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Abstract
Ethanol-induced oxidative stress appears to play a major role in mechanisms by which ethanol causes
liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a
state of oxidative stress. One central pathway appears to be the induction of cytochrome P450 2E1
(CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including
ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of
physiological and pathophysiological conditions, and after acute and chronic alcohol treatment.
CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical
and hydrogen peroxide, and in the presence of iron catalysts, produces powerful oxidants such as the
hydroxyl radical. This Review Article summarizes some of the biochemical and toxicological
properties of CYP2E1, and briefly describes the use of cell lines developed to constitutively express
CYP2E1 in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of
alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be
discussed, followed by some future directions which may help to understand the actions of CYP2E1
and its role in alcoholic liver injury.

Introduction-cytochrome P450, oxidative stress, and alcoholic liver injury
The cytochrome P450 enzymes are a superfamily of hemeproteins that serve as terminal
oxidases in the mixed function oxidase system for metabolizing various endogenous substrates
such as steroids and fatty acids, and xenobiotics including drugs, toxins and carcinogens (1).
Many different enzymes belong to this P450 family; P450s are present in virtually all living
organisms. A systematic nomenclature system was developed for the P450 family which is
based on the sequence identity of the different P450 enzymes (2,3). The enzymes are named
CYP for cytochrome P450, followed by an Arabic number denoting the family (more than 40%
identity on the amino acid sequence level), a letter designating the subfamily (more than 55%
identity) and finally an Arabic numeral representing the individual gene in the subfamily. The
P450s catalyze many different chemical reactions including monooxygenation (insertion of an
atom of oxygen into the substrate), peroxidation, reduction, dealkylation, epoxidation, and
dehalogenation (4–6). Many different compounds of diverse structure can be metabolized by
P450 enzymes. A major function of P450-catalyzed reactions is to convert a compound into a
more polar metabolite that can be easily excreted directly by the organism or conjugated by
phase II enzymes into more polar excretable metabolites. With some compounds e.g. carbon
tetrachloride or acetaminophen, metabolism by P450 can give rise to toxic metabolites which
damage cells. For P450s to function catalytically, flavoprotein reductases such as NAPDH-
cytochrome P450 reductase, adrenodoxin, adrenodoxin reductase, are necessary to transfer
electrons from NAPDH or NADH to reduce the heme from the ferric redox state to the ferrous
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state. The latter is necessary to bind molecular oxygen to form the oxygenated P450 complex
that catalyzes the diverse chemical reactions mentioned above (7). Cytochrome b5 may also
play an important role in electron transfer to certain P450s.

It is important to recognize that oxygen activation by P450, necessary for the enzymes catalytic
function, can also result in the production of reactive oxygen species (ROS). Small amounts
of the superoxide anion radical (O2

·̄ ) can be produced from decay of the oxygenated P450
complex, while hydrogen peroxide (H2O2) can form from either dismutation of O2

·̄ or from
decay of the peroxy P450 complex (8–10). ROS have been implicated in many of the major
diseases that plague mankind, including the toxicity of O2 itself; hyperbaric O2; ischemia-
reperfusion injury; cardiovascular diseases; atherosclerosis; carcinogenesis; diabetes;
neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease; toxicity
of heavy metals, e.g., iron; asbestos injury; radiation injury; vitamin deficiency; drug (e.g.,
redox cycling agents) toxicity; aging; inflammation; smoking toxicity; emphysema; and
toxicity of acute and chronic ethanol treatment (11–15). ROS can be produced from many
systems in cells including the mitochondrial respiratory chain (16); the cytochrome P450s
(10,17); oxidative enzymes such as xanthine oxidase, aldehyde oxidase, cyclooxygenase,
monoamine oxidase, the NADPH oxidase complex (18,19); autooxidation of heme proteins
such as ferrohemoglobin or myoglobin or biochemicals such as catecholamines, quinones or
tetrahydrobiopterins. In addition to these cellular sources of ROS, environmental sources of
ROS include radiation, UV light, smoke and certain drugs which can redox cycle. ROS are
toxic to cells because they can react with most cellular macromolecules inactivating enzymes
or denaturing proteins, causing DNA damage such as strand breaks, base removal or base
modifications which can result in mutation, peroxidation of lipids which can result in
destruction of biological membranes and produce reactive aldehydic products such as
malondialdehyde or 4-hydroxynonenal (20,21). A variety of enzymatic and non-enzymatic
mechanisms have evolved to protect cells against ROS, including the superoxide dismutases,
which remove O2

·̄; catalase and the glutathione (GSH) peroxidase system which remove
H2O2; glutathione transferases which can remove reactive intermediates and lipid aldehydes;
metallothioneins, heme oxygenase, thioredoxin which remove various ROS; ceruloplasmin
and ferritin which help remove metals such as iron which promote oxidative stress reactions;
non-enzymatic, low molecular weight antioxidants such as GSH itself, vitamin E, ascorbate
(vitamin C), vitamin A, ubiquinone, uric acid, bilirubin (22,23). Oxidative stress or toxicity by
ROS reflects a balance between the rates of production of ROS compared to the rates of removal
of ROS plus repair of damaged cellular macromolecules. While excess ROS can cause toxicity,
macrophages and neutrophils contain an NADPH oxidase which produces ROS to destroy
foreign organisms (24), and the enzyme myeloperoxidase catalyzes a reaction between H2O2
and chloride to produce the powerful oxidant hypochlorite (bleach) to help destroy foreign
invaders. In addition, ROS at low concentrations, especially H2O2, may be important in signal
transduction mechanisms in cells, and thus be involved in cellular physiology and metabolism
(25).

The ability of acute and chronic ethanol treatment to increase production of reactive oxygen
species and enhance peroxidation of lipids, protein, and DNA has been demonstrated in a
variety of systems, cells, and species, including humans. Much has been learned about alcohol
metabolism, the various enzymes and pathways involved, and how alcohol, directly via its
metabolism, or indirectly via its solvent-like action affecting cellular membranes impacts on
cell function. Yet, despite this tremendous growth in understanding alcohol metabolism and
actions, the mechanism(s) by which alcohol causes cell injury are still not clear. A variety of
leading mechanisms have been briefly summarized (13–15), and it is likely that many of them
ultimately converge as they reflect a spectrum of the organism’s response to the myriad of
direct and indirect actions of alcohol. A major mechanism that is a focus of considerable
research is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways
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have been suggested to play a key role in how ethanol induces “oxidative stress” (reviewed in
13–15). Again, many of these pathways are not exclusive of one another and it is likely that
several, indeed many, systems contribute to the ability of alcohol to induce a state of oxidative
stress.

