aims to explore whether and how EBV
lytic infection regulates chemokine expression in NPC cells.
Using an antibody array, we first found that several chemo-
kines secreted from EBV-infected NPC cells are increased
upon EBV reactivation into the lytic cycle, and IL-8 is the
chemokine upregulated most significantly and consistently.
Further studies indicated that Zta is a potent transactivator of
the IL-8 gene. Two Zta-responsive sites reside within the IL-8
promoter, and Zta can bind to the promoter both in vitro and
in vivo. In addition, Zta-expressing NPC cells exert enhanced
chemotactic activity that is mainly mediated by IL-8. Consid-
ering that IL-8 may contribute to not only leukocyte infiltration
but also multiple oncogenic processes such as tumor growth,
angiogenesis, and metastasis, we describe here a potential link
between EBV lytic infection and tumorigenesis of NPC.

MATERIALS AND METHODS

Cell lines. NPC-TW01 and HONE-1 are two EBV-negative NPC cell lines.
The EBV-converted cell line, NA, was established by in vitro infection of NPC-
TW01 cells with the recombinant Akata EBV (14). The tetracycline-inducible,
Zta-expressing cell clone, HONE-tetonZ, was generated from HONE-1 cells in
a previous study (52). All of the cell lines were maintained in RPMI 1640
medium supplemented with 10% fetal bovine serum (HyClone) at 37°C with 5%
CO2. For those studies examining chemokine secretion from the cell lines, cells
were cultured in serum-free medium for up to 48 h before the culture superna-
tants were collected.

Induction of EBV reactivation or Zta expression. For induction of the lytic
cycle, EBV-infected NA cells were activated with 12-O-tetradecanoylphorbol-

13-acetate (TPA; 40 ng/ml) and sodium n-butyrate (3 mM) for 36 h. For induc-
tion of Zta expression in the tetracycline-inducible system, HONE-tetonZ cells
were treated with doxycycline (1 �g/ml) for 36 h. All of the inducing chemicals
were purchased from Sigma.

Plasmids. The simian virus 40 promoter-driven, Zta- or Rta-expressing plas-
mids have been described in our previous study (13). Plasmids expressing Zta
with deletion of amino acids 27 to 53 (d27/53) or amino acids 52 to 78 (d52/78),
or with mutations within the DNA-binding domain, have also been used previ-
ously (27, 28). A series of pIL-8-Luc, the reporter plasmids with deletion or
site-directed mutation of the IL-8 promoter, were constructed by inserting PCR-
amplified IL-8 promoter fragments into pGL2-basic vector (Promega) at the 5�
KpnI site and the 3� NheI site. (The inserted promoter fragments or mutated
sites are illustrated in Fig. 6.) All of the plasmids were purified by using a
DNA-midi kit (iNtRON Biotechnology).

Transfection with plasmid DNA or siRNA. When overnight-cultured cells in
six-well plates were 90% confluent, transfection was performed by using Lipo-
fectamine 2000 reagent (Invitrogen). For each well, 10 �l of Lipofectamine 2000
was mixed with 4 �g of DNA or 500 pmol small interfering RNA (siRNA) and
then applied to the cells according to the manufacturer’s instructions. After 4 h
of incubation, the cells were washed and cultured in serum-free medium for
further experiments. The Egr-1-targeted siRNA (5�-AGCAAAUUUCAAUUG
UCCUGGGAGA-3�) and a control siRNA with comparable GC content were
purchased from Invitrogen.

Chemokine antibody array and ELISA. The serum-free culture supernatants
from target cells were collected, and cell debris was removed by centrifugation.
Expression profiles of chemokines in the supernatants were analyzed by using
human chemokine antibody array (RayBiotech) according to its protocol. To
quantify the secreted IL-8, the culture supernatants were subjected to enzyme-
linked immunosorbent assay (ELISA) by using DuoSet ELISA development
system (R&D systems) according to the manufacturer’s instruction.

Immunoblotting assay. Cells were lysed in the sample buffer (3% sodium
dodecyl sulfate [SDS], 1.6 M urea, 4% �-mercaptoethanol), resolved in a SDS–
10% polyacrylamide gel, and electrotransferred onto Hybond-C extra mem-
branes (Amersham). The blots were preincubated with TBST (50 mM Tris-HCl
[pH 7.4], 0.15 M NaCl, 0.05% Tween 20) containing 5% skim milk at room
temperature for 1 h and then reacted with primary antibodies at 4°C overnight.
After being washed with TBST, the blots were reacted with horseradish perox-
idase-conjugated secondary antibodies (Amersham) at room temperature for
1 h. The blots were then washed with TBST and developed with Western
Lightning chemiluminescence reagent (Perkin-Elmer). The primary antibodies
used in this assay included 4F10 (anti-Zta), 467 (anti-Rta), 88A9 (anti-BMRF1),
6217 (anti-IL-8; R&D Systems), C-19 (anti-Egr-1; Santa Cruz Biotechnology),
and C4 (anti-�-actin; Chemicon).

