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The fungal pathogen Cryptococcus neoformans regulates its polysaccharide capsule depending on environ-
mental stimuli. To investigate whether capsule polymers change under different growth conditions, we analyzed
shed capsules at physiological concentrations without physical perturbation. Our results indicate that regu-
lation of capsule size is mediated at the level of individual polysaccharide molecules.

Cryptococcus neoformans is an encapsulated yeast that
causes serious opportunistic infections. The major virulence
factor of this pathogen is its polysaccharide capsule. This ma-
terial is antiphagocytic and has immunomodulatory effects (15,
19, 33); it surrounds the cell and is constitutively shed into the
surroundings. The major component of cryptococcal capsule
is glucuronoxylomannan (GXM), a linear, high-molecular-
weight polysaccharide. Imaging studies indicate that the cap-
sule is composed of a meshwork of fibers (25, 29–31) which
varies in density with distance from the cell wall (8) and with
growth conditions (25). The thickness of the capsule exceeds
the calculated length of individual GXM fibers (17).

C. neoformans capsule volume responds to environmental
factors, including iron levels and CO2 concentrations (9, 14,
32). Although signaling pathways involved in capsule variation
have been investigated (1, 5, 12, 35), how the physical changes
occur is poorly understood. Factors that contribute to larger
capsules are likely to be complex: they may include greater
production and/or secretion of polysaccharides, more extensive
polysaccharide assembly, decreased capsule shedding, and syn-
thesis of structurally altered or larger polysaccharide mole-
cules. To test the hypothesis that regulation of capsule size is
mediated at the level of individual polysaccharide molecules,
we investigated shed GXM. We detected this material using a
monoclonal antibody to GXM that specifically binds both shed
material (described below) and cryptococcal capsules on live
cells (8).

We observed that when JEC21 (wild type, serotype D) cells
were grown to late stationary phase in rich medium (YPD; 1%
yeast extract, 2% peptone, 2% glucose), a subpopulation dis-
played larger capsules. To test whether the properties of shed
GXM changed during this growth, we diluted JEC21 cells from
a starter culture into duplicate flasks (50 ml YPD; 106 cells/ml)
and incubated them with shaking at 30°C. At intervals we drew
a 0.5-ml sample from each flask, counted cells, and diluted one
culture (“diluted culture”) to the starting density, while the
other was cultured continuously (“continuous culture”). To
examine GXM, we subjected samples of culture supernatant

fluid to electrophoresis on an agarose gel. The gel was trans-
ferred onto a Nytran SuPerCharge (Whatman) membrane us-
ing DNA blotting methods (3), and the membrane was air
dried, blocked with 5% skim milk in Tris-buffered saline,
probed with an anti-GXM monoclonal antibody followed by
horseradish peroxidase-conjugated anti-mouse immunoglobu-
lin G (Sigma), and developed with a chemiluminescent reagent
(Perkin Elmer). The electromobility of shed GXM dramati-
cally decreased as the continuous culture aged (Fig. 1). In
contrast, there was little change in GXM migration when the
culture was periodically diluted (Fig. 1), and the modest dif-
ferences observed were not consistent between experiments
(data not shown). We also noticed that average capsule thick-
ness in the continuous culture doubled between 11 and 48 h,
while that of the diluted culture remained nearly constant over
the same interval (Table 1); this led to a marked difference in
average capsule size between the two cultures (Table 1; P �
0.0001 at 48 h). For the continuous culture, no capsules with a
radius above 3 �m (triple the size of capsules in the starting
culture) were present at 0 or 11 h, but cells with these capsules
comprised 19% of the population at 24 and 35 h and 40% of
the population at 48 and 75 h. The very largest capsules (�4.5
�m) were only observed at the last two time points.

We considered several explanations for the changes in
GXM. First, increasing concentrations of capsule components
in the medium over time could lead to self-association of
capsule polysaccharides (24) and corresponding reduced mo-
bility. Alternatively, the cells could be producing altered GXM
of lower mobility, due to an increase in polymer length, a
difference in substitution or structure, covalent cross-linking,
and/or association with other macromolecules. Such alter-
ations could potentially be stimulated by increased cell density
and/or reduced nutrients in the continuous culture.

To further investigate the relationship between capsule size
and the electromobility of shed GXM, we tested whether
known capsule-inducing conditions (9, 32, 38, 39) affected
GXM gel migration. We chose Dulbecco’s modified Eagle’s
medium (DMEM) plus CO2 (9) for these studies, as it yielded
the most-consistent capsule induction for JEC21. A starter
culture of JEC21 was grown in YPD, washed in DMEM, re-
suspended in DMEM at 106 cells/ml, and incubated for 14 h in
the presence of 5% CO2. The electromobility of the GXM
shed from cells grown in this medium was significantly lower
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than that of GXM from any YPD-grown samples (Fig. 2). We
considered the possibility that this change represented self-
association of GXM, perhaps involving divalent cations (24).
However, migration was not altered by dialysis of the sample
against water or 10 mM EDTA (data not shown). Moreover,
the GXM concentrations in supernatants from the DMEM-
induced overnight cultures were �10 �g/ml by enzyme-linked
immunosorbent assay (23), a value substantially below those of
the concentrated GXM preparations reported to initiate self-
aggregation (24).