What is the evidence that ethanol-induced oxidative stress plays a role in cell injury? There
are many studies which show that administration of antioxidants or iron chelators or GSH-
replenishing agents can prevent or ameliorate the toxic action of ethanol. The most convincing
data that oxidative stress contributes to alcohol-induced liver injury comes from the studies
using the intragastric infusion model of alcohol administration. In these studies, alcohol-
induced liver injury was associated with enhanced lipid peroxidation, protein carbonyl
formation, formation of the 1-hydroxyethyl radical, formation of lipid radicals, decreases in
hepatic antioxidant defense, especially GSH (26–30). Replacement of polyunsaturated fat
(required for lipid peroxidation to occur) with saturated fat or medium chain triglycerides in
the diets fed to rats intragastrically, lowered or prevented the lipid peroxidation, and the
alcohol-induced liver injury (29,30). Thus, alcohol plus polyunsaturated fat was required for
the injury to occur. Addition of iron, known to generate OH and promote oxidative stress, to
these diets exacerbated the liver injury (31). Importantly, addition of antioxidants such as
vitamin E, ebselen, superoxide dismutase (SOD), GSH precursors, prevented the alcohol-
induced liver injury (28). Because alcohol-induced liver injury has been linked to oxidative
stress, we investigated the effect of a compromised antioxidant defense system, copper-zinc
superoxide dismutase (SOD1) deficiency on alcohol-induced liver injury (32,33). A rather
moderate ethanol consumption promoted oxidative stress and liver injury in SOD1 knockout
mice indicating that compromised antioxidant defense promotes alcohol liver injury.

In addition to these in vivo studies, in vitro studies with hepatocytes also showed that ethanol
can produce oxidative stress and hepatocyte toxicity. Studies with isolated hepatocytes from
control rats or chronic ethanol-fed rats indicated that ethanol metabolism via alcohol
dehydrogenase results in an increase in ROS production, hepatocyte injury, and apoptosis,
reactions blocked by antioxidants (34,35). Studies in our laboratory with HepG2 cell lines
expressing CYP2E1 showed that addition of ethanol or polyunsaturated fatty acids or iron, or
depletion of GSH, resulted in cell toxicity, increased oxidative stress and mitochondrial
damage, reactions prevented by antioxidants (36) Recent reviews on the roles of oxidative
stress in alcoholic liver disease can be found in (37,38). Since CYP2E1 plays a role in ethanol-
induced oxidant stress and is a minor pathway of ethanol oxidation, the biochemical and
toxicological properties of CYP2E1 will form the basis for much of the remainder of this
review.

CYP2E1 and the microsomal ethanol oxidizing system
Alcohol dehydrogenase is the major enzyme pathway for oxidizing ethanol to acetaldehyde.
The morphological observations that chronic-ethanol treatment causes proliferation of the liver
smooth endoplasmic reticulum suggested that ethanol, similar to certain xenobiotics which are
metabolized by cytochrome P450, may also be metabolized by P450 (39). A microsomal
ethanol oxidizing system (MEOS) was characterized by Lieber and associates and shown to
be dependent on P450 (40). The Km for ethanol oxidation by MEOS (about 10 mM) was about
an order of magnitude greater than the Km for ethanol by alcohol dehydrogenase. Acetaldehyde
is the product resulting from ethanol oxidation by MEOS, and it is clear that MEOS represents
a minor pathway of ethanol oxidation, probably accounting for less than 10 percent of the liver
capacity to oxidize ethanol (41). Importantly, activity of MEOS is enhanced after chronic
ethanol treatment, partly due to an increased total content of P450, and partly due to induction
of CYP2E1, a member of the P450 family with high catalytic activity with ethanol (40).
Induction of MEOS may play an important role in the metabolic tolerance found after chronic
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ethanol treatment, i.e., the increased capacity to oxidize ethanol. While there was early
controversy over the nature of MEOS, the purification of an ethanol-inducible form of P450
from rabbit liver microsomes firmly established the role of P450 in MEOS (42). Ethanol-
inducible P450s have been isolated from many species and while several P450s may be induced
by ethanol, the major inducible P450 is now referred to as CYP2E1.

CYP2E1 substrates
CYP2E1 metabolizes a variety of small, hydrophobic substrates and drugs (reviewed in 40,
43–46). Possible physiological substrates are acetone and fatty acids such as linoleic and
arachidonic acid (47). From a toxicological point of view, interest in CYP2E1 revolves around
the ability of this enzyme to metabolize and activate many toxicologically important
compounds such as ethanol, carbon tetrachloride, acetaminophen, benzene, halothane and
many other halogenated substrates. Procarcinogens including nitrosamines and azo compounds
are effective substrates for CYP2E1 e.g., CYP2E1 is a low Km dimethylnitrosamine
demethylase (48). Toxicity by the above compounds is enhanced after induction of CYP2E1
e.g. by ethanol treatment, and toxicity is reduced by inhibitors of CYP2E1 or in CYP2E1
knockout mice (49). Of the substrates, chlorzoxazone is of special value as its hydroxylated
product can readily be assayed in the blood and the ratio of 6-hydroxychlorzoxazone/
chlorzoxazone is widely used to assess the approximate levels of CYP2E1 in humans, including
alcoholics (50).

Molecular oxygen itself is likely to be a most important substrate for CYP2E1. CYP2E1,
relative to several other P450 enzymes, displays high NADPH oxidase activity as it appears
to be poorly coupled with NADPH-cytochrome P450 reductase (51,52). CYP2E1 was the most
efficient P450 enzyme in the initiation of NADPH-dependent lipid peroxidation in
reconstituted membranes among five different P450 forms investigated. Furthermore, anti-
CYP2E1 IgG inhibited microsomal NADPH oxidase activity and microsomal lipid
peroxidation dependent on P450, but not lipid peroxidation initiated by the action of NADPH-
cytochrome P450 reductase (52). In our laboratory, we found that microsomes isolated from
rats fed ethanol chronically were about twofold to threefold more reactive in generating
superoxide radical and H2O2 and in the presence of ferric complexes, in generating hydroxyl
radical and undergoing lipid peroxidation compared to microsomes from pair-fed controls
(53–56). CYP2E1 levels were elevated about threefold to fivefold in the liver microsomes after
feeding rats the Lieber-DeCarli diet for four weeks. The enhanced effectiveness of microsomes
isolated from the ethanol-fed rats was prevented by addition of chemical inhibitors of CYP2E1
and by polyclonal antibody raised against CYP2E1, confirming that the increased activity in
these microsomes was due to CYP2E1.

CYP2E1 is a minor pathway of ethanol oxidation as it catalyzes the two electron oxidation of
ethanol to acetaldehyde. Interestingly, acetaldehyde is also a substrate for CYP2E1 and is
oxidized to acetate, thus CYP2E1 can, at least theoretically, catalyze the oxidation of ethanol
to acetate (57). However, this oxidation is likely to be negligible in the presence of ethanol,
the substrate which generates acetaldehyde (58). CYP2E1 can also promote the one electron
oxidation of ethanol to the 1-hydroxyethyl radical. Detection of the 1-hydroxyethyl radical in
the bile after administration of ethanol to rodents has been a most valuable assay for
determining ethanol-induced radical formation and oxidant stress in vivo (26,59).

Mitochondrial CYP2E1
CYP2E1 is mainly found in the liver but significant amounts are also found in most organs,
including the brain (60). CYP2E1 is expressed mainly in the hepatocytes of the liver, however,
significant amounts are also found in the Kupffer cells (61), and hepatocyte and Kupffer cell
CYP2E1 are inducible e.g. by ethanol. CYP2E1, like other xenobiotic metabolizing P450s, is
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mainly located in the membrane of the endoplasmic reticulum (ER). CYP2E1 has also been
detected in other cellular compartments such as the plasma membrane (62–64). CYP2E1
located at the plasma membrane has been suggested to play a role in the immune mediated
hepatotoxicity observed in patients suffering from drug toxicity and ALD (65–67). CYP2E1
was shown to be transported out of the ER to the Golgi apparatus, with subsequent transfer to
the plasma membrane (68,69).