RT-PCR. Total RNAs were extracted by using REzol C&T reagent (PROtech)
according to the manufacturer’s instructions. The RNAs were then subjected to
reverse transcription (RT) reaction by using Superscript III reverse transcriptase
(Invitrogen) and the RT primer oligo(dT)15 (Roche). The RT products were
then examined for the expression of IL-8 and �-actin in the PCR analysis. The
primers for IL-8 were 5�-CAGTTTTGCCAAGGAGTGCTAAAG-3� (forward)
and 5�-AACTTCTCCACAACCCTCTGCAC-3� (reverse), with an annealing
temperature of 50°C, and the PCR product is 208 bp. The primers for �-actin
were 5�-GAGCACAGAGCCTCGCCTTT-3� (forward) and 5�-AGATGGGCA
CAGTGTGGGTG-3� (reverse), with an annealing temperature of 60°C, and the
PCR product is 555 bp.

Reporter gene assay. Cells cultured in six-well plates were cotransfected each
well with 2 �g of reporter plasmid (with a luciferase gene driven by various IL-8
promoters) and 2 �g of effector plasmid (the Zta-expressing plasmid or the
control vector). At 36 h posttransfection, the cells were harvested and subjected
to the luciferase assay by using a Bright-Glo assay kit (Promega) according to the
manufacturer’s instructions. Each assay was carried out in duplicate, and the
whole set of the experiments was performed three times independently. Repre-
sentative results from these experiments are shown here.

EMSA. Cell nuclei were harvested after incubation of cells with a hypotonic
buffer (10 mM HEPES-KOH [pH 7.9], 10 mM KCl, 0.1 mM EDTA) and lysed
in a lysis buffer (20 mM HEPES-KOH [pH 7.9], 0.4 M NaCl, 1 mM EDTA, and
10% glycerol, with protease inhibitors). The electrophoretic mobility shift assay
(EMSA) probes were double-stranded oligonucleotides, 32P end labeled by using
T4 polynucleotide kinase (New England Biolabs). Each 20-�l binding mixture
contained 4 �g of nuclear extracts, 4 nM concentrations of labeled probes, 20
mM HEPES (pH 7.9), 50 mM KCl, 2.5 mM MgCl2, 0.5 mM EDTA, 1 mM
dithiothreitol, 10% glycerol, and 50 ng of poly(dI-dC)/�l. In the indicated ex-
periments, 400 nM unlabeled oligonucleotides were used for competition assay,
and 0.6 �g of antibodies were added for supershift assay. The binding mixture
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was incubated at 37°C for 30 min and then electrophoresed in a 6% native
polyacrylamide gel with 0.5� Tris-borate-EDTA buffer. The gel was dried and
exposed on X-ray films. The DNA sequences of oligonucleotides used as EMSA
probes or competitors are shown in Fig. 7A.

Chromatin immunoprecipitation (ChIP) assay. Cells were treated with 1%
formaldehyde at 37°C for 10 min, washed three times with ice-cold phosphate-
buffered saline, and lysed in a lysis buffer (1% SDS, 10 mM EDTA, and 50 mM
Tris-HCl [pH 8.0], with protease inhibitors). The cell lysates were sonicated and
10-fold diluted in a dilution buffer (0.01% SDS, 1% Triton X-100, 1.2 mM
EDTA, 16.7 mM Tris-HCl [pH 8.0], 150 mM NaCl, 2 mM dithiothreitol, and 200
�g of salmon sperm DNA/ml, with protease inhibitors). The lysates were reacted
with an anti-Zta antibody (AZ-69; Argene) or a control mouse immunoglobulin
(R&D Systems) at 4°C overnight, followed by incubation with salmon sperm
DNA and protein G-agarose beads (Upstate) at 4°C for 1 h. The beads were then
washed four times with low-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, 20 mM Tris-HCl [pH 8.0], 150 mM NaCl), four times with high-salt
buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.0],
500 mM NaCl), four times with LiCl washing buffer (0.25 M LiCl, 1% NP-40, 1%
sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl [pH 8.0]), and twice with
TE buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]). The immunoprecipitated
complexes were eluted with elution buffer (1% SDS, 0.1 M NaHCO3), treated
with 5 M NaCl at 65°C for 4 h, and digested by using proteinase K. The released
DNA fragments were purified by phenol-chloroform extraction and then sub-
jected to PCR detection of the IL-8 promoter. The first round of PCR was
performed as 95°C for 30 s, 55°C for 30 s, and 72°C for 1 min, using the primers
5�-GGGGTACCAAATTGTGGAGCTTCAGT-3� (forward) and 5�-GGGCTA
GCTTGTGTGCTCTGCTGTCT-3� (reverse). The nested PCR was performed
as 95°C for 30 s, 55°C for 30 s, and 72°C for 1 min, using the primers 5�-GGG
GTACCGTGTGATGACTCAGGTTTGCCCTGAG-3� (forward) and 5�-GGG
CTAGCTTGTGTGCTCTGCTGTCT-3� (reverse). The product of nested PCR
is 176 bp. The PCR primers were also used for the construction of the pIL-8-Luc
plasmids mentioned above, so every primer contains a short 5� adapter sequence
(underlined).