These capsule induction studies supported our observations
of the correlation between capsule size and GXM electromo-
bility and further suggested that changes in the latter were not
related to high cell density, as cells grow very slowly in DMEM
(see Fig. 2 legend). To further investigate the changes in
GXM, we next examined capsule-induced cells that were
washed and returned to YPD. By 4 h after the medium change,
the induced cells were budding daughter cells with small cap-
sules (Fig. 3A, lane 4), and by 8 h those daughter cells began
to bud (Fig. 3A, lane 8). By 24 h over 98% of the cells in the
culture had small capsules, although a few of the originally
induced cells could be observed (Fig. 3A, lane 24; also data not
shown). Capsule size distributions for each time point reflect
this progression (Fig. 3B). Notably, the migration of shed
GXM increased coordinately with the fraction of cells with
small capsules (Fig. 3C), further demonstrating the relation-
ship between capsule size and the electromobility of shed
GXM. It is striking that in this experiment GXM mobility
increased as the culture aged, the reverse of the pattern in Fig.
1. This shows that reduced GXM electromobility is not related
to the effects of long-term culture, including increased GXM
concentration in the medium, higher cell density, and reduced
nutrient availability. All of our studies use minimally processed
samples of capsule materials shed in a physiological manner,
with GXM concentrations between 0.2 to 200 �g/ml (in the
range of those reported in human infections [6]). The results
are therefore likely to represent a biologically relevant GXM
change. Together, our data suggest that less-encapsulated cells
produce a polymer that is fundamentally altered compared to
that made by highly encapsulated cells. The simplest hypoth-
esis is that this polymer is of reduced length, but changes in
substitution, covalent cross-linking, or other factors could also
play a role. The differences we observe in GXM are indepen-
dent of residence time at the cell surface, as the GXM from
mutant cells which shed this polymer but cannot bind it to the
cell wall (ags1 [27]) migrates like that of the wild type (data not
shown). They are also unlikely to reflect noncovalent self-
association.

Our results from JEC21 cells strongly support the hypothesis
that modification of GXM molecules plays a central role in
determining C. neoformans capsule size. This is a novel expla-
nation for the observed changes in C. neoformans capsule size,
although it echoes themes in studies of bacterial and mamma-
lian polysaccharides (26, 34, 36). Further, it is consistent with
all of the current models of capsule construction (8, 16, 25, 28,

FIG. 1. Electromobility of shed GXM from JEC21 cells changes
over time in rich medium. All samples were heated (15 min at 70°C) to
denature enzymes, centrifuged (16,000 � g for 3 min) to separate
supernatant and cells, and stored at 4°C. Samples (15 �l) of culture
supernatants were mixed with 6� DNA loading dye (4), loaded on a
0.6% certified megabase agarose (Bio-Rad) gel, and subjected to elec-
trophoresis (15 h at 25 V) in 0.5� TBE (44.5 mM Tris base, 44.5 mM
boric acid, 1 mM EDTA, pH 8.3). Samples containing more GXM
(later time points) were diluted in distilled water based on a pilot gel,
as sample normalization based on enzyme-linked immunosorbent as-
say determination of GXM concentration (23) did not yield equal blot
intensity. (This may reflect changes over time in GXM antibody reac-
tivity [7, 11, 18] and/or transfer efficiency.) The gel was transferred
onto a positively charged nylon membrane and immunoblotted with 1
�g/ml anti-GXM antibody 3C2 as described in the text. Initial sample
heating and dilution in distilled water did not alter electrophoretic
migration (data not shown). St, starter culture (at 1.6 � 107 cells/ml);
arrowhead, well position; arrow, direction of migration; other num-
bers, sampling time (hours) after the start of the experiment.

TABLE 1. Cell density and capsule thickness in continuous and
diluted cultures

Hour

Continuous culture Diluted culture

Cell
densitya

Capsule
thicknessb

Cell
density

Capsule
thickness

11 9.1 � 107 0.80 � 0.03 9.1 � 107 0.80 � 0.03
24 1.5 � 108 1.35 � 0.06 8.6 � 107 0.90 � 0.02
35 1.8 � 108 1.37 � 0.07 6.4 � 107 0.82 � 0.03
48 2.1 � 108 1.60 � 0.19 1.0 � 108 1.02 � 0.05
75 4.3 � 108 1.54 � 0.08 1.7 � 108 0.93 � 0.02

a Cell density at the indicated time of growth (cells/ml), determined by count-
ing cells on a hemocytometer.

b Capsule thickness of India-ink-stained cells, measured using an Axioskop 2
fluorescence microscope (Carl Zeiss). The averages � standard errors of the
means (�m) of 50 cells for each time point are tabulated.

FIG. 2. GXM shed from cells grown under capsule-inducing con-
ditions displays electrophoretic mobility that is lower than that for cells
grown in rich medium. Cultures of JEC21 cells were grown overnight
and then washed and diluted to 106 cells/ml for continuous growth as
indicated, followed by analysis of GXM as described for Fig. 1 (lanes
rotated 90 degrees counterclockwise). Top lane, cells grown in YPD
for 75 h, to a final concentration of 4 � 108 cells/ml; bottom lane, cells
grown in DMEM (Sigma catalog no. D5796) in the presence of 5%
CO2 at 30°C for 14 h, to a final concentration of 1.6 � 106 cells/ml.
Note that the growth conditions for the YPD sample, 75 h of contin-
uous growth, correspond to those that yielded the slowest-migrating
material in Fig. 1.
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37, 40). Future studies incorporating additional strains and
mutants with altered capsule synthesis or binding characteris-
tics (2, 10, 13, 20–22, 27) will further elucidate the relationship
between shed and bound GXM and how C. neoformans syn-
thesizes and regulates its polysaccharide capsule.
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