Ingelman-Sundberg and co-workers, and Avadhani and co-workers have shown that CYP2E1
is also present in the mitochondria (70–75). Essentially 2 forms of CYP2E1 are present in the
mitochondria, a highly phosphorylated form mediated via cAMP-dependent protein kinase A,
and a shortened 40 kDa amino terminal-truncated form which lacks the N-terminal amino acids,
and which can be further NH2-terminally truncated to produce a mature mitochondrial form
of CYP2E1 lacking about 100 amino acids. The phosphorylation and amino terminal truncation
are hypothesized to cause conformational changes and altered interactions with molecular
chaperones and signal recognition particles and direct the CYP2E1 to the mitochondria. The
mitochondrial CYP2E1 is catalytically active with typical substrates but requires, as do the
other mitochondrial P450s, adrenodoxin and adrenodoxin reductase (and NADPH) as electron
donors (70,73). It is not clear what regulates either the phosphorylation or the amino-terminal
truncation which directs CYP2E1 to the mitochondria. Importantly, the mitochondria isolated
from rat liver and highly purified and essentially devoid of endoplasmic reticulum
contamination, contained CYP2E1 indicating the in vivo presence of mitochondrial CYP2E1
(70,71,73). Robin et al (73) showed pyrazole treatment not only elevated microsomal CYP2E1,
but also mitochondrial CYP2E1. The mitochondrial CYP2E1 was present at about 30% of the
level of the microsomal CYP2E1 under basal conditions, and at 40% of the level of the
microsomal CYP2E1 after pyrazole treatment (73). In a similar manner, streptozotocin-
induced diabetes elevated microsomal CYP2E1 2- to 3-fold, and mitochondrial CYP2E1 5- to
6-fold (75); mitochondrial CYP2E1 protein and catalytic activity was 25 to 35% that of
microsomal CYP2E1 after treatment with streptozotocin. Raza & John (76) recently reported
that 4-hydroxynonenal increased CYP2E1 activity in the mitochondria and postmitochondrial
supernatant of PC12 cells, in association with elevated mitochondrial oxidative stress.

To evaluate functional consequences associated with expression of mitochondrial CYP2E1,
we established a HepG2 cell line which expresses CYP2E1 in the mitochondria (77). A
CYP2E1 expression vector lacking the coding sequences for amino acids 2–34 was generated,
cloned into a pCI-neo expression vector, transfected into HepG2 cells, and stable cell lines
established by selection for G418 resistance. Western blot analysis of whole cell extracts and
of isolated mitochondria, and immunofluoresence of permeabilized cells showed the presence
of CYP2E1 in the mitochondrial fraction of mE10 and mE27 cells (HepG2 cells transfected
with the amino terminal depleted CYP2E1) but not in pCI vector transfected HepG2 cells or
E47 HepG2 cells which express CYP2E1 in the endoplasmic reticulum. Treatment with 0.1
mM BSO for 48 h to lower GSH levels caused a striking loss of cell viability in mE10 and
mE27 cells which contain mtCYP2E1 but not in the pCI-neo cells. Toxicity could be prevented
by antioxidants such as glutathione ethyl ester and trolox, suggesting enhanced oxidant stress
plays a role in the toxicity. Indeed, ROS production (DCF fluorescence) was elevated after
BSO addition to the mE10 and mE27 cells. There was an increase in 3-nitrotyrosine protein
adducts and 4-hydroxynonenal protein adducts in the mE10 and mE27 cells treated with BSO
compared to plasmid vector controls. Mitochondrial membrane potential slightly declined in
BSO-treated pCI-neo cells but dramatically declined in the mE10 and mE27 cells. This decline
in MMP was prevented by cyclosporine A, and the BSO-induced loss of cell viability in the
mE10 and mE27 cells was prevented by cyclosporine A. Importantly, ethanol was shown to
elevate the levels of mitochondrial CYP2E1 in addition to the well known increase in
microsomal CYP2E1 (78). It is interesting to speculate that damage to mitochondrial function
and membrane potential produced by mitochondrial CYP2E1 may be an early event in liver
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cell injury and that mitochondrial CYP2E1 may contribute to the biochemical and toxicological
effects which were previously ascribed to CYP2E1 in the endoplasmic reticulum. However,
at present it is not obvious how effects contributed by mitochondrial CYP2E1 versus
microsomal CYP2E1 in vivo or in primary hepatocytes can be distinguished from each other
e.g. lack of specific inhibitors.

Induction and regulation of CYP2E1
Many of the substrates for CYP2E1 can induce their own metabolism. This was initially
observed with ethanol, which is a substrate for CYP2E1 and elevates CYP2E1 levels (39,40).
In fact, these two properties explain the ability of ethanol to inhibit the metabolism of certain
substrates when the alcohol is present, i.e., ethanol and the substrate compete for oxidation by
CYP2E1, and for ethanol to increase the metabolism of substrates when it is no longer present
to compete, but the ethanol treatment elevated the levels of the CYP2E1 catalyst. Ethanol can
be oxidized by other P450s besides CYP2E1, notably CYPs 3A and 1A, and ethanol treatment
can elevate the levels of these CYPs (79,80). A variety of heterocyclic compounds such as
imidazole, pyrazole, 4-methylpyrazole, thiazole, isoniazid have been shown to elevate
CYP2E1 levels as do solvents such as dimethylsulfoxide, various alcohols, benzene and
acetone (81–83). These low molecular weight compounds have been used in vivo or in vitro
to elevated or help prevent loss of CYP2E1 under tissue culture conditions and their mode of
mechanism will be discussed below.

CYP2E1 can also be induced under a variety of metabolic or nutritional conditions. For
example, CYP2E1 levels were elevated in chronically obese, overfed rats and in rats fed a high-
fat diet (84). Somewhat paradoxical, in rats levels of CYP2E1 were increased by fasting and
by prolonged starvation (85,86). Diabetes has been reported to increase the expression of
CYP2E1 mRNA and protein levels several fold (87). This may be related to actions of insulin
which downregulated CYP2E1 expression at the posttranscriptional level in a rat hepatoma
cell line (88,89) and in rat hepatocyte culture (90). CYP2E1 levels were elevated in liver and
kidney microsomes of rats treated with streptozotocin.

CYP2E1 induction in diabetes may be associated with the elevated production of ketone bodies
(91). The carbohydrate content of the diet influences CYP2E1 levels as a low carbohydrate
diet increased the extent of induction of MEOS by ethanol (92) and high fat/low carbohydrate
diets resulted in the highest levels of CYP2E1 induced by ethanol (93). In this respect, it is
interesting that alcohol-induced liver is magnified in diets with very low levels of carbohydrate
and high levels of fat (94).

Besides insulin, other hormones can affect CYP2E1 levels. Hypophysectomy and
triiodothyronine increase CYP2E1 protein and mRNA levels in contrast to insulin which lowers
them (89,95). In primary rat hepatocyte cultures, glucagon lowered CYP2E1 levels by
accelerating turnover of the CYP2E1 protein by a cyclic AMP-dependent process (96).
Testosterone increased renal but not hepatic CYP2E1 levels (97).