Chemotaxis assay. Human whole blood from healthy donors was provided
from Taiwan Blood Service Foundation (Tainan Blood Center). Blood cells were
separated by using Ficoll-Paque Plus density centrifugation (GE Healthcare).
Granulocytes above the bottommost erythrocyte layer were collected, and con-
taminating erythrocytes were lysed with BD PharmLyse (Becton Dickinson). The
obtained cellular fraction was high in granulosity, as confirmed by forward and
side scatter on flow cytometry. Transwells (6.5-mm diameter and 5-�m pore size;
Corning) were used in 24-well plates for the chemotaxis assay. Cell culture
supernatants (600 �l/well) were applied to the lower chambers of transwells,
while purified granulocytes (106 cells/well) were added to the upper chambers
and spun onto the porous membrane at 1,200 rpm for 3 min. After incubation at
37°C with 5% CO2 for 30 min, the number of granulocytes migrating into the
lower chambers was determined by using a CyQuant NF cell proliferation kit
(Invitrogen). In the indicated experiments, neutralizing antibodies (purchased
from R&D systems) against IL-8, MIP-1�, or growth-regulated oncogene
(GRO) were added to the cell culture supernatants at a final concentration 1
�g/ml. The data are expressed as chemotaxis index, representing x-fold chemoat-
traction compared to the culture supernatants from vector control cells. All
assays were carried out in duplicate.

RESULTS

Several chemokines are upregulated upon EBV reactivation
in NPC cells. First, we analyzed chemokine expression profiles
of an EBV-infected NPC cell line, NA, before and after induc-
tion of the EBV lytic cycle. Two approaches were utilized to
trigger EBV reactivation. One was treatment with TPA and
sodium n-butyrate, and the other was transfection with a plas-
mid expressing the EBV lytic transactivator Zta. Figure 1A
shows that both ways efficiently induced expression of EBV
lytic genes such as Zta, Rta, and BMRF1. The cell culture
supernatants were then subjected to chemokine analysis by
using an antibody-based array. Among the 38 chemokines that
were examined, IL-8, GRO, and MIP-3� were increased from
chemically activated NA cells compared to the chemokine se-
cretion from untreated cells (Fig. 1B). Zta-transfected NA

cells also secreted more IL-8 than the vector-transfected cells,
while secretion of GRO and MIP-1� was just slightly increased
from the Zta-expressing cells (Fig. 1C). Therefore, among the
chemokines upregulated upon EBV reactivation in NA cells,
the induction of IL-8 is associated with EBV lytic infection
most significantly and consistently.

Several chemokines are upregulated by EBV Zta or Rta in
NPC cells. Zta and Rta are potent transcriptional activators
during EBV reactvation, regulating not only viral lytic genes
but also certain cellular genes. Next, we tested whether Zta or
Rta alone can affect chemokine expression in an EBV-negative
NPC cell line, NPC-TW01 (Fig. 2A). Ectopic expression of Zta

FIG. 1. Several chemokines are upregulated upon EBV reactiva-
tion in NPC cells. (A) The EBV lytic cycle was induced by either
treatment with TPA and sodium butyrate (TPA�SB) or transfection
with a Zta-expressing plasmid. Meanwhile untreated cells (control) or
vector plasmid-transfected cells were used as controls. Expression of
EBV lytic proteins (Zta, Rta, and BMRF1) and cellular �-actin was
examined in an immunoblotting assay. (B) Culture supernatants from
untreated (control) or chemically activated (TPA�SB) NA cells were
subjected to analysis of chemokine expression profiles by using an
antibody array. The upregulated chemokines (IL-8, GRO, and MIP-
3�) are indicated. (C) Culture supernatants from the NA cells trans-
fected with vector plasmid or Zta-expressing plasmid were analyzed for
their chemokine expression profiles. The upregulated chemokines
(IL-8, GRO, and MIP-1�) are indicated.

FIG. 2. Several chemokines are upregulated by EBV Zta or Rta in
NPC cells. (A) EBV-negative NPC-TW01 cells were transfected with
the indicated plasmids (vector or plasmids expressing Zta or Rta), and
the expression of Zta, Rta and �-actin was examined in an immuno-
blotting assay. The expression profiles of chemokines in the cell culture
supernatants were analyzed by using an antibody array. Compared to
the vector control experiments, the Zta-upregulated (B) and Rta-
upregulated (C) chemokines are also indicated.
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prominently induced IL-8 and also upregulated GRO and
MIP-1� at a lower level (Fig. 2B). On the other hand, Rta had
little effect on the chemokine expression, except that it slightly
increased the secretion of RANTES (Fig. 2C). Since IL-8 was
the most upregulated chemokine from NPC cells consistently
by either EBV reactivation (Fig. 1) or Zta expression (Fig. 2B),
we focused on Zta-mediated induction of IL-8 in the following
studies.

Zta induces IL-8 expression in NPC cells. To confirm Zta-
induced expression of IL-8, ELISA was performed to quantify
IL-8 in the culture supernatants of NPC cells with or without
Zta expression. Figure 3A shows time-dependent induction of
IL-8 from NPC-TW01 cells transiently transfected with a Zta-
expressing plasmid but not from the cells transfected with a
vector plasmid. Using HONE-tetonZ, a tetracycline-inducible,
Zta-expressing NPC cell line, we also detected increased se-
cretion of IL-8 upon induction of Zta by doxycycline, while
treatment of the parental cell line HONE-1 with doxycycline
did not upregulate IL-8 (Fig. 3B). The intracellular levels of
IL-8 proteins were also increased by ectopic expression of Zta
in both EBV-negative and -positive NPC cells, as demon-
strated by an immunoblotting assay (Fig. 3C). In addition,
RT-PCR analysis showed Zta-mediated augmentation of IL-8
RNA in both HONE-tetonZ and NPC-TW01 cells, suggesting
that Zta induces transcription of the IL-8 gene (Fig. 3D).

Zta-mediated induction of IL-8 is independent of early
growth response-1 (Egr-1). Our previous study indicated that
Zta can induce expression of Egr-1, a cellular transcription
factor regulating diverse biologic functions (13). Since Egr-1
has been reported to be involved in induction of IL-8 (31), we
wondered whether Zta upregulates IL-8 through Egr-1. In

NPC-TW01 cells transfected with a Zta-expressing plasmid,
Egr-1-targeted siRNA efficiently knocked down Zta-induced
Egr-1 expression but did not affect Zta-induced IL-8 produc-
tion (Fig. 4A). A similar result was also observed in HONE-
tetonZ cells, where siRNA-directed inhibition of Egr-1 expres-
sion did not interfere Zta-mediated induction of IL-8 (Fig.
4B). Therefore, Zta can upregulate IL-8 in NPC cells in an
Egr-1-independent manner.

Transactivation activity of Zta is important for induction of
IL-8. Since Zta increased IL-8 RNA (Fig. 3D), it is possible
that Zta-induced IL-8 production occurs via transactivation of
the IL-8 promoter. In a reporter gene assay, wild-type Zta
activated the IL-8 promoter spanning positions �1453 to � 44
of the IL-8 gene (Fig. 5B). To examine whether the transacti-
vation activity of Zta is important for induction of IL-8, we
used two Zta mutants, d27/53 and d52/78, with deletions in the
N-terminal transactivation domain (Fig. 5A). Both of the Zta
mutants largely lose their transactivation functions, though
they retain the DNA-binding ability (27). Compared to the
wild-type protein, these two Zta mutants showed impaired
abilities to activate the IL-8 promoter (Fig. 5B). The induction
of IL-8 secretion by the Zta mutants was also significantly
lower than the induction by wild-type Zta (Fig. 5C). Hence,
transactivation of the IL-8 promoter could be a major mech-
anism for Zta to upregulate IL-8.