Considerable data have been reported elucidating the molecular mechanism of CYP2E1
regulation by exogenous compounds as well as during pathophysiologiccal conditions.
CYP2E1 is regulated by multiple, distinct regulatory mechanisms (83,98,99). The CYP2E1
gene is under transcriptional control during development. In rats, immediately after birth, it is
activated and is maximally transcribed within the first week. Upon fasting or induced diabetes,
the mRNA for CYP2E1 is increased several fold due to posttranscriptional mRNA stabilization
(100). After administration of ethanol, acetone or pyrazole to rats, Song et al found that
CYP2E1 mRNA levels did not increase (81). The mechanism of induction was, therefore,
suggested to be at the level of protein degradation. CYP2E1 is not transcriptionally activated
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by an acute bolus dose or chronic administration of ethanol, acetone, or other exogenous
inducing agents. Although elevation of CYP2E1 mRNA levels has been reported (101), most
investigators have found little induction or slight reduction of CYP2E1 mRNA level after
ethanol administration (81,83,102). From in vivo data of CYP2E1 turnover in rats chronically
treated with acetone (103) and in vitro hepatocyte culture systems (104,105), exogenous
CYP2E1 inducers such as acetone, ethanol, imidazole and 4-methylpyrazole (4-MP) were
shown to increase CYP2E1 by protein stabilization. Roberts et al (106,107) reported that
ethanol increases CYP2E1 by protein stabilization. This phenomenon was observed not only
in the liver but also other extra-hepatic tissues such as kidney, brain and intestine. In addition,
CYP2E1 protein stabilization appeared dependent on blood ethanol or acetone concentration.
Furthermore, a turnover study, using in vivo radiolabeling of CYP2E1 with (14C)NaHCO3 and
immuno-purification, demonstrated that ethanol treatment abolished the rapid phase of
CYP2E1 degradation while biphasic degradation of CYP2E1 was observed in the control
animals (108). Pyrazole and 4-MP elevated liver and kidney CYP2E1 immunoreactive protein
and catalytic activity in the absence of an increase in CYP2E1 mRNA levels (109–111). In
isolated rat hepatocyte cultures, CYP2E1 mRNA and protein levels and CYP2E1 catalytic
activity rapidly declined with time in culture. Addition of pyrazole or 4-MP slowed the decline
in CYP2E1 protein and activity, without any effect on CYP2E1 mRNA levels (105). Similarly,
McGhee et al (112) reported the half-life of CYP2E1 in a hepatoma cell line to be 1.8 h in the
absence of ethanol and 45 h in the presence of ethanol. It is clear that a major level of regulation
of CYP2E1 formation appear to be posttranscriptional as various substrates and ligands
increase the content of CYP2E1 by protection against rapid degradation by intracellular
proteolytic pathways.

What are the proteolytic systems responsible for CYP2E1 turnover and prevented from their
action on CYP2E1 by ethanol? Roberts (113) provided evidence for a role of the proteasome
in the degradation of several cytochrome P450s including CYP2E1. Huan et al (114) showed
that in a Hela cell line, inhibitors of the proteasome decreased the degradation of CYP2E1 and
CYP2B1. They found that ubiquitination of CYP2E1 was not required for its degradation by
the proteasome. However, Banerjee et al (115) using molecular models predicted a cytosolic
domain of CYP2E1 which would function as a putative ubiquitination-target/substrate
interaction structure. An antibody recognizing this domain (amino acids 317–340) quenched
CYP2E1 ubiquinitation and inhibited CYP2E1 catalytic activity. They suggested that substrate
binding shields the CYP2E1 protein from turnover by blocking the ubiquitination domain.
Morishima et al (116) reported that a HSP90 inhibitor promoted CYP2E1 degradation by the
proteasome. They found that purified bacterially expressed truncated CYP2E1 (Δ3–29) is
ubiquitylated by the E3 ubiquitin ligase CHIP and concluded that CYP2E1 is a HSP90 “client”
protein. In contrast, Huan et al (114) found that three HSP90 inhibitors had no effect on
CYP2E1 turnover. We found that in an in vitro reconstituted system containing microsomes
or cytosol or purified 20S proteasome, geldanamycin, an inhibitor of HSP90, decreased
CYP2E1 degradation and suggested that HSP90 helps present oxidized CYP2E1 to the
proteasome for degradation (117). The proteasome complex was important in the degradation
of CYP2E1 in HepG2 cells, as proteasome inhibitors proved to be effective in preventing
CYP2E1 degradation. Importantly, Bardag-Gorce et al (118) showed that the rapid loss of
CYP2E1, which occurs in vivo after the ethanol inducer is withdrawn, could be blocked by the
proteasome inhibitor PS-341, thus establishing the critical role of the proteasome in regulating
CYP2E1 turnover in vivo.

CYP2E1 and alcohol-induced liver injury
Since CYP2E1 can generate ROS during its catalytic circle, and its levels are elevated by
chronic treatment with ethanol, CYP2E1 has been suggested as a major contributor to ethanol-
induced oxidant stress, and to ethanol-induced liver injury. Initial suggestions for a role for
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CYP2E1 in alcoholic liver injury arose from studies with the intragastric model of ethanol
feeding in which prominent induction of CYP2E1 occurs and in which significant liver injury
occurs (29–31). In these models, large increases in microsomal lipid peroxidation have been
observed and the ethanol-induced liver pathology has been shown to correlate with CYP2E1
levels and elevated lipid peroxidation (29,30,119,120). Experimentally, a decrease in CYP2E1
induction was found to be associated with a reduction in alcohol-induced liver injury (121,
122). CYP2E1 inhibitors such as diallyl sulfide (DAS) (123), phenethyl isothiocyanate (PIC)
(124,125) and chlormethiazole (126), blocked the lipid peroxidation and ameliorated the
pathologic changes in ethanol-fed rats. Polyenylphosphatidylcholine (PPC), another
compound exerting anti-CYP2E1 properties (127) was effective in opposing alcohol-induced
oxidative stress (40). A strong association between dietary carbohydrate, enhanced CYP2E1
induction and hepatic necrosis was observed. No liver injury was found if carbohydrate levels
were elevated (128). It was concluded that diet is an important factor in toxicity mediated by
ethanol because of modulation of the levels of CYP2E1 (128). Ethanol consumption in oral
liquid diets does not cause significant liver injury. However, micro and macrovesicular
steatosis, occasional inflammatory foci and a three-fold increase in transaminase levels was
observed in a nutritional adequate ethanol containing liquid diet with a carbohydrate content
of 5.5%; no changes were found if the level of carbohydrate was elevated to 11% (94,129).
Thus dietary and nutritional factors play a key role in the toxic actions of ethanol to the liver,
in part, due to modulation of the levels of CYP2E1. Recently, A CYP2E1 transgenic mouse
model was developed that overexpressed CYP2E1. When treated with ethanol, the CYP2E1
overexpressing mice displayed higher transaminase levels and histological features of liver
injury compared with the control mice (130). We developed an adenoviral vector which
expresses human CYP2E1 and showed that infection of HepG2 cells with this adenovirus
potentiated acetaminophen toxicity as compared to HepG2 cells infected with a LacZ
expressing adenovirus (131). Administration of CYP2E1 adenovirus in vivo to mice produced
significant liver injury compared to the LacZ-infected mice as reflected by histopathology,
markers of oxidative stress and elevated transaminase levels (132).