The IL-8 promoter contains two responsive sites for Zta-
mediated activation. Reporter gene assays were carried out to
further identify Zta-targeted sites in the IL-8 promoter. Map-
ping through serial 5� deletion of the IL-8 promoter, we found
two Zta-responsive regions in the promoter. Deletion of the
promoter region from positions �132 to �98 not only signif-
icantly diminished the basal promoter activity but also reduced

FIG. 3. Zta induces IL-8 expression in NPC cells. (A) NPC-TW01
cells were transfected with the vector plasmid or a Zta-expressing
plasmid. At indicated time posttransfection (10 to 40 h), the cell
culture supernatants were collected and quantified for IL-8 secretion
by using ELISA, while Zta and �-actin proteins in the cell lysates were
detected in an immunoblotting assay. (B) HONE-tetonZ cells and the
parental HONE-1 cells were treated with (�) or without (�) doxycy-
cline (dox). The culture supernatants were subjected to quantification
of IL-8 by using ELISA, and the cell lysates were analyzed for the
expression of Zta and �-actin in an immunoblotting assay. (C) EBV-
negative NPC-TW01 cells and EBV-infected NA cells were transfected
with vector plasmid (V) or a Zta-expressing plasmid (Z). IL-8, Zta, and
�-actin proteins in the cell lysates were detected by using an immuno-
blotting assay. (D) HONE-tetonZ cells were treated with (�) or with-
out (�) doxycycline (dox), and NPC-TW01 cells were transfected with
the vector plasmid (V) or a Zta-expressing plasmid (Z). RNAs were
extracted from the cells and subjected to RT-PCR assay for the de-
tection of IL-8 and �-actin transcripts.

FIG. 4. Zta-mediated induction of IL-8 is independent of Egr-1.
(A) NPC-TW01 cells transfected with the vector plasmid (V) or a
Zta-expressing plasmid (Z) were cotransfected with no siRNA (mock),
Egr-1-targeted siRNA (siEgr-1), or a control siRNA (siCtrl). The
culture supernatants were subjected to quantification of IL-8 by using
ELISA, and the cell lysates were analyzed for the expression of Egr-1,
Zta, and �-actin in an immunoblotting assay. (B) HONE-tetonZ cells
were transfected with no siRNA (mock), Egr-1-targeted siRNA
(siEgr-1) or a control siRNA (siCtrl) and treated with (�) or without
(�) doxycycline (dox). The culture supernatants and cell lysates were
subjected to the same experiments described in panel A.
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the extent of Zta-mediated activation, and additional removal
of its downstream region from positions �98 to �73 com-
pletely abolished the responsiveness to Zta (Fig. 6B). An AP-1
element is recognized within the promoter region from posi-
tions �132 to �98, and a putative ZRE is located within the
region between positions �98 and �73 (Fig. 6A). In the site-
directed mutagenesis study, disruption of either the AP-1 ele-
ment or the ZRE reduced Zta-mediated activation of the IL-8
promoter, while dual mutation of both sites completely abol-
ished the responsiveness to Zta (Fig. 6C). According to the
result in Fig. 6C, we concluded that the AP-1 site contributes
to both basal promoter activity and Zta-induced transactiva-
tion, while the ZRE contributes to the residual responsiveness
of the IL-8 promoter to Zta.

Zta binds to the IL-8 promoter both in vitro and in vivo.
Since both the AP-1 element and the ZRE are potential Zta-
binding sites (15, 26, 50), we performed EMSA to confirm the
binding in vitro. Figure 7B shows that both the ZRE and the
AP-1 probes can form a new complex in the presence of Zta.
The Zta-DNA interaction was further verified, since the Zta-

binding complexes were competed by specific ZRE and were
supershifted by anti-Zta antibody (Fig. 7B). We also observed
a Zta-independent complex formed with the AP-1 probe, and
it was competed for by AP-1 sequence but not by ZRE (Fig.
7B, right panel). This complex is likely to be binding of cellular
AP-1 transcription factors, which may account for the contri-
bution of the AP-1 site to basal activity of the IL-8 promoter in
our reporter gene assays (Fig. 6C). To further demonstrate
that Zta can be recruited to the IL-8 promoter in vivo, we
carried out a ChIP assay. The presence of DNA of the IL-8
promoter was detected in the immunoprecipitant from Zta-
expressing cells by using anti-Zta antibody, but not in the
precipitants from vector control cells or by using control anti-
body or no antibody (Fig. 7C), indicating binding of Zta to the
IL-8 promoter in vivo.

FIG. 5. Transactivation activity of Zta is important for induction of
IL-8. (A) NPC-TW01 cells were transfected with the vector plasmid or
plasmids expressing wild-type (wt) Zta or Zta mutants with deletion of
amino acids 27 to 53 (d27/53) or amino acids 52 to 78 (d52/78). The
expression of Zta and �-actin was examined in an immunoblotting
assay. (B) NPC-TW01 cells were cotransfected with the indicated ef-
fector plasmids (vector plasmid or plasmids expressing wild-type Zta
or Zta mutants) and an IL-8 promoter-driven reporter plasmid,
pIL-8(�1453/�44)-Luc. After transfection, the cells were harvested
and subjected to the luciferase assay. (C) NPC-TW01 cells were trans-
fected with the indicated expression plasmids, and IL-8 in the cell
culture supernatants was quantified by using ELISA.

FIG. 6. The IL-8 promoter contains two responsive sites for Zta-
induced activation. (A) The IL-8 promoter used in the reporter gene
assay is illustrated. The DNA sequences of AP-1 and ZRE sites in the
promoter are shown underlined. Mutations introduced into these two
sites (AP-1m and ZREm) are also indicated. (B) NPC-TW01 cells
were cotransfected with the indicated reporter plasmids (a series of
pIL-8-Luc) and the effecter plasmids (vector plasmid or a Zta-express-
ing plasmid). At 36 h posttransfection, the luciferase assay was per-
formed. The Zta-induced fold activation for each reporter (luciferase
activity for the Zta transfectant versus that for its vector control) is
provided. Shown is a representative result from three independent
experiments. (C) A similar reporter gene assay was performed by using
the pIL-8(�333/�44)-Luc-derived plasmids carrying mutations at
ZRE and/or AP-1 sites. The experimental procedures and the way of
data presentation are the same as that in panel B.
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DNA-binding-defective Zta mutants fail to induce IL-8. We
also examined the effects of two DNA-binding-defective Zta
mutants, Zdbm1 and Zdbm2, which contain mutations within
the DNA-binding domain (28). The two Zta mutants were not
recruited to the IL-8 promoter in a ChIP assay (Fig. 8A). They
failed to transactivate the IL-8 promoter (Fig. 8B) and showed
a significant impairment in ability to induce IL-8 production
(Fig. 8C). The results confirm that the DNA-binding ability of
Zta is essential for the induction of IL-8.

Zta-induced IL-8 exerts chemotactic activity. A chemotaxis
assay was performed to examine whether the Zta-induced IL-8
is functionally active. Neutrophil-predominant granulocytes
were used as target cells because IL-8 is a potent chemoattrac-
tant for neutrophils, which express the highest level of IL-8
receptors (4, 19). Compared to the culture supernatants from
vector-transfected cells, the conditioned medium from Zta-

expressing NPC-TW01 cells prominently attracted more gran-
ulocytes, though extent of the enhanced chemotaxis varied
among the four donors (Fig. 9). Neutralization of IL-8 signif-
icantly inhibited Zta-induced chemotaxis in all cases, while
neutralizing antibodies against MIP-1� or GRO exerted only
minor inhibitory effect in two cases (Fig. 9), indicating that
IL-8 is a major contributor to Zta-enhanced chemotactic ac-
tivity.

DISCUSSION

In this study, EBV reactivation in NPC cells was associated
with the induction of certain chemokines, among which IL-8
was upregulated most significantly and consistently (Fig. 1).
The lytic protein Zta was found to be a potent inducer of IL-8,
increasing IL-8 at both protein and RNA levels and activating

FIG. 7. Zta binds to the IL-8 promoter both in vitro and in vivo. (A) DNA sequences of the probes and the competitors used in the EMSA
study are provided. Oligonucleotide (oligo) ZRE represents the IL-8 promoter region �102 to �76, and oligonucleotide AP-1 represents the
region �136 to �110 of the IL-8 promoter. The AP-1 and ZRE sites in the promoter are shown underlined. (B) Nuclear extracts from NPC-TW01
cells transfected with the vector plasmid (V) or a Zta-expressing plasmid (Z) were examined in the EMSA study. The DNA probes, competitors,
and antibodies used in the experiment are indicated. The shifted bands representing DNA-binding of Zta or possible AP-1 transcription factors
are indicated by arrows. (C) NPC-TW01 cells transfected with the vector plasmid or a Zta-expressing plasmid were subjected to a ChIP assay for
detection of Zta’s binding to the IL-8 promoter in vivo. Zta proteins were immunoprecipitated by an anti-Zta antibody, and the presence of the
IL-8 promoter DNA in the precipitants was detected by nested PCR. The expected size of PCR products is indicated by an arrow. PCR detection
of the IL-8 promoter DNA from inputs was used as the positive control. Immunoprecipitation without antibody (no Ab) or using a control
immunoglobulin G antibody (ctrl IgG) was included as the negative control.
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the IL-8 promoter (Fig. 2, 3, and 5). We have identified two
Zta-responsive sites in the IL-8 promoter (Fig. 6) and con-
firmed that Zta can bind to the promoter both in vitro and in
vivo (Fig. 7). In addition, Zta enhanced chemotactic activity
mainly through the induced IL-8 (Fig. 9). Therefore, the
present study provides a clue that EBV lytic infection may
contribute to the inflammation-like microenvironment of NPC
by the upregulation of chemokines.