On the other hand, studies by Thurman and colleagues have presented powerful support for a
role for endotoxin, activation of Kupffer cells and cytokines such as TNFα in the alcohol-
induced liver injury found with the intragastric infusion model (133,134). They suggested that
CYP2E1 may not play a role in alcohol liver injury based upon studies with gadolinium chloride
or CYP2E1 knockout mice (135,136). Female CYP2E1 wild type mice or knockout mice were
given a high fat liquid diet intragastrically with either ethanol or isocaloric maltose-dextrin for
4 weeks. Mice given ethanol had elevated transaminases, mild steatosis and slight inflammation
and necrosis with no differences in pathology between the wild type and the knockouts (135).
However, Bardag-Gorce et al (137) using the same model reported that ethanol-induced
oxidative stress and inactivation of the proteasome complex was completely prevented in these
mice. They concluded that CYP2E1 induction by chronic ethanol treatment was responsible
for the decrease in proteasome activity and accumulation of oxidized proteins in the liver. They
speculated the pathology found in the CYP2E1 knockouts by Kono et al (135) may be due to
upregulation of NADPH-cytochrome P450 reductase and other CYPs such as CYP3A and 4A
(137) (see below). As to their observations with gadolinium chloride, others have reported that
gadolinium chloride does indeed decrease levels of several P450 enzymes including CYP2E1,
and lowered the induction of CYP2E1 by ethanol. Moreover, Leclercq et al. (138) using the
same knockout mice observed that other CYPs, notably CYP4A10 and CYP4A14, were
upregulated in the CYP2E1 knockout but not the wild type mice; these CYPs were, like
CYP2E1, active generators of ROS and catalysts of lipid peroxidation, and in the absence of
CYP2E1 served as alternative initiators of oxidative stress. Bradford et al (139) using CYP2E1
and NADPH oxidase knockout mice concluded that CYP2E1 was required for ethanol
induction of oxidative stress to DNA, whereas NADPH oxidase was required for ethanol-
induced liver injury. Clearly, further studies are necessary to resolve the above discrepancies.
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As mentioned earlier, it is likely that several mechanisms contribute to alcohol-induced liver
injury, and that ethanol-induced oxidant stress is likely to arise from several sources, including
CYP2E1, mitochondria and activated Kupffer cells.

Cell lines expressing CYP2E1
To characterize the biochemical and toxicological properties of CYP2E1, several investigators
have developed cell lines to express CYP2E1. The first cell line to be developed was to
introduce human CYP2E1 into NIH 3T3 mouse fibroblasts via retroviral infection followed
by selection via G418 resistance (140). Southern blot analysis showed the viral DNA was
integrated into the cellular DNA. The transduced CYP2E1 was catalytically active, oxidizing
ethoxycoumarin to 7-hydroxycoumarin, and forming labeled covalent DNA adducts after the
incubation with (14C)-nitroso-dimethylamine (140). The cytotoxic effect of N-
nitrosodimethylamine was studied in the P450-expressing human fibroblast cell line GM2E1,
which express the rat CYP2E1 (141). N-nitrosomethylamine was toxic to the cells expressing
CYP2E1; toxicity was decreased by CYP2E1 inhibitors and was partially prevented by
antioxidants (141). Toxicity was apoptotic in nature and could be prevented by caspase
inhibitors (142). A V79 Chinese Hamster cell line expressing human CYP2E1 was used in
toxicological studies involving CYP2E1-mediated activation of N-nitrosodimethylamine and
p-nitrophenol and for mutagenicity studies with the former substrate (143). Human CYP2E1
was also expressed in the rat adrenal pheochromocytoma cell line, PC12 (144). CYP2E1
metabolism of several different substrates was characterized in these cells; levels of enzyme
activities were about 10% that of human liver microsomes, similar to what our lab found with
HepG2 cells expressing CYP2E1 (145). The PC12 cells were shown to metabolize
acetaminophen, and activation of this protoxin caused a loss of viability to the cells (144).
Acetaminophen toxicity was also characterized in a human hepatoman cell line, HLE,
expressing human CYP2E1 (146). Treating these cells with buthionine-sulfoximine to lower
GSH levels also produced a decrease in cell viability which could be inhibited by ethanol or
vitamin E. This cell line has been used to examine changes of heme metabolism via assays of
δ-aminoleulinic acid synthase and heme oxygenase-1, the rate limiting enzymes in heme
synthesis and heme breakdown (147). Both enzymes were upregulated in the HLE cells
expressing CYP2E1 perhaps due to the demand for increased heme synthesis for holoCYP2E1
formation and perhaps increased availability of heme to induce heme oxygenase. Our lab has
also observed an increase in heme oxygenase-1 mRNA, protein and activity in HepG2 cells
expressing CYP2E1, perhaps an increase in response to CYP2E1-generated oxidant stress
(148). Huan and Koop (149) established a tetracycline-controlled rabbit CYP2E1-expressing
system in Hela cells in culture. This system was used to evaluate turnover of the rabbit CYP2E1,
which was rapid with a half-life of 3.9 h in the absence of a stabilizing substrate or ligand.
Addition of the latter, 4-methylpyrazole, decreased the degradation of CYP2E1. We observed
similar results in HepG2 cells expressing CYP2E1 as the half-life of human CYP2E1 was about
3–6 h in the absence of substrate or ligand, and was elevated in the presence of various
substrates and ligands (150). The CYP2E1 half-life was also elevated by an inhibitor of the
proteasome complex. Recently, a comparison of mouse, rat and human CYP2E1 activities in
V79 Chinese Hamster cell lines was made to study possible species differences in toxicity and
metabolism of CYP2E1 substrates (151).

A HepG2 cell model expressing human CYP2E1 was established by Patten et al (152) using
the vaccinia virus expression system. The oxidation of several typical substrates of CYP2E1
was evaluated in these cells and the ability of cytochrome b5 to elevate CYP2E1 activity was
shown. As briefly mentioned above, an approach that our laboratory has utilized to try to
understand basic effects and actions of CYP2E1 was to establish cell lines that constitutively
express human CYP2E1. HepG2 cell lines, which overexpress CYP2E1, were established
either by retroviral infection methods (MV2E1-9 cells, or E9 cells) or by plasmid transfection
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methods (E47 cells) (145,153). Results utilizing E9 or E47 cells to study CYP2E1-generated
oxidant stress have been summarized in recent reviews (154–156). We have characterized the
toxicity of ethanol, polyunsaturated fatty acids (PUFA) such as arachidonic acid (AA) and iron
in E9 and E47 cells. Concentrations of ethanol or AA or iron which were toxic to the CYP2E1-
expressing cells had no effect on control HepG2 cells not expressing CYP2E1 or to HepG2
cells expressing a different P450, CYP3A4 (3A4 cells). Toxicity to CYP2E1-expressing cells
was found when GSH was depleted by treatment with L-buthionine sulfoximine (157).
Inhibitors of CYP2E1 prevented the toxicity by the above treatments. Antioxidants such as
vitamin E, trolox and ascorbate also prevented toxicity found when the CYP2E1-expressing
E9 HepG2 cells were treated with either ethanol or AA. The above treatment of CYP2E1-
expressing cells with ethanol, AA, iron or BSO resulted in an increase in oxidative stress to
the cells as reflected by increased lipid peroxidation and enhanced dichloroflurorescein
fluorescence. Low concentrations of iron and AA that are not cytotoxic by themselves can act
as priming or sensitizing factors for CYP2E1-dependent loss of viability in HepG2 cells or rat
hepatocytes. This synergistic toxicity was associated with elevated lipid peroxidation and could
be prevented by antioxidants which prevent lipid peroxidation. Damage to mitochondria by
CYP2E1-derived oxidants seems to be an early event in the overall pathway of cellular injury.