The IL-8 promoter contains two major regulatory elements,
the AP-1 and NF-�B sites, which have been involved in the

induction of IL-8 by various stimulators (22, 62, 68, 74). In the
present study, the AP-1 site also contributes to Zta-mediated
activation of the IL-8 promoter in NPC cells (Fig. 6C). More-
over, downstream of the AP-1 site, we have identified a ZRE
(Fig. 6C), which has been recognized as a C/EBP site previ-
ously (73). Consistent with previous studies showing Zta’s
binding to the DNA with AP-1- or C/EBP-like sequences (15,
50), our EMSA results demonstrated that Zta can bind to the
AP-1 element and the ZRE of the IL-8 promoter (Fig. 7B).
The responsiveness of the IL-8 promoter to Zta was com-
pletely abolished when both the AP-1 and the ZRE were
disrupted (Fig. 6C), supporting the importance of the two
elements for the Zta-mediated transactivation.

Zta mutants defective in DNA binding or transactivation
exhibited impaired abilities to induce IL-8 production (Fig. 5
and 8), indicating that binding to and transactivation of the
IL-8 promoter could be a major mechanism for Zta to upregu-
late IL-8. Meanwhile, other mechanisms may be also involved
in the Zta-induced IL-8 expression. One possible mechanism
we tested is the role of Egr-1. It has been reported that Egr-1
is essential for amyloid peptide-induced IL-8 expression in
monocytic cells; the induction of IL-8 can be blocked by Egr-
1-targeted siRNA (31). However, putative Egr-1 binding site
has not been recognized within the IL-8 promoter (72). Our
previous study found that Zta can upregulate Egr-1 (13), so we
wondered whether Egr-1 plays any role in Zta-induced IL-8
expression. Our result did not support the hypothesis, showing
that Egr-1 is dispensable for the IL-8 induction by Zta (Fig. 4).
Considering that Egr-1 can regulate many other inflammatory
chemokines and cytokines (18, 29, 31), it is still of interest to
study whether Zta can affect inflammatory events through the
mediation of Egr-1.

Although several clues have suggested a link between EBV
reactivation and NPC, it is largely unknown how the small
subset of lytically infected tumor cells contributes to cancer
development. Secretion of soluble factors is a plausible way for
these cells to exert their effects on the whole tumors. A clue
supporting the notion has come from a SCID mouse model of
EBV-associated lymphoproliferative disease, where the lytic
infection is required for efficient tumor outgrowth of early-
passage EBV-transformed B cells (39). The requirement could
be attributed to the lytic-cycle-induced secretion of B-cell
growth factors (IL-6 and IL-10) and an angiogenesis factor
VEGF (39, 40, 46). Focusing on the study of NPC, we found
that EBV lytic infection and the lytic protein Zta can upregu-
late several secreted chemokines, especially IL-8. By initiating
or enhancing leukocyte infiltration, the lytic-cycle-induced che-
mokines may contribute to an inflammation-like microenviron-
ment, where the interaction between immune infiltrates and
tumor cells is crucial for NPC development (1, 63). The con-
tribution possibly occurs not only in the developed NPC tu-
mors but also at the precancer stage where an inflammation-
like microenvironment predisposes precancerous cells to
tumor formation (2, 51), which may account for how EBV
reactivation serves as a risk factor before the onset of NPC
(17).

Our chemotaxis assay showed that the chemokines induced
by Zta in NPC cells are functional to attract neutrophil-pre-
dominant granulocytes and that IL-8 is a major contributor to
the enhanced chemotactic activity (Fig. 9). Neutrophils are

FIG. 8. DNA-binding-defective Zta mutants fail to induce IL-8.
(A) NPC-TW01 cells were transfected with the vector plasmid or
plasmids expressing wild-type (wt) Zta or DNA-binding-defective Zta
mutants, Zdbm1 and Zdbm2. The expression of Zta and �-actin was
examined in an immunoblotting assay. A ChIP assay was performed to
immunoprecipitate Zta and to detect the IL-8 promoter by PCR.
(B) NPC-TW01 cells were cotransfected with a reporter plasmid pIL-
8(�1453/�44)-Luc and the indicated effector plasmids (vector plasmid
or plasmids expressing wild-type Zta or Zta mutants). The transfected
cells were then harvested and subjected to the luciferase assay.
(C) NPC-TW01 cells were transfected with the indicated expression
plasmids, and IL-8 in the cell culture supernatants was quantified by
using ELISA.