Adaptation to oxidant stimuli is critical for short- and long-term survival of cells exposed to
oxidative stress. We found that the levels of GSH and several antioxidant enzymes such as
glutathione transferase, catalase, and heme oxygenase-1 were up-regulated in the CYP2E1-
expressing cells. This upregulation was prevented by antioxidants, suggesting that ROS
generated by CYP2E1 were responsible for the transcriptional activation of these antioxidant
genes. Because of this activation of antioxidant genes, the CYP2E1-expressing cells were less
sensitive to toxicity to H2O2, menadione, or HNE than control cells. We believe that the
upregulation of these antioxidant genes reflect an adaptive mechanism to remove CYP2E1-
derived oxidants. Recent experiments suggested that Nrf2 plays a key role in the adaptive
response against the increased oxidative stress caused by CYP2E1 (158)(reviewed in 159).

A working model of CYP2E1-dependent oxidative stress and toxicity is shown in Figure 1.
Ethanol increases levels of CYP2E1, largely by a posttranscriptional mechanism involving
enzyme stabilization against degradation. CYP2E1, a loosely coupled enzyme, generates ROS
such as O2

·̄ and H2O2 during its catalytic cycle. In the presence of iron, which is increased after
ethanol treatment, more powerful oxidants including OH, ferryl species, and 1-hydroxyethyl
radical are produced. Initially, the liver cells respond to the CYP2E1-related oxidative stress
by transcriptionally inducing various antioxidant enzymes via their antioxidant response
elements. Ultimately, these protective mechanisms are overwhelmed and the cells become
sensitive to the CYP2E1-generated oxidants. These various oxidants can promote toxicity by
protein oxidation and enzyme inactivation, oxidative damage to the DNA, and disturbing cell
membranes via lipid peroxidation and production of reactive lipid aldehydes, such as
malondialdehyde and 4-hydroxynonenal. Mitochondria appear to be among the critical cellular
organelles damaged by CYP2E1-derived oxidants. A decrease of ΔΨm, likely due to the
mitochondrial membrane permeability transition, causes release of proapoptotic factors
resulting in apoptosis. A decrease in ATP levels will cause necrosis. Some CYP2E1-derived
ROS, such as H2O2, LOOH, and HNE, are diffusible and may exit hepatocytes and enter other
liver cell types such as stellate cells and stimulate these cells to produce collagen and elicit a
fibrotic response (160,161). We believe that the linkage between CYP2E1-derived oxidative
stress, mitochondrial injury, and GSH homeostasis contribute to the toxic actions of ethanol
on the liver.

Other investigators have utilized E9 and E47 HepG2 cells expressing CYP2E1 in a variety of
studies including evaluating the effects of ethanol and acetaldehyde on activation of the
transcriptional factors AP-1 and NF-kB (162), in proteomic studies on ethanol-induced
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oxidation of mitochondrial and cytosolic proteins (163,164), on ethanol-induced inhibition of
the proteasome and cytokeratin aggresome formation (165), on comparison of gene expression
patterns induced by alcohol in vivo and in vitro (166), on CYP2E1-hepatitis C virus (167) or
hepatitis B virus (168) interactions, on acetaminophen alterations of the microsomal ryanodine
calcium channel (169), on fatty acid ethyl ester toxicity (170), and in ethanol potentiation of
TNFα cytotoxicity (171) and the role of P38 MAPK pathways in ethanol plus TNFα toxicity
(172). A rather interesting HepG2 cell culture model in which CYP2E1 and alcohol
dehydrogenase are both expressed has been effectively utilized to study ethanol-CYP2E1-
proteasome interactions, interferon gamma induction of the proteasome and interferon gamma
signaling and antigen processing (173–175). The use of these combined cell lines as a model
of ethanol-elicited cytotoxicity has recently been reported (176). Thus, CYP2E1 biochemistry,
oxidant stress and toxicology have been extensively studied in a variety of stable cell lines.

The CYP2E1 knockout mouse
CYP2E1 knockout mice were developed by Gonzalez and colleagues to determine the role of
CYP2E1 in xenobiotic metabolism and toxicity (49,177,178). The development of the CYP2E1
knockout mouse has been of great value in establishing the role of CYP2E1 in the metabolism
and toxicity of various hepatotoxins. For example, there was no liver pathology or elevation
of transaminases induced by CCl4 in CYP2E1 knockout mice compared to wild type mice,
leading to the conclusion that CYP2E1 is the major factor in CCl4 hepatotoxicity (179). Blood
acetone levels were elevated 2.5–4 times in wild type mice after 48 h fasting but elevated 28-
fold in the CYP2E1 knockout mice, leading to the conclusion that CYP2E1 plays a critical role
in catabolism of acetone after fasting (180). Formation of benzene metabolites such as
hydroquinone, catechol and phenol were lowered more than 90% with microsomes from
CYP2E1 knockout mice compared to microsomes from controls (181). The CYP2E1 knockout
mice have been used to validate the important role of CYP2E1 in metabolism of thioacetamide,
trichloroethylene, acrylonitrile and urethane (182–186). The half-life for urethane was 0.8 h
in wild type mice expressing CYP2E1 and 22 h in CYP2E1 knockout mice (186). Interestingly,
no difference in oxidation of styrene to styrene oxide was observed between microsomes from
wild type mice and knockout mice (187). Since the styrene metabolite styrene oxide was
comparably toxic in wild type and knockout mice, the decreased sensitivity of the CYP2E1
knockout mice to styrene likely should be due to decreased bioactivation of styrene to styrene
oxide. Yet no differences in styrene metabolism were found, disconnecting the metabolism
from the toxicity for unknown reasons (187). The CYP2E1 knockout mice have been used to
validate that hydroxylation of p-nitrophenol may be used as a specific probe for CYP2E1
(188).