FIG. 9. Zta-induced IL-8 exerts chemotactic activity. Cell culture
supernatants (Sup) of NPC-TW01 cells transfected with the vector
plasmid or a Zta-expressing plasmid were applied to the lower cham-
bers of transwells, while purified granulocytes were added to the upper
chambers. In indicated experiments, neutralizing antibodies (Ab)
against IL-8, MIP-1�, or GRO were pre-added to the culture super-
natants. Migration of granulocytes to the lower chambers was mea-
sured, and the chemotaxis index was calculated to represent x-fold
chemoattraction by comparison with the culture supernatants from
vector-transfected cells. Shown are the results using granulocytes from
four donors.
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among the immune cells first invoked into inflamed tissues,
and they can produce a variety of chemokines with potentials
to direct sequential recruitment of other leukocytes (64). The
essential roles of neutrophils in the establishment of local
leukocyte infiltration have been demonstrated in several mod-
els of inflammation (8, 77). Therefore, by initial recruitment of
neutrophils, Zta-induced IL-8 may trigger the subsequent in-
flux of leukocytes in NPC. Notably, neutrophil infiltration pro-
moted by tumor-derived IL-8 has been linked to the poor
prognosis of bronchioloalveolar carcinoma and to increased
genetic instability of Mutatect tumors (6, 33), suggesting that
the IL-8-attracted neutrophils may contribute to tumorigenesis
in some cases.

The infiltrating cells in NPC tumors consist mainly of lym-
phocytes, while granulocytes, monocytes, and natural killer
cells exist as a minor population (35, 42). We have considered
whether Zta-induced IL-8 can directly recruit lymphocytes,
since an IL-8 receptor CXCR1 can be expressed on certain
subsets of CD8� T cells, including the effector/cytotoxic cells
and the activated central memory cells (30, 36, 69). However,
the chemotaxis was not observed in our preliminary study (data
not shown), possibly because the IL-8 concentration in the
culture supernatants was too low to attract T cells which ex-
press IL-8 receptors at a lower level than neutrophils (19, 30,
36). IL-8 receptors have also been detected on monocytes and
natural killer cells (7, 43). Thus far, we have not ruled out
chemotactic effects of IL-8 on infiltrating lymphocytes and
other immune cells in NPC tumors in vivo.

In addition to the functions for chemoattraction, IL-8 plays
multiple roles in cancer development. Some tumor cells can
express IL-8 receptors and utilize IL-8 as an autocrine growth
factor (56, 65). Notably, IL-8 receptors have been detected on
NPC tumor cells, and the expression of one receptor CXCR1
correlates with a shorter survival rate of the patients, support-
ing a contribution of IL-8/CXCR1 to NPC (41). IL-8 is also a
well-documented angiogenesis factor, and its expression has
been associated with the level of vascularization in many tu-
mors, including NPC (3, 48, 67, 75). Moreover, NPC is a highly
metastatic cancer, and IL-8 may be involved in the phenotype
since it can promote tumor invasion or metastasis through
induction of certain metalloproteinases (44, 53). Interestingly,
GRO, a chemokine that is weakly but consistently upregulated
by EBV reactivation and by Zta expression (Fig. 1 and 2), also
exerts similar functions in autocrine-driven tumor growth and
angiogenesis (12, 71). Therefore, the present study showing
Zta-mediated upregulation of oncogenic chemokines has
pointed a promising direction to explore the link between EBV
lytic infection and pathogenesis of NPC.

Furthermore, we notice that IL-8 is a converged target gene
of gammaherpesviruses in both latent and lytic infection states.
EBV utilizes the lytic protein Zta and the latent protein LMP1
to induce IL-8 expression, while Kaposi’s sarcoma-associated
herpesvirus (KSHV) can upregulate IL-8 by either the lytic
protein K15 or the latent protein K13 (10, 22, 68, 75). Since
KSHV-associated Kaposi’s sarcoma also exhibits several in-
flammation-like features, induction of IL-8 is likely to be crit-
ical for the virus-mediated “inflammatory tumorigenesis”;
thus, the oncogenic gammaherpesviruses have evolved several
strategies to achieve the same effect. In many cancer models,
anti-IL-8 neutralizing antibodies and IL-8-specific antisense

oligonucleotides have been proven effective to inhibit tumor
growth through the reduction of cell proliferation, angiogene-
sis, or metastasis (3, 44, 67). Therefore, blockage of IL-8 or
IL-8 receptors may be considered a potential therapeutic ap-
proach for treating NPC or other inflammation-related malig-
nancies.
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