The metabolism of acetaminophen has been widely studied. CYP2E1 knockout mice were
highly resistant to liver toxicity as compared to wild type mice treated with acetaminophen
(49). Mice lacking both CYP2E1 and 1A2 were almost completely resistant to acetaminophen
toxicity (189). The combination of ethanol plus isopentanol caused an increase in
acetaminophen hepatotoxicity in CYP2E1 knockout mice which was sensitive to the CYP3A
inhibitor, triacetyloleandomycin, leading to the suggestion that both CYP2E1 and CYP3A
contribute to acetaminophen toxicity in ethanol plus isopentanol-treated mice (190). Recently,
a CYP2E1-humanized transgenic mouse model that expresses functional and inducible human
CYP2E1 was described (191). Comparisons between CYP2E1-humanized mice, CYP2E1
knockout mice and wild type mice will allow a determination whether actions of human
CYP2E1 are similar to those of mouse CYP2E1 in vivo. Indeed, the CYP2E1-humanized
mouse model was successfully used to characterize acetaminophen toxicity by human CYP2E1
(191).
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With respect to the role of CYP2E1 in alcohol-induced liver injury, as discussed above, Bardag-
Gorce et al (137) reported that ethanol-induced oxidative stress and inactivation of the
proteasome complex was completely prevented in CYP2E1 knockout mice. They concluded
that CYP2E1 induction by chronic ethanol treatment was responsible for the decrease in
proteasome activity and accumulation of oxidized proteins in the liver. In a very interesting
study, Bradford et al (139) found that ethanol treatment for four weeks led to an increase in
oxidative DNA damage and induction of expression of basic excision DNA repair genes in
wild type mice but not in CYP2E1 knockout mice. The increase in DNA repair genes in wild
type mice was abolished by treatment with a P450 inhibitor. The induction and the DNA
damage induced by ethanol was the same in wild type mice and NADPH oxidase deficient
mice. The authors concluded that CYP2E1 but not NADPH oxidase is required for the ethanol
induction of oxidative stress to DNA and thus CYP2E1 may play a key role in ethanol-
associated hepatocarcinogenesis (139). On the other hand, as mentioned above, studies by
Thurman and colleagues suggests that CYP2E1 may not play a role in alcohol-induced liver
injury (135). Instead, their studies have presented powerful support for a role for endotoxin
(LPS), activation of Kupffer cells and cytokines such as TNFα in the alcohol-induced liver
injury found with the intragastric infusion model.

LPS/TNFα-CYP2E1 Interactions
Abnormal cytokine metabolism is a major feature of alcoholic liver disease as described in
many review articles (192–195). Rats chronically fed ethanol were more sensitive to the
hepatotoxic effects of administration of LPS and had higher plasma levels of TNFα than control
rats (196–198). In the intragastric model of chronic ethanol administration, the development
of liver injury coincided with an increase in TNFα, associated with an increase in serum LPS
(195,197–199). The pioneering studies of Thurman and collaborators showed that anti-
TNFα antibody prevented alcohol liver injury in rats (200) and mice lacking the TNFR1
receptor did not develop alcohol liver injury (133). Taken as a whole, these and other studies
clearly implicate TNFα as a major risk factor for the development of alcoholic liver injury.
One complication in this central role for TNFα is that hepatocytes are normally resistant to
TNFα induced toxicity. This led to the hypothesis that besides elevating TNFα, alcohol
somehow sensitizes or primes the liver to become susceptible to TNFα (201,202). Known
factors which sensitize the liver to TNFα are inhibitors of mRNA or protein synthesis, which
likely prevent the synthesis of protective factors, inhibition of NF-κB activation to lower
synthesis of such protective factors, depletion of GSH, especially mitochondrial GSH, lowering
of s-adenosyl methionine (SAM) coupled to elevation of S-adenosyl homocysteine (SAH) i.e.
a decline in the SAM/SAH ratio, or inhibition of the proteasome (203–210). Of major relevance
to this review, is the work by Hoek and collaborators that combined treatment with ethanol
plus TNFα is more toxic to hepatocytes and HepG2 E47 cells which express high levels of
CYP2E1 than control hepatocytes with lower levels of CYP2E1 or HepG2 C34 cells which do
not express CYP2E1 (171). The ethanol sensitization of TNFα toxicity in E47 cells and
hepatocytes from chronic ethanol fed rats also depended on P38 MAPK signaling since
SB203580, a P38 MAPK inhibitor, prevented this enhanced toxicity (172). In a RALA
hepatocyte cell line model, Czaja and collaborators showed that hepatocytes with increased
expression of CYP2E1 were sensitized to TNFα mediated cell death (211). Toxicity was a
mixture of necrosis and apoptosis, was associated with prolonged activation of JNK and
phosphorylation of c-Jun, and could be prevented by a dominant negative c-Jun construct
(211). These results suggest that increased oxidant stress from CYP2E1 may sensitize isolated
hepatocytes to TNFα-induced toxicity.

Since CYP2E1 and LPS/TNFα are believed to be key risk factors in the development of
alcoholic liver injury, we evaluated possible interactions in promoting liver injury between
them in vivo (212,213). Sprague-Dawley rats were treated with 200 mg/kg body weight
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pyrazole in the absence or presence of LPS (10 mg/kg) and killed at 8 h after LPS (212). C57BL/
6 mice were treated with 150 mg/kg body weight pyrazole in the absence or presence of LPS
(4 mg/kg) and killed at 24 h after LPS (213). The combination of LPS plus pyrazole treatment
resulted in elevated ALT and AST levels in rats and mice. Liver injury was confirmed by H&E
staining. LPS alone or pyrazole alone did not elevate transaminase levels and did not produce
liver injury under these conditions. Increased 3-Nitrotyrosine protein adducts were observed
at 8 (in rats) and 24 h (in mice) after LPS plus pyrazole treatment (212,213). Positive staining
for 4-hydroxynonenal adducts was found at 24 h in the LPS plus pyrazole mice (213). The
CYP2E1 inhibitor chlormethiazole (CMZ) protected against the elevation in ALT and AST in
mice and the histopathology changes. CYP2E1 catalytic activity was decreased about 50% by
the CMZ treatment (213). We obtained CYP2E1 knockout mice from Dr. Frank Gonzalez,
NCI. These mice were treated with pyrazole plus LPS. Compared to SV/129 wild type mice,
ALT and AST levels were lower in the CYP2E1 null mice, histopathology was normal and
TUNEL staining was much less (213). Western blot analysis confirmed the absence of CYP2E1
in the CYP2E1 knockout mice (213). Based on such studies, we hypothesize (212,213) that
increased production of ROS by CYP2E1 may prime or sensitize the liver to LPS/TNFα, and
such interactions may be important in alcohol-induced liver injury.

Nonalcoholic fatty liver disease, steatohepatitis and CYP2E1
Nonalcoholic steatohepatitis (NASH) is a progressive liver disorder that occurs in patients
without significant alcohol consumption. The pathogenesis of NASH is not well understood,
although it has been suggested that oxidative stress and lipid peroxidation may play key roles
in the pathogenesis of NASH (214–217). Elevated CYP2E1 was observed in conditions such
as obesity and high fat/low carbohydrate diets (84). Weltman et al (218) reported increased
liver expression of CYP2E1 in the methionine-choline deficient model of NASH. CYP2E1
activity, protein level and mRNA levels were all elevated in this experimental model of NASH,
although total P450s content was decreased. Inhibitor studies further suggested that CYP2E1
was the major catalyst of lipid peroxidation in mice fed the methionine-choline deficient diet
(138). However, CYP2E1 knockout mice fed with this diet still displayed elevated lipid
peroxidation and NASH (138). Under these conditions, CYP4A10 and CYP4A14 but not
CYP1A or CYP3A were upregulated and could replace the deficient CYP2E1 as catalysts for
microsomal lipid peroxidation. Thus, while CYP2E1 contributes to the pathogenesis of NASH,
it is not unique among P450 enzymes in promoting oxidant stress as some CYP4A enzymes
can serve as alternative initiators of oxidant stress in the liver. Interestingly, antibody against
CYP2E1 strongly inhibited lipid peroxidation by microsomes from wild type mice but antibody
against CYP4A had little effect (138). The opposite was found with microsomes from CYP2E1
knockout mice as antibody against CYP4A blocked lipid peroxidation whereas antibody
against CYP2E1 had no effect. Thus CYP4A can mediate lipid peroxidation as an alternative
pathway when CYP2E1 is absent (219). This can partially explain the observations by Kono
et al (135) that in the intragastric infusion model of alcohol-induced liver injury, injury persisted
in CYP2E1 knockout mice ie, possible upregulation of CYP4A or other enzymes could replace
CYP2E1 as initiators or catalysts of oxidative stress.

Hepatic CYP2E1 levels were increased in patients with NASH (220). Chalasani et al (221)
measured liver CYP2E1 activity in a cohort of nondiabetic patients with NASH and controls.
They found that chlorzoxazone clearance was greater in the NASH patients compared with
controls and lymphocyte CYP2E1 mRNA levels were also higher in the NASH patients.
Increases in CYP2E1 correlated with increases in the ketone body β-hydroxybutyrate. They
suggested that although more studies were necessary, CYP2E1 is a reasonable candidate in the
pathogenesis of human NASH (221). In a recent study involving obese patients with
nonalcoholic liver disease, increased CYP2E1 protein content and activity correlated with the
development of liver injury (222).
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Since CYP2E1 is elevated in pathophysiological conditions such as obesity and diabetes, we
recently evaluated the effects of CYP2E1 induction on promoting oxidative and nitrosative
stress and liver injury in ob/ob mice, an experimental model of obesity (223). Ob/ob mice and
lean controls were treated with pyrazole or acetone to induce CYP2E1. CYP2E1 protein and
activity were elevated in acetone or pyrazole-treated obese and lean mice. Acetone or pyrazole
induced distinct histological changes in liver and significantly higher aminotransferase
enzymes in obese mice compared to obese controls or acetone-or pyrazole-treated lean mice
(223). Increased malondialdehyde, protein carbonyls, 4-hydroxynonenal-protein adducts,
elevated levels of inducible nitric oxide synthase, and higher 3-nitrotyrosine protein adducts
were found in livers of pyrazole-treated obese animals, suggesting elevated oxidative and
nitrosative stress (223). Liver TNFα levels were higher in pyrazole-treated animals. The
CYP2E1 inhibitor CMZ and iNOS inhibitor N-(3-(amino-methyl)-benzyl) acetamidine
(1400W) abrogated the elevated toxicity (transaminases, caspase 3, triglyceride) and the
oxidative stress (protein carbonyl, HNE adduct formation, malondialdehyde) elicited by the
induction of CYP2E1 (223). Peroxynitrite (ONOO−), formed by the rapid reaction between
NO and O2

·̄ has been shown to nitrate free and protein-associated tyrosine residues and produce
nitrotyrosine (212), therefore, either decreased NO by 1400W or declined O2

·̄ by CMZ
prevented 3-NT formation (223). These results show that obesity contributes to oxidative/
nitrtosative stress and liver injury and that induction of CYP2E1 may synergize with high fat
in obesity to promote liver cell injury.

Future Perspectives
Alcohol-induced liver injury is probably a multifactorial process involving several
mechanisms. Future studies are required to further clarify how alcohol produces oxidative
stress in various tissues. Some of the major proposed systems require more detail about
mechanism, e.g., how ethanol-derived NADH, itself or when reoxidized in the mitochondrial
respiratory chain, produces ROS. What is the role of ethanol metabolism or ethanol metabolites
like acetaldehyde in the production of ROS, and how is oxidative stress produced by ethanol
in tissues with limited ethanol metabolism? What are the priming or sensitizing factors for
ethanol-induced oxidant stress and cell injury? Can markers predictive of individuals
particularly sensitive to ethanol-induced oxidant stress and liver injury be developed?

The role of CYP2E1 in the toxic effects of ethanol requires further study as this remains a
controversial issue. This is significant not only from a mechanistic point of view but perhaps
from a therapeutic treatment approach. If indeed CYP2E1-induced oxidative stress plays a
central role in alcohol-induced liver damage, possible strategies for preventing this stress may
be effective in attempts to minimize the hepatotoxicity of ethanol in humans. The CYP2E1
inhibitors which were partially effective in preventing ethanol-induced liver injury are not
entirely selective and may be toxic, although chlormethiazole (CMZ) (126) or
polyenylphosphatidylcholine (PPC) (127) may merit further consideration. YH439 is a novel
synthetic compound inhibiting CYP2E1 (but also other P450s) that is being evaluated as a
hepatoprotective agent (224). Actually, natural agents inhibiting CYP2E1, including dially
sulfide (from garlic) mentioned above, phenylethyl isothiocyanate and sulforaphane (present
in cruciferous vegetables) and bergamottin (found in the essential oils of grapefruit and certain
oranges) have been proposed as possible candidates for minimizing the ethanol-induced
hepatotoxicity (225). In addition, trans-1,2-dichloroethylene (DCE) was reported to be a
selective inhibitor of CYP2E1 (226).

Regulation of CYP2E1 protein levels is complex, with transcriptional, translational, and
posttranscriptional effects observed; more mechanistic details as to how ethanol modulates
CYP2E1 levels are required to define, e.g. effects on activity of the proteasome, ubiquitination,
how ethanol stabilizes CYP2E1. What are the factors which trigger the rapid turnover of
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CYP2E1? Most studies on the biochemical and pharmacological actions of CYP2E1 are
derived from studies with rodents and rabbits and cultured hepatocytes: extrapolation to human
studies is obviously necessary. The role of polymorphic forms of CYP2E1 on CYP2E1
expression, activity, and action requires further understanding, as current literature suggests
some possible relationships with certain types of cancers but not with alcohol toxicity. Are
there endogenous substrates for CYP2E1? At present, acetone and some fatty acids (omega-1
hydroxylase activity) appears to be physiological substrates for CYP2E1, but further studies
should be carried out because altered metabolism of such putative endogenous substrates, if
any, could contribute to the cellular actions associated with CYP2E1. CYP2E1 is present,
although at relatively low levels, in other tissues, e.g. kidney, lung, brain, gastrointestinal tract.
Much less is known about the actions of CYP2E1 under various pathophysiological conditions
or after chronic ethanol exposure in these tissues. CYP2E1-nutritional interactions require
further study, especially interactions with prooxidants, such as iron; polyunsaturated fatty
acids; or reagents that lower oxidant defense, e.g., lower GSH levels. There is much current
interest in synergistic interactions between alcohol and hepatitis B or hepatitis C virus,
especially with respect to generating oxidative stress. The role of CYP2E1 in such synergistic
interactions, if any, would be important to explore in view of the many chemicals and conditions
that are known to elevate CYP2E1.

The ability of alcohol to promote oxidative stress and the role of free radicals in alcohol-induced
tissue injury clearly are important areas of research, particularly because such information may
be of major therapeutic significance in attempts to prevent or ameliorate alcohol’s toxic effects,
e.g., by antioxidants, iron chelators, inhibitors of CYP2E1 or of cytokine production/actions,
and GSH replenishment. As basic information continues to emerge regarding the role of
oxidative stress in disease development and the mechanisms underlying ROS-related cellular
toxicity, these findings will lead to more rational antioxidant therapeutic approaches.
Moreover, these finding could result in the development of more effective and selective new
medications capable of blocking the actions of CYP2E1 and ROS and, consequently, the toxic
effects of alcohol.
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Fig. 1.
Working model of CYP2E1-dependent oxidative stress and cytotoxicity. Please see the text
for discussion.
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